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Abstract— We consider the collaborative control of a group
of autonomous mobile agents. Building upon our earlier work
we consider the communication needs and connectivity of the
agents’ network as they move. We develop algorithms that
automatically sense the possibility of connectivity loss among
the agents. We also consider the automatic detection of path
disconnection when more than one path need to be maintained
between pairs of agents. Using local probing schemes we
formulate such problems as event-triggered control problems.
We develop distributed algorithms that automatically select
some agents and move them appropriately so as to maintain
certain degree of desired connectivity among the moving agents.
We characterize the trade-off between the gain from main-
taining a certain degree of connectivity vs. the combined cost
of communications and the associated dynamic re-positioning
of agents. The results illustrate the efficiency achieved by
event-triggered control in such problems. We also describe
the resulting communication topologies and in particular their
similarity to dynamic small world topologies.

I. INTRODUCTION

Control of swarms of autonomous platforms (vehicles,
robots, aircraft, ships, etc.) has recently attracted great inter-
est due to a wide variety of applications such as providing
coverage and connectivity to ground agents, automated high-
way systems, mobile sensor networks, disaster relief efforts,
collaborative robotics, etc.

In problems regarding the control and coordination of
vehicle networks, decentralized methods are preferred as
centralized control requires immense communication and
computational resources The collaborative control of au-
tonomous mobile agents can thus be viewed as a hierar-
chical design problem: A high level decision making and
path planning module is responsible for maintaining the
connectivity while creating a sequence of way-points for
their motion. A low level motion control module computes
the real control commands for agents to follow the way-
points generated under the motion constraints. In a series
of previous papers (see e.g. [19] [20]) Baras, Tan and Xi
addressed the problems of high level and low level motion
planning using a combination of distributed hybrid Gibbs
sampler based methods and model predictive control (MPC).
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tration (NASA) Marshall Space Flight Center under cooperative agreement
no. NCC8-235, and also by the U.S. Army Research Laboratory Collabo-
rative Technology Alliance Program, Cooperative Agreement DAAD19-01-
2-0011.

In this paper, we address the problem of designing a high
level component responsible for maintaining the commu-
nication needs of the group, and in particular the (path-)
connectivity of their communication network as they move.
The module has outputs to, and inputs from the higher level
path planning component . This communication connectivity
is crucial in scenarios with a group of agents moving in a
particular area and covering it, while avoiding obstacles and
collisions. Here the connectivity is maintained by clustering
the agents and providing connections between the clusters.
Building on our previous work [14], we address the prob-
lem of maintaining connectivity among ground clusters of
moving agents. Among the agents in each cluster, one is
designated as thecluster-head. The cluster heads can be
designated in a distributed manner [2], and can be equipped
with multi-mode communication capabilities. In normal sit-
uations, connectivity is maintained by the cluster-heads, who
send messages directed to other cluster-heads. Therefore, the
connectivity of clusters is a crucial factor in the performance
of the group of agents as a whole. As a result, we develop
algorithms that sense the possibility of loss of connectivity
among the agents. When direct communication between
the clusters is not possible, a suggested solution is to use
Aerial Platforms (APs) as relays in networks. However, the
use of APs is costly and should be kept to a minimum
level. Furthermore, the APs should be positioned so that
the resulting network is well-connected. In other applications
specific agents can move to specific locations and/or change
their physical characteristics (e.g. increase their transmission
power) in order to provide and maintain communication
connectivity between the moving agents.

The organization of the paper is as follows. Section II pro-
vides the basic set up and discusses a model for detecting the
possibility of loss of connectivity among the agents. Section
III formulates the problem of maintaining connectivity as
an event-triggered control problem, which uses centralized
decision making. In section IV we explore the issues of
collaborative decision making at the onset of connectivity
failure between clusters. Section V discusses a clustering
algorithm used to provide the intended connectivity between
the ground units using as few APs as possible. Section
VI investigates the question of characterizing efficient and
‘good’ topologies, which provide better connectivity.
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II. BASIC SET UP

We consider a number of autonomous mobile agents in
a terrain. Using the methods from our previous work [19],
the planning algorithm initially moves the nodes, so that they
are arranged inn clusters. We assume that each group has a
leader (cluster-head), who is in charge of maintaining com-
munications with the other leaders. From now on we refer
to the leaders as nodes or agents. The nodes have identical
omnidirectional antennas with good quality communication
possible if their distance is less than a constantRdisc.

