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Abstract— We present an optimization problem that aims to
maximize the throughput of a Transmission Control Protocol
(TCP) connection between two nodes in a wireless ad-hoc
network. More specifically, a persistent TCP connection is
established between two nodes that are one hop away in a
wireless unslotted Aloha network. The optimization is over the
TCP timeout period, i.e. the problem is to find the optimal
waiting period before the TCP sender declares a timeout event
in the absence of a received acknowledgment for a transmitted
packet. The problem is formulated as an optimal stopping
problem. In the absence of a tractable analytical solution
to the problem, a numerical method is proposed to achieve
performance improvement of the system.

I. INTRODUCTION

The performance of TCP over a wireless network is poor.
This is because the TCP sender assumes that the reason for
a packet loss is congestion in the network. Although this is
a reasonable assumption for the Internet, it might not be the
case for wireless networks. The successful transmission of
a packet over a wireless channel depends on the channel
quality. In wireless networks the channel quality exhibits
high variability and it often causes unrecoverable errors for
the packet at the receiver. In these cases, the TCP receiver
cannot acknowledge the received packet and drops it. When
packets are dropped due to bursts of errors introduced at
the channel level, the TCP sender declares a timeout in the
absence of received acknowledgments. When this happens,
TCP enters the slow-start phase minimizing its window size,
and thus its throughput. Clearly, this is not the best remedy
to the problem, since the lost packets are dropped because
of a temporary quality degradation at the channel and not
because of congestion.

The same situation arises when the channel affects the
transmission of the acknowledgments themselves. Typically,
in the case of a bidirectional TCP connection, the acknowl-
edgments for the one direction are piggybacked onto the data
packets to the opposite direction. Hence, acknowledgments
are subject to the effect of the channel as data packets do.
Even in unidirectional TCP connections where the acknowl-
edgments are sent to the sender on their own, the bursty
nature of the channel errors increases the probability that
more than three consecutive acknowledgments are lost and
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thus a data packet loss is falsely detected at the TCP sender
and a timeout is declared.

It makes sense then to try to maximize the TCP throughput
by appropriately tuning the timeout interval for each packet
the TCP source sends to the network. This tuning should
take into consideration the parameters that characterize the
operation of the Medium Access Control (MAC) layer as
well as the channel. In the setting considered here, these
parameters are the mean backoff time λret for unslotted
Aloha and the probabilities the wireless channel is in the
“good” or the “bad” state, πg , πb respectively.

After a packet is sent to the network the TCP sender starts
a timer which is set to a value according to an estimate
of the round-trip time (RTT). In general, in current TCP
implementations this estimate does not take into account the
fact that the communication takes place over a wireless net-
work and thus it considers any delays to be associated with
congestion. In a wireless environment however, especially in
random access networks such as the IEEE 802.11 or Aloha
(as is the case here), packets are delayed because of collisions
and retransmissions at the MAC layer. If a packet is delayed
because there is heavy background traffic (i.e. traffic from or
to nodes in the neighborhood of the TCP sender or receiver),
its acknowledgment might not reach the TCP sender before
the expiration of the timeout timer. Then, the TCP sender
will declare a timeout, it will minimize the window size
and enter slow-start. This will happen even if there is no
congestion between the TCP sender and receiver. In this case
the TCP throughput is minimized without any congestion
being present in the network.

Consider the situation from the point of view of the TCP
sender. In the current TCP implementations the TCP sender
at some point sends a packet and starts the timeout timer.
If no acknowledgment is received for that packet when
the timer expires, the TCP sender declares a timeout and
enters slow-start. The TCP sender has no way to know
the exact cause for the lack of a received acknowledgment
and it always assumes there is congestion in the network.
If we want to maximize the TCP performance we need
to incorporate in the timeout mechanism some information
regarding the wireless medium. Consider again the situation
where the TCP sender sends a packet to the network and
waits for an acknowledgment. There are two reasons for an
acknowledgment to be delayed. Either there is congestion in
the network or the packet is delayed because of collisions and
retransmissions at the MAC layer. In the first case the TCP
sender would have liked to declare immediately a timeout
and enter slow-start and thus minimize the traffic that is sent
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to the network in order to compensate for the congestion. In
the second case however, a timeout event is not the best thing
to do because the cause of the delay is the MAC layer and not
congestion at the transport layer. In this case the TCP sender
would have liked to wait and let the MAC layer resolve the
collision. Then, the received acknowledgment would trigger
the transmission of packets from the current state of the TCP
sender and thus no performance decrease would be observed
regarding the TCP throughput.

