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Abstract—Distributed sensor networks have been widely em-
ployed to monitor and protect critical infrastructure assets. The
network status can be estimated by centralized state estimation
using coordinated data aggregation or by distributed state esti-
mation, where nodes only exchange information locally to achieve
enhanced scalability and adaptivity to network dynamics. One
important property of state estimation is robustness against false
data injection from sensors compromised by attackers. Different
from most existing works in the literature that focus on central-
ized state estimation, we propose two novel robust distributed
state estimation algorithms against false data injection. They are
built upon an existing distributed Kalman filtering algorithm.
In the first algorithm, we use variational Bayesian learning to
estimate attack parameters and achieve performance similar
to a centralized majority voting rule, without causing extra
communication overhead. In the second algorithm, we introduce
heterogeneity into the network by utilizing a subset of pre-trusted
nodes to achieve performance better than majority voting. We
show that as long as there is a path connecting each node to
some of the pre-trusted nodes, the attackers can not subvert the
network. Experimental results demonstrate the effectiveness of
our proposed schemes.

I. INTRODUCTION

A distributed sensor network consists of a set of spatially
scattered sensors that can measure various properties of the
environment, formulate local and distributed inferences, and
make responses to events or queries [1]. It can be deployed to
monitor and protect critical infrastructure assets, such as power
grids, automated railroad control, water and gas distribution,
etc. However, due to the unattended operating environment of
sensor networks, it is possible for an attacker to compromise
sensors to introduce malicious measurements, which we call
false data injection. The false measurements can affect the
outcome of state estimation and mislead the system into
making wrong decisions.

Detecting and purging false measurements injected by com-
promised nodes is a challenging research problem in sensor
networks. The energy and cost constraints restrict the deploy-
ment of tamper resistant hardware for the whole network. Once
a node is compromised, all the security information stored in
the node will be exposed to the attackers. The normal nodes
cannot distinguish the attackers by only using cryptographic
techniques. Most existing works use majority voting based
schemes to prevent the false data injection attack. Ye et al. [2]
presented a statistical en-route filtering mechanism in which
the truthfulness of data from each node is determined via
collective decision-making by multiple nodes. In [3], Shukla
et al. presented a secure statistical scheme to distinguish data
transience from false injection in a clustered sensor network

by utilizing statistical digests sent from each sensor. For
additional results see [4]-[6]. However, all these works rely
on a hierarchical architecture and central coordination among
sensors, which limits sensor network’s scalability due to the
large number of nodes and the volatility of the network.

In this paper, we focus on robust distributed state estimation
against false data injection, where each node in the network
tries to estimate the states as accurately as possible, by using
only local information. Under this setting, how to utilize
majority voting is not obvious. If each node reports its data to
all nodes, the network will be congested by the large commu-
nication overhead. We propose a distributed state estimation
method with Bayesian learning, which achieves performance
similar to a centralized majority voting rule without causing
extra communication overhead. One limitation of using major-
ity voting is that the network may be totally subverted when
more than half of the sensors are compromised. To overcome
this problem, we introduce heterogeneity into the network
through a subset of pre-trusted nodes.We proposed a trust-
aware state estimation scheme which can propagate trust from
the pre-trusted nodes to other nodes. We show that as long
as there is a path connecting every node to some of the pre-
trusted nodes, the attacker cannot subvert the network even
when more than half of the sensors are compromised.

The rest of the paper is organized as follows. Section II
gives the formulation of the problem. Then we describe our
Bayesian learning based scheme and trust-aware scheme in
Sections III and IV, respectively. Section V presents conclu-
sions and future work.

II. PROBLEM FORMULATION

We consider a sensor network composed of n sensors,
which is used for state estimation of a linear random process
x(k 4+ 1) = Ax(k) + w(k). x(k) € R™ is the state vector,
w(k) € R™ is the state noise, which accounts for modeling
errors, uncertainties or perturbations to the process and is
assumed to be Gaussian with 0 mean and covariance matrix
Q. The initial state xy has a Gaussian distribution with mean
Ho and covariance matrix My. We assume each sensor can
sense this process and the sensing model for each sensor is
given by y;(k) = H;x(k) + v;(k), where y;(k) € RPi is
the observation made by sensor ¢, and v;(k) € RP¢ is the
measurement noise, assumed to be Gaussian with zero mean
and covariance V;. In distributed sensing, the measurements
of an individual sensor may only contain partial information
of the state, so state estimation requires the cooperation of
sensors in the network.