The communication connectivity of the agents is modelled
by an undirected graph. The verticesvi ∈ V , i = 1, 2, ..n
denote the agents andeij = (vi, vj) ∈ E, i, j = 1, ..., n
denote the links between them. Assume that there are overall
m links between the agents (leaders); we give an arbitrary
ordering to the links and alternatively represent the link set
as E = {lk, k = 1, ...m}. We denote the set of nodes who
are at graph distancek from nodevi as its k−neighbors
(i.e. k−hops away from nodevi, in multi-hop paths without
loops). We also call the set of nodes with graph distance
less than or equal tok from nodevi, and the edges between
them as nodei’s k− neighborhood and denote it byNk(vi).
A graph is calledk−connected if the minimum number of
edge removals needed to make the graph disconnected isk.

We assume that initially the leaders form a (path) con-
nected graph, and by sending out HELLO messages, each
leader knows its neighbors and has an estimate of their
distance [21]. Also each leader knows its two-hop away
neighbors. The nodes may occasionally become discon-
nected. This may happen because of sudden obstacle occur-
rences or deviations from previously determined paths upon
terrain uncertainties. We assume that the agents send distress
messages (help request signals) to the AP or some other
coordinating unit, if they think AP intervention is necessary
to save the graph connectivity. However, AP intervention is
costly and should be considered only if the link losses affect
the connectivity in a serious manner. The basic problem that
each agent has to address is whether to call for intervention
or not, but before that, each agent has to be provided with a
method to sense the possibility of link losses.

The agents periodically monitor their own energy level
with respect to a reference threshold to make sure if they
can transmit correctly. If they sense any decline in energy
or other resources, they will try to inform the coordinating
unit (or the AP) directly or via their neighbors. Each agent
sends periodical HELLO messages to their neighbor. Upon
receiving a HELLO message a node sends an ACK message
to the sender. If a node does not receive an acknowledgement
after a timeout interval, it will resend the HELLO message.
We set a maximum thresholdNtry. If the number of trials
exceeds this threshold, the link is considered lost [21]. Recent
literature has addressed elaborate distributed fault detection
in wireless systems and other distributed systems [1] and
[4]. Nodes can employ various local monitoring mechanisms
to monitor connectivity or loss of connectivity: SNR mea-
surements, SINR measurements, packet transmission success

rates, levels of received power and their variations, etc. Here,
we assume that, as in [4], the nodes are provided with failure
detection modules by which they can maintain reachable
node lists that enable them to detect unwanted partition-
ing and network disconnection. We use this simple event-
triggered model, and study the tradeoff between asking for
AP interventionvs. the cost of risking graph disconnection.

III. A MODEL FOR AP INTERVENTION COST ANALYSIS

In this section we consider the problem of deciding
whether AP intervention is necessary in the presence of
link losses. The problem is formulated as a stopping time
problem in a stochastic control framework. We assume that
local probing schemes enable the nodes to keep track of
the reachable nodes and of losses in connectivity. We also
assume that the link/path disconnection is reported to a
coordinating unit (or to the AP). The coordinating unit
decides on whether AP intervention is necessary or not.

A. General model

Consider ak− connected network configuration. Assume
a time horizonN and that during each time intervalt, each
link can fail with some probability. The failure probabilities
are determined by terrain specifications and the nodes’ power
levels. For simplicity we assume a constant average discon-
nection probabilityp for all links. The ‘state’ of the system
at each timet is denoted byxt and is equal to the number
of link deletions necessary to make the graph disconnected.

There are two possible choices for the control action at
each time interval. The choice ofut = 0 corresponds to
normal system operation, in which no AP intervention is
demanded. In this case the state transitions as a Markov
system based on the transition probabilities resulting from the
graph topology and link deletion probabilities. The choice of
ut = 1, corresponds to AP intervention, in which case APs
will be sent to circumvent the lack of connectivity problem.
We augment the state space with a termination stateT . After
the AP intervention, the state will transition toT and will
remain there for the rest of the time horizon.

In the normal system operation, we consider a connectivity
cost CCON , which is a non-increasing function ofk, the
edge-connectivity of the graph. We assume that the engage-
ment and operation of the APs causes a constant rate cost
CAP . We model this by a stopping cost. At the timet⋆, when
the stopping action happens (ut⋆ = 1 ), the system incurs a
cost ofCAP (N − t⋆ + 1). The system evolves as:

xt+1 =

{

wt if ut = 0

T if ut = 1
(1)

where w(t) is determined by the graph topology and link
loss probabilities as described above. The problem could be
posed as an optimal stopping time problem, via defining a
cost function:

g(xt, ut, wt) =

{

CAP (N − t) if ut = 1

CCON (wt) if ut = 0.
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The dynamic programming (DP) equations are:

Jt(xt) =











min[CAP (N − t + 1), E[CCON (wt)

+Jt+1(wt)], if xt 6= T

0 if xt = T.