It is clear then, that the TCP sender has to choose
between two different actions in the absence of a received
acknowledgment. Either stop the waiting period and enter
slow-start (by essentially declaring a timeout), or continue
waiting for the acknowledgment, hoping that it is delayed
at the MAC layer and not because of congestion. Thus, an
optimal stopping problem can be defined. The solution to this
problem provides the TCP sender with the optimal timeout
period in order to increase its throughput.

II. PROBLEM FORMULATION

We assume there exists a complete probability space
(Ω,F , P ). We consider a wireless network where the MAC
layer is unslotted (pure) Aloha [1], [2]. Each node in the
network can hear the transmissions from any other node
(single cell). We model the wireless channel as a two-state
continuous time Markov chain (the Gilbert-Elliott [3], [4]
model). One state corresponds to the case the channel is
“good”, i.e. the packets are not lost w.p. 1, and the other state
corresponds to the case the channel is “bad” which means
the transmitted packets are lost w.p. 1. The transition rate
from the “bad” to the “good” state is λbg and the transition
rate from the “good” to the “bad” state is λgb.

In the unslotted Aloha protocol a packet is immediately
transmitted to the network. If this transmission overlaps
with another packet transmission from another node, then
there is a collision and none of the packets are received by
the corresponding receivers, and have to be retransmitted.
To avoid another collision, the nodes that participated in
the collision have to delay their retransmissions for an
exponentially distributed random interval. The mean of this
exponential distribution is the same for all nodes and is
denoted by 1/λret. Moreover, this randomly selected interval
is independent of any possible previous delays at each node
and across nodes.

We focus on a TCP connection between two nodes in the
network that are one hop away. We assume this is a persistent
TCP connection which implies that the sender has always
packets to send. If Wt is the TCP window size at the sender
at time t, we can define a stochastic process W = (Wt)t≥0
that evolves according to the dynamics of the TCP protocol
and is affected by the MAC layer and the wireless channel.

A stochastic differential equation for W = (Wt)t≥0
is introduced in [5]. This stochastic differential equation
describes the evolution of the window size as this evolution
is driven by a point process that represents the arrival of
acknowledgments from the TCP receiver to the TCP sender.

More specifically, we have:

dWt =

{
dNt, Wt < Ht

1
Wt
dNt, Wt ≥ Ht

WSn = W0, n = 1, 2, . . . (1)
W0 ≤Wt ≤Wmax, t ≥ 0

where H = (Ht)t≥0 is the process that describes the slow-
start threshold and its evolution is given in [5]. W0 and
Wmax are the initial (minimum) and maximum values of
the window size, and {Sn, n = 0, 1, . . . } is the sequence of
the time instances a timeout event is declared by the TCP
sender. The stochastic process N = (Nt)t≥0 is the counting
process that corresponds to the point process {TMACn , n =
0, 1, 2, . . . } that represents the arrival of acknowledgments
at the TCP sender. If FN = (FNt )t≥0 is the right continuous
filtration that represents the history of this point process, it
is shown in [5] that the FN -intensity λt of the process is

λt =
λbg

λbg + λgb
λMACt (2)

where

λMACt =

{
0, TMACi ≤ t < TMACi + Tp

λretpmac, TMACi + Tp ≤ t < TMACi+1

(3)

and Tp = L/C is the transmission time of the packet of
constant length L bits over the wireless channel of capacity C
bps, and pmac is the probability of a successful transmission
of a packet for unslotted Aloha, which can be estimated by
the TCP sender by listening to the channel and counting the
successful transmissions and the collisions at the MAC layer.