In distributed state estimation, the goal of each sensor is
to compute an accurate estimation of the state x(k) using
its local measurements and the information received from
its communication neighbors. Distributed Kalman Filtering
(DKF) provides a solution for this problem. The main idea
of DKF [7] is to use a standard Kalman filter locally, together
with a consensus step to ensure that the local estimates agree.
However, existing DKF algorithms are derived in a benign
setting without considerations of possible malicious attacks.
Therefore they are not robust against false data injection. In
what follows, we use the DKF algorithm introduced in [7]
as a basic algorithm to build our robust distributed estimation
algorithms. Let G = (V,€) be a graph with an adjacency
matrix [g;;] that specifies the topology of the sensor network,
and N; = {j € V|gi; # 0} be the communication neigh-
borhood of sensor i. Let J; = N; U {i} denote the inclusive
neighbors of node i and y(k) = [y1(k),...,yn(k)]T denote
the measurements obtained at all sensors by time k. Then given
the observations y(1 : k) = {y(1),...,y(k)}, we denote the
state estimates at node ¢ as follows

(k)= E[x(k) [y (1:k)], %i(k) = E[x(k)[y(1:k — 1)),
M;(k)=Cov(x(k)ly(1:k)), M;(k)
The basic algorithm is described in Algorithm I, where € is a
small positive constant. For simplicity, we omitted the time
index. In each round, node 7 only needs to broadcast the
message (u;, U;, X;) to its neighboring nodes.
Algorithm I: Basic DKF Algorithm [7]
1. Initialization: M; = My, X; = g
2. While new data exists do
3. Locally aggregate data and covariance matrices:
Vi €T uj=HIVilyj 2= % e 5,
Uy = Hf Vi Hj, Si=3 e, Us
4. Compute the Kalman-consensus estimate:
Mi = (Mi_l + Si)_l
)A(i = )_(i + Ml(Zz — S’L)_(’L) + GMi ZjGNi ()_(j — )_(i)
5. Update the state of the Kalman-consensus filter:
M; = ANMGAT 4+ Q, %; = A%,
6. end while

Next we introduce the threat model for false data injection.
Let y“ represent the vector of measurements that may contain
malicious data, i.e., y*(k) = y(k) + a(k), where a(k) =
[ai(k),...,a,(k)]T is the malicious data added to the original
measurements. We call a(k) the attack vector. The it element
of a(k) being non-zero means that the attacker compromises
the i*" sensor and replaces its original measurement y;(k)
with a false measurement y;(k) + a;(k). The attacker can
choose any arbitrary vector as the attack vector a(k). It’s easy
to see that even if only one sensor is compromised, the state
estimation X*(k) under the false data injection can deviate
from the true state x(k) arbitrarily or be arbitrarily noisy.

III. DKF WITH BAYESIAN LEARNING
The basic idea of our DKF algorithm with Bayesian learning
is to use Bayesian learning to estimate the attack vector and
then try to remove the effects of the estimated attack vector
from the measurements. Since Bayesian learning usually in-
volves highly complicated computational techniques such as
Markov Chain Monte Carlo, and the resource constraints in

= Cov(x(k)|y(1:k — 1)).

a sensor network requires algorithms to be fast and compu-
tationally efficient, we propose to use variational Bayesian
learning [8], which is an approximate but efficient method
for estimating the marginal likelihood of probabilistic models
with latent variables or incomplete data.