The coordinating unit (or the AP(s) themselves) decides
on whether to send APs based on this stopping criterion.

B. The ring case

We now illustrate the approach by considering a group
of n moving agents with a ring communication topology.
The agents participate in a mission with time horizonN .
The agents periodically send messages and based on their
received messages, they calculate estimates of distances and
update their list of reachable nodes. We assume independent
link losses. Since a ring is a2− connected topology, the state
spaceS consists of three actual states and a termination state
T , S = {0, 1, 2, T}.

If we denote the probability of state transition fromi to
j using controll, (l = 0, 1) before the stopping aspij(l),
then because of the independence assumption, fori = 0, 1, 2,
pij(l) can be easily calculated, e.g.pi0(0) = 1− (1− p)n −
np(1 − p)n−1.

In the normal mode of operation, when the AP is not called
in, we consider the cost to be proportional to the average
hop length. We assume that when AP intervenes, there is
a constant cost ofCAP per operation cycle. If the agents
fail to call for intervention before a disconnection happens,
there would be a high costCdisc > CAP . If the intervention
happens, we assume that the APs guide the agents to their
nominal trajectories. The incurred costs are:

g(xt, ut) =



















CAP (N − t) if ut = 1

2n if ut = 0, xt = 2

4n if ut = 0, xt = 1

Cdisc ut = 0, xt = 0

Therefore the problem is cast as a stopping time problem
and it can be solved using the DP iteration:

Jt(xt) = min{CAP (N − t + 1), E[g(xt) + Jt+1(wt)]}.

with the terminal costJN (xN ) = CAP . The optimal cost
to go functionJk(xk) is a monotone decreasing function
of its argument. We have simulated the ring scenario with
different numbers of nodes, maintenance and disconnection
cost, and error probabilities. Figure 1 illustrates the benefit of
the event triggered AP calling for periodic surveillance. The
parameters of the simulation arep = 0.01, n = 10, N =
20, Cdisc = 300. Nodes start with complete ring topology
and are subject to losses. We have allowed the termination
cost to vary,CAP = αCdisc, for α ≤ 1/3. We have compared
the expected cost of the event triggered scheme, with the cost
of periodic AP presence, in which an AP is considered to
always be present and subject to a cost ofCAP per time
interval. Figure 1 shows the ratio of cost improvement due
to using the event triggered method (J0(2)

N.CAP
),with respect

to α = CAP

Cdisc
for different number of nodes. For smallern,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=c
AP

/c
dist

J E
ve

nt
T

rig
ge

re
d / 

J P
er

io
di

c

 

 
n=5
n=10
n=15
n=20
n=30

Fig. 1. Event triggered cost improvement ratioJ0(2)
N.CAP

vs. α =

CAP
Cdisc

there is a cut-off at small values ofα demonstrating that even
when the cost of surveillance is small, it is beneficial to use
the event triggered method. However, for a fixed probability
of link loss p, as the number of nodes in the ring increases,
the probability of failure increases. For largern, with fixed
p, the cut-off happens at greater values ofα.

IV. A C OLLABORATIVE METHOD FOR MAINTAINING

CONNECTIVITY

Here we propose a rating mechanism by which, each
agent rates its incident links (edges) and the links in their
k−neighborhood. The “importance” rate that a nodevi

assigns to an incident edgelj will be an indicator of the
number of paths starting fromvi, which pass throughlk.
After each link is rated by its incident links, a consensus
type algorithm can be utilized, so that a single average
“importance rate” is assigned to each link. If a set of links
fail, our algorithm decides on how many APs are needed to
intervene based on the “importance” of the failing links.

A. Measures of link importance

The importance of a link is a measure of how many
disjoint paths in the network use it. The following notions
of “between-ness” [11] capture the importance of links for
our application:

• Shortest path between-ness: The number of shortest
paths between all pairs of nodes in a network which
pass through the suggested link.