As was mentioned in Section I we want to increase the
TCP throughput by computing the optimal timeout period
τ for the TCP sender to declare a timeout. This can be
formulated as an optimal stopping time problem in the
probability space (Ω,F , P ). If FTCP = (FTCPt )t≥0 is the
right continuous filtration that represents the history of events
observed by the TCP sender we want to find the optimal
FTCP -stopping time τ such that

J(w, τ ;h) = Ew

[∫ τ

0

e−βtk(Wt;h)dt+ e−βτg(Wτ ;h)

]
(4)

is maximized over τ , for β > 0, where Ew [·] represents the
expected value conditioned on the event that the initial value
of the process W is w and the slow-start threshold is h. The
value h of the slow-start threshold remains constant for the
duration of the timeout period and it only affects the size
of the window if an acknowledgment is received. The value
function V (·;h) for the problem can then be defined as:

V (w;h) = sup
τ
J(w, τ ;h) (5)

Notice that the two filtrations, FN and FTCP are equal since
the TCP sender observes the arrival of acknowledgments.
Moreover, the arrival of acknowledgments dictates the evo-
lution of the process W = (Wt)t≥0.
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III. OPTIMAL STOPPING

Let B denote the optimal stopping set, i.e. the process
stops when the set B is reached for the first time. Then, the
equation satisfied by the value function V (·;h) is known as
the Hamilton-Jacobi-Bellman (HJB) equation and is [6], [7]:{

LV (w;h)− βV (w;h) + k(w;h) = 0, w 6∈ B
V (w;h) = g(w;h), w ∈ B (6)

where L is the infinitesimal generator of the process W
defined on a function f : < → < as:

Lf(x) = lim
t↓0

Ex [f(Wt)]− f(x)

t
(7)

As it can be seen from (3), the driving counting process
N = (Nt)t≥0 is not a Lévy process. This makes (6) analyti-
cally intractable. Because of this we need to solve the optimal
stopping problem numerically. Following Kushner’s Markov
chain approximation method [7], we proceed by discretizing
the time and thus moving from the original optimal stopping
problem in continuous time to an equivalent problem in
discrete time. In discrete time, the evolution of the system is
described by a Markov chain, with transition probabilities
that can be computed from the original continuous time
dynamical system. We then formulate an optimal stopping
time problem associated with the Markov chain and solve
the corresponding dynamic programming equation using the
value iteration method [8].

IV. MARKOV CHAIN APPROXIMATION

The discretization of the time is based on the transmission
time Tp of a packet. In particular, we define the time
increment δ to be

δ =
Tp
K

(8)

where K is a positive integer. For larger values of K, a
smaller increment δ is defined and as K increases to infinity,
the discretization becomes finer.

The stochastic process W = (Wt)t≥0 that describes the
evolution of the window size takes values in the interval
[W0,Wmax]. When TCP operates in the slow-start regime,
the window size takes values in the set of positive integers,
and when TCP is in the congestion avoidance phase the
window size is a positive real number. For the optimal
stopping problem of the approximating Markov chain the
window size does not need to be discretized. We only need
to differentiate between the current value of the window
size and the value that the window size will take after a
new acknowledgment is received or a maximum waiting
time is reached. Therefore, we do not discretize the interval
[W0,Wmax] where the process W = (Wt)t≥0 takes its
values.

Suppose at time t = t0 there is a jump to Wt0 = w for
the original, continuous time system (1) and the slow-start
threshold Ht is h. We define the Markov chain that describes
the evolution of the system given that at time t = t0 the size
of the window is w. We want to solve the optimal stopping

problem for the Markov chain for any such initial condition
(w, t0).

The approximating Markov chain Xδ, h, t0, w =
{Xδ, t0, w

n , n = 0, 1, . . . } that represents the evolution of
the original, continuous time dynamical system (1) has a
two dimensional state space:

X δ, h, t0, w = [W0,Wmax]× {t0, t0 + δ, t0 + 2δ, . . . ,

t0 + (K +M + 1) · δ}, (9)

where M is the number of time increments that we allow
after the time t0+Kδ before we declare a timeout. Therefore,
the parameter M defines an upper bound on the optimal
stopping time of our problem and assures that the algorithm
that computes this stopping time terminates.