a) DKF with variational Bayesian learning: In the DKF
model, the latent variables are the system states to be esti-
mated: x(1 : k) = {x(1),...,x(k)}, and the observations are
the malicious measurements y*(1 : k) = {y*(1),...,y*(k)}.
In general, the attack vector can be modeled by a Gaussian
mixture model (GMM), as GMM comprises a finite or infinite
number of different Gaussian distributions that can describe
different features of data. To simplify the problem and focus on
the performance of the algorithm, we assume the attack vector
is drawn from a single multi-variate Gaussian distribution with
parameters 1 and V' and the attack signals at each sensor
are uncorrelated, so V¢ is a block-wise diagonal matrix. Let
V = diag(Vi + V{,...,V, + V,?) and denote the model
parameters by @ = {u®, V}, the marginal likelihood of the
model can be expressed by

Py (120 = | [ A L(1:0). 001 x(1:8) (@)
Denoting the Gau551an dlStI’lbuthIl by N(-), we have
i k) x(1: k),

HNH x(j
k

fx(1: k) =[N x(j_1) Q).

Furthermore, we glssume that £ and V have conjugate priors,
so the posterior probability distribution of € will be in the same
family as the prior probability distribution, i.e.,

(1,00 V)~ N (0, V /0°), V(0 By~ W (1%, BT/7Y)
where pY, p° +Y and B are hyper-parameters and W ()
represents the Wishart distribution. Since the distributions
fly®(1:k)), f(x(1:k)) and f(0) all belong to the exponential
family, following the theorem in [8] for variational Bayesian
learning , we can obtain the updating rules for the attack pa-
rameters fi; = E[p?|y(1 : k)] and V;(k) = E[V;|y(1 : k)] as
shown in (1) and (2). For simplicity, we assume B is diagonal,
that is, we assume the measurement noise is uncorrelated in
each dimension.

)+ pd, Vi),

~a o pou‘z +Zg 1[y74( ) H X’L( )]
pi (k) = Ok ) (D
~ [diag(p°pef + Zlle yi(j) — Hi%i(j))]* +~°B;
pO-[diag(p?)]? + Y, [diag(yi(j) — Hi%:(5)))?
0 : 2
Y+ k

where diag(v) represents a diagonal matrix whose diagonal
entries are the components of the vector v. Equations (1) and
(2) require all data until time k, so they cannot be computed
online. We rewrite them in a form using only current observed
values, as described in Algorithm II. Algorithm II represents
our DKF algorithm with variational Bayesian learning.

To evaluate the performance of Algorithm II, we use it
to estimate the position of a moving object in R? that
approximately moves in circles. The sensor networks used in
our experiments are comprised of 100 randomly located nodes.



Algorithm II: DKF Algorithm with Bayesian Learning

1. Initialization: M; = My, X; = py, V = B,
pe=pl p=p%y=1"

2. While new data exists do

3. Locally aggregate data and covariance matrices:

V€T w=HIVI S — ), 7= Y e W
Uj=H/V 'Hj, Si=3.c; U
4. Compute the Kalman-consensus estimate:
M; = (M;' +8,)71,
)A(i = Xi + Mz(zz - Slil) + EMZ' ZjGNi (Xj — ii)

5. Compute the attack parameter estimate:
pi = (ppi +yi — Hix;)/(p+ 1),

Vi = (Vi + pldiag(if)]* — (p+ 1)[diag ()] *+
diag(y; — Hi%;)]*) /(v + 1)

6. Update the state of the Kalman-consensus filter:
Mi = AMZAT+Q, X; = A)A(Z, p = ,D‘Fl7
Y=v+1 Bi=pi, Vi=V;

7. end while

There are two main observations. First, the algorithm is very
robust under attacks that have p® = 0. No matter what is the
value of V' and how many sensors are compromised, as long
as there is one sensor not compromised, the network always
gives accurate estimations. Second, the algorithm performs as
majority voting when p® # 0, as we can see in Figure 1. The

Attack Signal: ufzqu 0},V3=0

Algorithm I, with 55
nodes compromised

Algorithm IIl, with 45
des compromised

Fig. 1: Perfomrance of Algorithm II
performance is very good when 45 sensors are compromised,
but degrades abruptly when 55 sensors are compromised. The
attack parameters in Figure 1 are set as p¢ = [10,10] and
V® = 0. The reason for the two observations is that in
Algorithm II nodes use all the data received for estimation
and resolve the inconsistency among data by adjusting the
estimated mean and covariance matrix of the measurement
noise. When p® = 0, the algorithm handles the perturbation
on the covariance matrix well since it knows that large
noise covariance matrix indicates low accuracy. But when
the perturbation is on the mean value, the algorithm cannot
identify compromised nodes and only the majority voting rule
can be used.