However, calculation of the above between-ness measure is
a centralized task. Here we provide a decentralized, local
information based algorithm, with which the nodes can rate
their incident links. This way the links will be associated with
different importance rates from nodes in their neighborhood.
If necessary a consensus-type algorithm will be used to attain
a common estimate of the links’ importance. If a set of links
fail, the decision on whether and how many APs to send, will
be taken using the information on the importance of links
which have failed. We will now describe the algorithm.

B. A local scheme for finding the importance of the links

We assume that each node always maintains a list of its
current neighbors. We also assume that each node keeps a
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list of nodes which are reachable through itsk−neighbors.
The choice ofk is a trade-off between the tractability and
locality of the scheme. Therefore we prefer the use of small
values ofk (e.g. k= 1,2,3). This can be done by neighborhood
discovery methods (e.g. [4], [21]). The idea is that each node
periodically sends heartbeat signals [1] to its neighbors and
piggybacks (on these heartbeat signals) the set of paths of
which it is aware of since sending its last heartbeat signal.
Upon receiving a message, a node investigates the paths
through each of its neighbors and adds the nodes in each
path, to the set of reachable nodes through its neighbors.

For a known numberk, each nodevi forwards messages
along all of the paths in itsk−neighborhood. The message
will be propagated throughout the network, so that all possi-
ble nodes will receive the message. When a node receives a
message, it updates its reachable set along the corresponding
path in itsk− neighborhood. If this procedure continues, the
nodes will eventually come up with a list of reachable set
of nodes through each path in theirk−neighborhood. Each
node then rates each of the paths. The ratingrik of each
path pk, according to nodevi is equal to the number of
nodes which are reachable fromvi throughpk. The nodes
then rate each edge in theirk−neighborhood, whereEij , the
rating that each node associates to linkj, is equal to the sum
of the ratings of all paths emanating fromvi, which include
link lj ; i.e. Eij =

∑

lj∈pk
rik.

After each node runs the algorithm, it will assign sub-
jective importance ratings, to all of the links in itsk−
neighborhood. Therefore each nodevi will maintain a list
E of the importance valuesEij(k) it has assigned to the
links lj in its k−neighborhoods. A normalized listEnorm

is a measure of the relative importance of the links in the
K−neighborhood of each node. The main properties of the
algorithm that follow from the definition can be summarized
as:

Propostion 1: The following statements hold:

1) An edgel will be rated by a nodev if and only if
l ∈ Nk(v), i.e. l falls in thek− neighborhood ofv.

2) The importance rating decreases monotonically along
a path emanating from a rater node.

C. Link loss report based on link importance

Since our scheme provides nodes with subjective impor-
tance ratings on links in theirk−neighborhood, these ratings
should be used in each node’s decision making on asking
for AP intervention. When a link fails, we assume that
the nodes incident to it, broadcast the link loss to their
k−neighbors. Upon acknowledging a link loss in a node’s
k−neighborhood, the node can decide on whether to ask
for intervention or not based on its importance rating ( or
normalized importance rating) assessment of the lost link.

V. CLUSTERING

Assume that all the ground leaders have the same altitude
(of 0) and form M clusters (Cj , j = 1, . . . ,M ). Aerial
Platforms (APs) placed appropriately and acting as relays can
be used to provide connectivity between theM disconnected

ground clusters. Since APs are scarce/expensive resources,
the goal is to find the minimum number of APs and their
locations so that the resultant network (both between the
nodes and the APs and between the APs) is connected.

The ground nodes and the APs have identical omni-
directional radios with the signal between nodes decaying
as 1/Rα whereR is the distance between nodes andα is
the path loss exponent, which depends on the environment
between the nodes. The radio specifications and the path loss
exponentα together determine a maximum communication
distance between the nodes.α is equal to 2 (i.e., free space
communication) for communication between the ground
agents and APs as well as for communication between the
APs. This results in a maximum communication distance
of R2 between the ground agents and APs and among the
APs. Since ground nodes communicate withα strictly greater
than 2 (α= 4 for a suburban environment), the maximum
communication distanceR0 between leaders is strictly less
than R2 (usually by an order of magnitude). Assume that
all the APs fly at an altitude ofh such that the maximum
communication distance between agents and APs projected
onto the ground,R1 (given byR1 =

√

R2
2 − h2), is greater

thanR0. Thus the problem of finding the minimum number
of APs (L) and their positions can be reduced toR2, with aj

denoting the position of the APs projected onto the ground.