In order to describe the transitions of the Markov chain
Xδ, h, t0, w, suppose that the chain is in the state (w, t0 + i ·
δ). For i = 0, 1, 2, . . . , (K − 1), the chain can only move in
time leaving the first component of the state unchanged. This
is true because in the original continuous time dynamical
system (1) there is no new jump for a time duration equal
to Tp (the transmission time of a packet) after a jump
(which we assumed it happened at time t0). Thus, for i =
0, 1, 2, . . . , (K − 1) the state that follows (w, t0 + i · δ) can
only be (w, t0 + (i+ 1) · δ) and this transition happens with
probability 1.

After time Tp = K ·δ has elapsed from t0 a new jump may
occur. If the Markov chain Xδ, h, t0, w is in state (w, t0 +
(K + j) · δ) for j = 0, 1, 2, . . . , (K + M − 1), there are
two different events that may happen, and thus two possible
transitions out of this state that represent these events.

The first event represents a new jump of the original
system (1). Thus the second component of the state will
increase by one to t0+(K+j+1)·δ and the first component
of the state will be a new window size w′. The value of
w′ depends on whether TCP is in slow-start (w < h) or
congestion avoidance phase (w ≥ h). If TCP is in slow-
start phase, then w′ = w + 1, and if TCP is in congestion
avoidance phase then w′ = w+ 1

w . Such a transition indicates
that a new acknowledgment has arrived at the TCP sender
which implies that there is no need to find a timeout interval,
and thus solve the optimal stopping problem. The transition
from (w, t0 + (K + j) · δ) to (w′, t0 + (K + j + 1) · δ)
happens with probability pj that is computed from the p.d.f.
for DMAC . The random variable DMAC represents the time
between two successive packet transmissions at the MAC
layer and its p.d.f. is computed in [5] to be

fDMAC (t) = pmacδ(t− Tp) + pmac(1− pmac)·

λrete
−λretpmac·

(
t−Tp

)
u0(t− Tp) (10)

for t ≥ 0. In this new state the only transition that is allowed
is to itself with probability 1.

The second event represents the fact that no new arrival
(and thus jump) has occurred. In this case, the first compo-
nent of the next state remains the same and equal to w, and
the second component indicates the increase in time by the
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increment δ. The transition from (w, t0 + (K + j) · δ) to
(w, t0 + (K + j + 1) · δ) happens with probability 1− pj .

Finally, if the Markov chain is in the state (w, t0 + (K +
M) · δ) it means that the maximum allowed waiting period
has been reached, therefore a timeout has to be declared.
This is indicated by a transition to (1, t0 + (K +M + 1) · δ)
with probability 1.

The two dimensional Markov chain Xδ, h, t0, w can be
represented schematically as in Fig. 1.

(w, t0)

1

(w, t0 + δ)

1

· · ·

1

(w, to + i · δ)

1

· · ·

1

(w, t0 + (K − 1) · δ)

1

(w′, t0 + (K + 1)δ)

1

(w, t0 +K · δ)

1−p0

p0

(w, t0 + (K +M) · δ)

1

(w, t0 + (K +M − 1) · δ

1−pM−1

pM−1

· · ·

1−pM−2

(w, t0 + (K + j) · δ)

1−pj

pj

· · ·

1−pj−1

(w, t0 + (K + 1) · δ)

1−p1

p1

(1, t0 + (K +M + 1) · δ)

1

(w′, t0 + (K +M) · δ)

1

· · · (w′, t0 + (K + j + 1) · δ)

1

· · · (w′, t0 + (K + 2) · δ)

1

Fig. 1. The Markov chain approximation for the Optimal Stopping problem.