IV. TRUST-AWARE DISTRIBUTED KALMAN FILTERING
In this section, we propose a trust-aware scheme for DKF
and show that it is robust under false data injection even when
the majority of nodes are compromised. We introduce a subset
of pre-trusted nodes into the network, which are special nodes

that can be highly trusted, e.g., sensors equipped with tamper
resistant hardware. We show that as long as there is a path
connecting every node in the network to some of the pre-
trusted nodes, the attacker can not subvert the system.

a) Computational Model for Trust: To handle the uncer-
tainty on the possible existence of malicious nodes, we assume
that each node is in one of two states: normal or malicious.
We denote the state space by S = {S1, 52}, where S; is the
normal state and S5 is the malicious state, and denote the true
state of node ¢ by S(¢). Then the local trust opinion of node
1 on node j is defined by the transition probability matrix:

Pr(S(i) = 51|5(j) = S1) Pr(S(i) = 51[5(j) = S2)
Pr(S(i) = 52|S(j) = S1) Pr(S(i) = 52[S(j) = S2)

P; ; is a column stochastic matrix, i.e., the sum of each column
is equal to 1. The computation of P; ; depends on the particular
application. As our first step for the design, we model F; ;
by a logistic function that depends on the Euclidean distance
between the measurements from two neighboring nodes. We
assume neighboring nodes have the same observation matrix
H,, so the larger the distance between the measurements, the
smaller the trust the nodes have for each other. More general
assumptions on H; can be made and may require different
models for P; ;; we will explore this issue in the future. Let
i and j be neighbors that exchange measurements y? (k) and
y§ (k) at the kth step, and denote d;; (k) = ||y (k) —y$ (k)|
We compute the conditional probability by

Pij(1,1) = P 5(2,2) = f(yi (k) y5 (k)

The reason we set P;;(1,1) = P, ;(2,2) is that there is no
prior information about the normal state and malicious state,
so we treat the two cases as equally likely. The function
f(y¢(k),y§(k)) is actually a ‘soft’ step function, i.e., when
d;j(k) = 0, it equals to 1 and when d;;(k) = 400, it equals
to 0. The parameter « controls the slope and cutoff value of
the function. To accumulate previous experience into the local
trust opinion, we update the matrix P; ;(k) by

(k)_ fyi k), y5 (k) 1= f(yi(k),y5 (k) (k=1)
P=00 Z p e ys k) £(ve(h), g ) [POR
where [ is a time discount factor.

The global trust value for node ¢ is defined to be a 2 x 1
vector g;, which represents the probability of node ¢ in one
of the two states, i.e.,

g: = [Pr(S(i) = 81),Pr(S(i) = S2)]".

Given node j’s global trust value, node ¢’s posterior probability
in one of the two states can be computed by F; ;-g;. Assuming
a uniform prior for node i’s neighboring nodes, the estimate
of the posterior probability of ¢ can be written as

1
& = I\ > Pij-g
"jen:

Since the global trust values for the pre-trusted nodes are
known, we propagate the global trust from them to other nodes
in the network. Denote the set of indices of the pre-trusted
nodes by 7 and the set of indices of other nodes by &/. Without
loss of generality, we assume the pre-trusted nodes are indexed
from 1 to ¢. Let g7 = [g1, ..., 8", gu = [ge41.-- . 8a)".
Dyy = diag(|Nigal, ..., |N,l]), and Py be the transition
probability matrix from U to U, ie., Puyu(i,5) = Pitit+j

P j=

2¢—di;(k)/cx

T 1t eduk)/a

)




P17 be the transition probability matrix from U/ to 7, i.e.,
Py7(i,j) = Pit; ;. Then the computation of the global trust
values for nodes in Uf can be written in a matrix form, i.e.,