A. Problem Formulation

We formulate the connectivity problem as a constrained
clustering problem ([15], [16]) with a summation form distor-
tion function (D(C,A)) involving the distances between the
ground clusters (C) and the APs (A) and a summation form
cost function (C1(A)) involving only the distances between
the APs (A). The resultant clustering problem is then solved
using Deterministic Annealing (DA) to obtain near-optimal
solutions. In order for the ground nodes and the APs to form
a connected network, we need: 1) At least one node from
each cluster within a radius ofR1 from an AP; and 2) Each
AP is within R2 of some other AP (i.e., the APs form a
connected graph).

Assuming that the APs are numbered from1 to L, we can
make sure that they form a connected network by ensuring
that any AP numberedj is connected to at least one lower
numbered APi, wherei < j. This is used in the DA solution
where when we add a new AP, we make sure that it is
connected to at least one of the previously added APs. Hence
the connectivity problem can be stated as:

Minimize L; subject to
∃a1, . . . , aL; max

j∈{1,...,M}
min
g∈Cj

i∈{1,...,L}

‖ g − ai ‖ ≤ R1

and, max
l∈2,...,L

min
m<l

‖ al − am ‖ ≤ R2

where ‖ g − a ‖ is the l2-norm between pointsg and a
on the ground. Finding the exact solution to the problem
above involves an exhaustive search on the different ways
in which nodes can be selected from each cluster and the
ways clusters can be grouped together for coverage by
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Fig. 2. Complex Scenario: AP Placement with AP-ground node connec-
tivity and AP-AP connectivity.

a single AP all the while making sure that the APs are
connected to each other. This problem is NP-hard as it is
a generalization of the Euclideandisk-coverproblem. Hence
using the approximation,

max(s1, . . . , sn) ∼= (sα
1 + . . . + sα

n)
1

α for largeα

we can convert the AP-ground node and AP-AP constraints
into a summation form,

Minimize L; subject to

∃a1, . . . , aL;

M
∑

j=1

d1(Cj , au1(j)) ≤ Rα
1

and,
L

∑

l=2

d2(al, au2(l)) ≤ Rβ
2

for largeα andβ, where,

d1(Cj , ai) = min
g∈Cj

‖ g − ai ‖
α

d2(al, am) = min
m<l

‖ al − am ‖β

andu1(j) is a function that assigns an AP to every cluster;
u2(l) is a function that assigns the closest lower numbered
AP to an AP.

Constrained clustering problems of the above form are
non-convex optimization problems except in special cases.
Hence the Deterministic Annealing (DA) method is used
to solve the constrained clustering problem for globally
near-optimal solutions. Within the framework of constrained
clustering ([15], [16]), the distortion function between the
ground nodes and the APs is given byD(C,A) =
∑M

j=1 d1(Cj , au1(j)) and the cost function among the APs is

given by C1(A) =
∑L

l=2 d2(al, au2(l)). Figure 2 illustrates
an application of our algorithm.

VI. TOPOLOGY

By adding APs we have the advantage that the previously
far apart nodes now communicate through APs. Prior to AP
addition the neighborhood relation was based on physical
proximity. The addition of APs extends the concept of
neighborhood in that two far apart agents can communicate
directly through their corresponding APs. We assume that

each AP is capable of short time high energy transmission
upon necessity and that via a suitable medium access control
and AP energy scheduling, agents which are located geo-
graphically far from each other can communicate.

This extended notion of neighborhood makes long range
edges realizable. However, establishing long range connec-
tions requires higher cost. Therefore there is a trade off
between the cost of maintaining long range connectivity and
group performance. Here we consider two classes of ‘effi-
cient’ topologies, small world graphs and expander graphs.

A. Small world graphs

The small world graphs based on the model of Watts and
Strogatz [18] take a regular lattice and replace some original
edges by random ones connecting nodes at ‘long distance’
with some probability0 ≤ φ ≤ 1; i.e. by introducing ‘short
cuts’. This family of graphs shows a favorable trade off
between performance and cost of collaboration.

In [8] Higham analyzed the small world phenomenon in
the Watts-Strogatz model by considering the hitting time
of a slightly randomly perturbed Markov chain on a ring.
Building on [8], we studied consensus problems on grid-
based small world graphs in [2]. We showed a significant
speed up in the convergence speed of consensus algorithms
in Watts-Strogatz models compared to that of the grid base
by perturbing the consensus weight matrix. The perturba-
tion corresponds to considering rare transitions among non-
neighboring states in the Markov chain associated with the
grid. In [9], we showed that by choosing shortcuts with low
probability one can improve the convergence rate of regular
grids significantly in a probabilistic sense. For other interest-
ing works on small world graphs in the control community
and consensus applications see e.g. [17], [12], [13], [6].