V. TRANSITION PROBABILITIES

To better represent the Markov chain Xδ, h, t0, w, we
name each of the two dimensional states of the chain as
follows:

Si =
(
w, t0 + i · δ

)
, i = 0, 1, 2, . . . , (K +M)

Fj =
(
w′, t0 + (K + j) · δ

)
, j = 1, 2, . . . ,M (11)

R =
(

1, t0 + (K +M + 1) · δ
)

Using the representation of (11) the Markov chain
Xδ, h, t0, w is shown in Fig. 2. The transition probabilities

S0

1

S1

1

· · ·

1

Si

1

· · ·

1

SK−1 1

SK

1−p0

p0

F1 1

SK+M

1

SK+M−1

1−pM−1

pM−1

· · ·

1−pM−2

SK+j

1−pj

pj

· · ·

1−pj−1

SK+1

1−p1

p1

R

1

FM

1

· · · Fj+1

1

· · · F2

1

Fig. 2. The Markov chain approximation for the Optimal Stopping problem
with different state representation.

can then be given as
• for i = 0, 1, 2, . . . , (K − 1),

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si}

=

{
1, if X = Si+1

0, otherwise
(12)

• for i = K, (K + 1), . . . , (K +M − 1),

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si}

=


1− pi−K , if X = Si+1

pi−K , if X = Fi−K+1

0, otherwise
(13)

• for i = K +M ,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si}

=

{
1, if X = R

0, otherwise
(14)

• for i = 1, 2, . . . ,M ,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Fi}

=

{
1, if X = Fi

0, otherwise
(15)

• and,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = R}

=

{
1, if X = R

0, otherwise
(16)

The cardinality of the state space for the Markov chain
Xδ, h, t0, w is K + 2M + 2. If we order the states in the
following manner:(

S0, S1, . . . , SK+M , F1, F2, . . . , FM , R
)

(17)

then using the transition probabilities defined above we can
write the (K + 2M + 2)× (K + 2M + 2) transition matrix
Q(δ) for the Markov chain Xδ, h, t0, w in block form:

Q(δ) =


OK×1 IK OK×M OK×M OK×1
OM×1 OM×K IM − PM PM OM×1

0 O1×K O1×M O1×M 1
OM×1 OM×K OM×M IM OM×1

0 O1×K O1×M O1×M 1


(18)

where O·×· is the zero matrix, I· is the identity matrix and
PM is a diagonal matrix with the element at the ith diagonal
position equal to pi:

PM =



p1 0 · · · 0 · · · 0 0
0 p2 · · · 0 · · · 0 0
...

...
. . .

... · · ·
...

...
0 0 · · · pi · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 · · · pM−1 0
0 0 · · · 0 · · · 0 pM


(19)
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VI. COMPUTATION OF THE TRANSITION PROBABILITIES

To compute the transition probabilities pi, i =
0, 1, . . . , (M −1) we use the p.d.f. for DMAC given by (10).

We first compute the probability:

Pr{DMAC > s}

=

∫ ∞
s

fDMAC (t) dt

=

{
1, 0 ≤ s ≤ T
(1− pmac)e−λretpmac·(s−Tp), s > T

(20)

For i = 0, 1, 2, . . . , we compute the probability q
Tp, δ
i =

Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ

}
q
Tp, δ
i =

∫ Tp+(i+1)δ

Tp+iδ

fDMAC (t) dt

=


1− (1− pmac)e−λretpmacδ, i = 0

(1− pmac)e−λretpmaciδ
·
(
1− e−λretpmacδ

)
, i = 1, 2, . . .

(21)

Using (20) and (21) we compute the probability:

Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ | DMAC > Tp + iδ

}

=
Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ

}
Pr
{
DMAC > Tp + iδ

}

=

{
1− (1− pmac)e−λretpmacδ, i = 0

1− e−λretpmacδ, i = 1, 2, . . .
(22)

Using (22) and taking into account the operation of the
wireless channel, we can compute the transition probability
pi:

pi = πg · Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ |

DMAC > Tp + iδ
}

=


πg

(
1− (1− pmac)e−λretpmacδ

)
, i = 0

πg

(
1− e−λretpmacδ

)
, i = 1, . . . ,M − 1

(23)

for i = 0, 1, 2, . . . , (M − 1), where πg is given by [5]

πg =
λbg

λbg + λgb
(24)

VII. RUNNING AND FINAL REWARDS

The running reward k(·;h) is defined in such a way as
to represent our unwillingness to declare a timeout and
thus minimize the window size. At the same time though
this unwillingness should be decreasing with time, since
as time increases and no event has occurred (no arrival
of an acknowledgment) is an indication of bad channel

quality. This means that the chances of finally receiving an
acknowledgment become smaller. On the other hand, if we
have already built a large window size we might be reluctant
to declare a timeout since declaring a timeout brings the
window size to its minimum value. Thus, the running reward
k(·;h) is an increasing function of the current window size
and a decreasing function of the waiting time.