Dyv - gu = Puu - 8u + Purt - 7. (3)
Since DfﬂllPuu is a sub stochastic matrix, it can be proved [9]
that if for every node i € U, there exists a path that connects
some node j € 7 to i, then the spectral radius p(DL_,LI,Puu)
is less than 1 and the following Jacobi iteration converges to
the unique solution of equation (3),

1
vieu, gt — m[ Z Pl + 3 Pugl @
jEU,JEN; leT leN;

The convergence speed of equation (4) depends on the graph
structure. More specifically, it is related to the second largest
eigenvalue of the matrix DQ&PMU [10]. Experimental results
show that this computation converges very fast, usually in
less than 10 iterations. The reason for the fast convergence
is discussed in [10].

To handle the convergence of the distributed Kalman fil-
tering and the trust propagation process together, we evaluate
trust in a smaller time scale than the DKF. That is, we let
the trust propagation algorithm achieve convergence between
each interval of state updates in DKF. This is possible since
equation (4) converges very fast. Moreover, since an abrupt
change to a node’s trust value does not occur frequently, we
can expect that after the first trust evaluation, the following
ones will converge much faster. Let r; = 1 x g;(1) +0x g;(2)
be the trust weight of node ¢, which is the probability that node
¢ is in the normal state, Figure 2 illustrates the performance
of the trust evaluation algorithm on distinguishing malicious
nodes from normal nodes. We can see that the trust weights

0.35

I malicious nodes
0.3 I normal nodes

Frequency

0.1 0.2 0.3

4 0 06 07 08
Trust Weight

Fig. 2: Distribution of trust weights for nodes in the network

for the normal nodes are always larger than 0.5, while the
malicious nodes always have trust weights less than 0.5.

b) Trust-aware DKF algorithm: After trust propagation,
the DKF algorithm can weight the data sent by a node by
its trust weight r; so less trusted nodes have less impact on
the algorithm. We can also isolate those less trusted nodes by
ignoring data sent by them. In this way, the algorithm can
achieve better performance. We name the algorithm with trust
weight as Algorithm III and the algorithm of isolating less-
trusted nodes as Algorithm IV. Table I shows the performance
of algorithm III, IV, and the DKF algorithm with Bayesian
learning when 60 randomly selected sensors are compromised.
We measure the algorithm performance by the mean square

error tll time k, ic. eM5F = /(T8 (%,(0) —x(1)*)/k,
where Xx;(l) is the state estimate by sensor ¢ at time [. In

the experiment, we set & = 400. Since the sensors can
approximately achieve consensus in DKF [7], the estimated
state ;(l) is approximately the same for each sensor ¢, and
so is the value of eM5F

i .

TABLE I: Performance Comparison of Algorithm II, III, IV

wi, Ve [5,5],0 | [5,5],2 | [10,10],0 | [10,10], 5
Algorithm IT | 4.7345 | 3.1572 9.8317 6.8935
Algorithm IIT | 1.2816 | 1.6131 3.3624 2.1507
Algorithm IV | 0.6724 | 0.5298 1.1997 0.8966

We can see that the trust-aware schemes perform better than
the DKF algorithm with Bayesian learning, and Algorithm
IV performs better than Algorithm III. The only drawback
of Algorithm IV is that the isolation of the less-trusted nodes
may lead to a disconnected network. Also we observe that
when V,* # 0, the algorithms may perform better than the
case when V. = 0, which means that V;* being non-zero in
some sense reduces the impact of p$ on the estimated states.

V. CONCLUSIONS

We proposed two schemes for robust state estimation in
distributed sensor networks against false data injection. The
first scheme is based on variational Bayesian learning, which
achieves good performance as a majority voting rule without
causing extra communication overhead. The second scheme
achieves performance better than majority voting by introduc-
ing a subset of pre-trusted nodes into the network. Experi-
mental results demonstrate the effectiveness of our schemes.
In future work, we will further investigate our trust-aware
scheme, e.g., different models for the probability transition
matrix F; ;, the impact of the number of pre-trusted nodes and
their positions on the performance of the trust-aware scheme.
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