Here, we consider a general setting in which the base
graph can be any sparse graph. We are interested in the ques-
tion: is a given graph “small-worldizable”? The following
procedure gives an implicit definition of what we mean by
being “small-worldizable”. Other criteria for a graph to be
small-worldizable are investigated by [5].

Recall that ifF is a primitive stochastic matrix, according
to the Perron-Frobenius theorem [3],λ1 = 1 is a simple
eigenvalue with a right eigenvector1 and a left eigenvector
π such that1T π = 1, F∞ = 1πT and if λ2, λ3, ..., λr are
the other eigenvalues ofF ordered in a way such thatλ1 =
1 > µ = |λ2| ≥ |λ3| ≥ ... ≥ |λr|, andm2 is the algebraic
multiplicity of λ2, then

F t = F∞ + O(tm2−1|λ2|
t) = 1πT + O(tm2−1|λ2|

t)

Then ∆ = 1 − µ(F ) denotes the spectral gap and linear
iterations on graphs with higher spectral gaps converge faster.

Definition 1: Small-worldizable graphsGiven a con-
nected graphGn on n vertices:

• Consider a natural random walk on this graph. Denote
the corresponding Markov Chain graph as

F0 = (I + D)−1(A + I)

5



whereA is the adjacency matrix of the graphGn andD
is the diagonal matrix with each node’s degree on the
corresponding diagonal.

• Perturb the zero elements ofF0 by ǫ < 1
n

and adjust it
to get a new stochastic matrixFǫ.

(Fǫ)ij =

{

ǫ (F0)ij = 0

(1 − nǫ)(F0)ij + ǫ (F0)ij 6= 0

i.e. Fǫ = (1 − nǫ)F0 + ǫ11T .

• Gn(V,E) is small-worldizable if ∆(Fǫ)
∆(F0)

≫ 1, where
∆(F ) denotes the spectral gap1 − µ(F ).

Small-worldizability can be characterized by:
Theorem 1:A graphG is small-worldizable if and only if

µ
1−µ

≫ 1
nǫ

.
The proof of Theorem 1 is a direct result of the following

Lemma:
Lemma 1:The second largest eigenvalue modulus

(SLEM) of Fǫ is given by

µ(Fǫ) = (1 − nǫ)µ(F0)

.
Proof: (Sketch) Consider the matrix

F1 = (1 − nǫ)−1Fǫ = F0 +
ǫ

1 − nǫ
11T .

From the Sherman-Morrison-Woodbury formula we have

det(F1 − λI) = [1 +
ǫ

1 − nǫ
1T (F0 − λI)−11] det(F0 − λI)

(2)
Furthermore, for anyλ /∈ Spec(F0),

(F0 − λI)−11 = (1 − λ)−11

It follows that the eigenvalues ofF1 are the same as the
eigenvalues ofF0 except forλ1(F1) = 1 + nǫ

1−ǫ
. Therefore:

λ1(Fǫ) = 1, and for i 6= 1, λi(Fǫ) = (1 − nǫ)λi(F0). The
result follows.

As an example consider the case of ring-type base graphs
of n nodes where each node is connected to itsk neigh-
bors [18]. By exploiting the circulant structure of ring type
graphsC(n, k), for k ≪ n, we can derive the result that
∆(F0) = O(n−2). By consideringǫ = n−α, α > 1, it can
be shown that the small world effect holds forα = 2. At
α = 3, the effect of shortcuts begins to dominate. This is the
onset of the small world phenomenon.

B. Expander graphs

Expander graphs have certain properties that make them
suitable for our application: their large spectral gap ensures
fast routing and convergence of decentralized algorithms;
the path diversity they provide results in robustness to link
failures [10]. There are at least two methods for distributed
construction of AP-level expander graphs:

• Following the approach of [10] we can form a random
expander graph as a2d−regular multi-graph in which
the set of edges consists ofd separate Hamiltonian
cycles on the APs. Such a graph can be constructed

distributedly and its diameter will beO(logd n) with
high probability.

• Following the approach of [7] we can form a random
expander graph as the union of two spanning trees
chosen independently from the uniform distribution over
all spanning trees. This can be implemented simply
by taking a random walk and include edges that visit
previously unvisited nodes. Such a graph has a constant
edge expansion with high probability.
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