In case an acknowledgment has arrived and the Markov
chain Xδ, h, t0, w has moved to an Fi, i = 1, 2, . . . ,M ,
state, there is no need to declare a timeout and thus solve
the optimal stopping problem. Because of this, the running
cost is 0 for these states.

If no acknowledgment has arrived and the maximum
waiting time has been reached, the Markov chain Xδ, h, t0, w

will move to state R. When this transition happens a timeout
is declared anyway, and no further action is needed. Hence,
the running reward for the R state is 0.

More precisely, the running reward is given by (25)

k(Si;h) =
w

Wmax

(
K +M + 1− i

)
αδ, i = 0, . . . ,K +M

k(Fi;h) = 0, i = 1, 2, . . . ,M (25)
k(R;h) = 0

where α is a parameter that depends on whether the TCP
sender is in the slow-start (w < h) or the congestion
avoidance phase (w ≥ h) and can be tuned based on the
performance we want to achieve through the optimization
problem.

The final reward g(·;h) also depends on both components
of the state of the Markov chain Xδ, h, t0, w. For the states
Si, i = 0, 1, 2, . . . , (K − 1), the final reward should be 0,
since these states represent waiting time during transmission
of a packet and thus no event will occur with probability 1.
For the rest of the Si, i = K, (K + 1), . . . , (K +M) states,
the final reward is defined to be an increasing function on
both the window size and the waiting time.

If an acknowledgment is received, and thus the Markov
chain Xδ, h, t0, w moves to an Fi, i = 1, 2, . . . ,M , state,
the final reward depends on the new window size which
is different and depends on whether the TCP sender is in
the slow-start (w < h) or the congestion avoidance phase
(w ≥ h).

Finally, the final reward for the state R depends on the
maximum waiting time that we allow before we declare a
timeout.

More specifically, the final reward g(·;h) is given by (26)

g(Si;h) = 0, i = 0, 1, . . . , (K − 1)

g(Si;h) =
w

Wmax
iα, i = K, (K + 1), . . . , (K +M)

(26)

g(Fi;h) =
w′

Wmax
(i+K)α, i = 1, 2, . . . ,M

g(R;h) = (K +M + 1)α

where α is as in the case of the running reward k(·).
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VIII. OPTIMAL STOPPING AND DYNAMIC
PROGRAMMING

The optimal stopping problem presented in Section II can
now be posed on the Markov chain Xδ, h, t0, w. If Nδ is a
stopping time for the approximating chain Xδ, h, t0, w, we
define the discounted reward according to (4) to be:

Jδ, h(x,Nδ) = Ex

{
Nδ−1∑
n=0

e−β tδn · k
(
Xδ, h, t0, w
n ;h

)
· δ

+ e−β Nδ · g
(
Xδ, h, t0, w
Nδ

;h
)}

(27)

where tδn = nδ and β > 0 the discount factor. If

V δ, h(x) = sup
Nδ

Jδ, h(x,Nδ) (28)

is the corresponding value function for the problem, it
satisfies the dynamic programming equation:

V δ, h(x) = max
{∑

y

e−β δQ(δ)(x, y) · V δ, h(y)

+ k(x) · δ, g(x)
}

(29)

For numerical purposes, we can approximate e−βδ in (29)
with 1

1+β·δ [7].
Because of the discounting, the metric Jδ, h(x,Nδ) in (27)

is finite and well defined. The dynamic programming equa-
tion (29) is also well defined since the transformation∑

y

e−β δQ(δ)(x, y) · V δ, h(y) + k(x) · δ (30)

defines a contraction mapping.

IX. SIMULATION RESULTS

To solve the optimal stopping problem for the approxi-
mating Markov chain Xδ, h, t0, w we use the dynamic pro-
gramming equation (29). Because of the contraction mapping
property of (30) we use a combination of iteration methods in
both the value and the policy space to get the solution to the
stopping problem. The value iteration method solves for the
value function V δ, h(·) and the policy iteration provides the
optimal stopping set B of (6) for the problem. The stopping
set B defines practically our optimal policy, in the sense that,
whenever the Markov chain Xδ, h, t0, w moves into a state
x ∈ B then we stop.

The parameters that define the experiments are related
to the wireless channel, the MAC and the TCP. They are
summarized in Table I.

TABLE I
SIMULATION PARAMETERS.

Wireless Channel MAC TCP Approximation
λbg λret Tp δ, K
λgb pmac β M

α

We run different experiments for different values of the
parameters in Table I and compare against the standard

timeout mechanism of TCP [9]. The channel capacity in all
experiments is 2Mbps.

In Fig. 3 and Fig. 4 we compare the instantaneous rate
when using the timeouts that are solutions to the optimal
stopping time against the standard timeout mechanism of
TCP. In the case of Fig. 3, the mean waiting time before a
retransmission at the MAC layer is 0.1sec (λret = 10), and
in Fig. 4 the corresponding mean waiting time is 0.01sec
(λret = 100). In both cases, there are no losses at the
wireless channel (πg = 1). The probability of a successful
transmission at the MAC layer is pmac = 0.3 and the
discount parameter β is 0.9. Also, in both cases the parameter
α in the running and final rewards is 1 when TCP is in
slow-start and 10 when in congestion avoidance. As it can
be seen in both Fig. 3 and Fig. 4 the timeout mechanism
that is produced from the numerical approximation to the
stopping problem has better performance than the standard
implementation of the timeout mechanism.
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Fig. 3. Comparison of the instantaneous rate between the stopping problem
and the TCP mechanism in the absence of losses at the channel and mean
retransmission waiting time 0.1sec at the MAC layer.
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Fig. 4. Comparison of the instantaneous rate between the stopping problem
and the TCP mechanism in the absence of losses at the channel and mean
retransmission waiting time 0.01sec at the MAC layer.

The case of channel losses is shown in Fig. 5 and Fig. 6.
In both cases the channel loss probability is πb = 0.5. Fig. 5
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shows the case where the mean waiting time after a collision
is 0.1sec (λret = 10), and Fig. 6 corresponds to the case
where the mean waiting time after a collision at the MAC
layer is 0.01sec (λret = 100). As before, the probability
pmac of not having a collision at the MAC layer is 0.3
for both cases. The discount parameter β is 0.9, and the
parameter α in the running and final rewards is 1 for slow-
start and 10 for congestion avoidance.
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Fig. 5. Comparison of the instantaneous rate between the stopping problem
and the TCP mechanism with a loss prob. 0.5 at the channel and mean
retransmission waiting time 0.1sec at the MAC layer.
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Fig. 6. Comparison of the instantaneous rate between the stopping problem
and the TCP mechanism with a loss prob. 0.5 at the channel and mean
retransmission waiting time 0.01sec at the MAC layer.

Finally, In Fig. 7 the results of the comparison are shown
where the discount factor β is 0.001. The loss probability
(1−πg) at the wireless channel is 0.3, and the mean waiting
time before retransmissions at the MAC layer is 0.01sec
(λret = 100).

X. CONCLUSIONS

The focus of the current work is to fine tune the timeout
mechanism of TCP to achieve better throughput in wireless
networks. We pose the problem as an optimal stopping
problem using the stochastic differential equation [5] as a
constraint. The fact that the driving point process is not a
Poisson process makes the analysis intractable. Motivated
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Fig. 7. Comparison of the instantaneous rate between the stopping
problem and the TCP mechanism with a loss prob. 0.3 at the channel,
mean retransmission waiting time 0.01sec at the MAC layer and discount
factor β = 0.001.

by the approximation method of Kushner for stochastic
control problems in continuous time, we develop a numeri-
cal approximation to the original problem. Using dynamic
programming we solve the discrete time version of the
original problem and retrieve stopping policies that define
the new timeout mechanism. We verify the performance
increase by comparing our solution to the standard TCP
timeout mechanism using simulations for different values of
the involved parameters.
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