
Modeling Key Agreement in Multi-Hop Ad Hoc Networks *
Giovanni Di Crescenzo

Telcordia Technologies
One Telcordia Dr,

Piscataway, NJ, 08854
(001)7326992108

giovanni@research.telcordia.com

Maria Striki
The Institute for Systems & Research
University of Maryland, College Park

College Park, MD, 20742
(001)3014056558

 mstriki@glue.umd.edu

John S. Baras
The Institute for Systems & Research
University of Maryland, College Park,

College Park, MD, 20742
(001)3014056606

baras@isr.umd.edu

ABSTRACT
Securing multicast communications in ad hoc networks has
become one of the most challenging research directions in the
areas of wireless networking and security. This is especially true
as ad hoc networks are emerging as the desired environment for
an increasing number of civilian, commercial and military
applications, also addressing an increasingly large number of
users. In this paper we study a very basic security question for Ad
Hoc Networks: Key Agreement against passive adversaries.
Despite being a widely studied area in wired networks, the
problem becomes significantly more challenging for ad hoc
networks, and even more for sensor networks, due to lack of
trusted entities, infrastructures, full connectivity, routing
structures, and due to severe limitations on the resources and
capabilities of network nodes. In this paper we perform a
comprehensive investigation of Key Agreement over resource
constrained ad hoc networks. First, we formally model the key
agreement problem over multi-hop ad hop networks, and we
directly extend known key agreement protocols for wired
networks, and evaluate the efficiency of such approaches. We
then go beyond natural extensions of such protocols, by proposing
non-trivial extensions based on efficient topology-driven
simulations of logical networks over an arbitrary physical
network, in order to optimize the most significant metrics of
interest for such networks: i.e. bandwidth, latency, processing
cost. Indeed, the resulting protocols are significantly more
efficient in some or all of the above metrics, as our analytical
results indicate.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: C.2.1 Network
Architecture and Design: Network Communications, Network
Topology, C.2.2 Network Protocols: Routing Protocols, C.4
Performance of Systems: Modeling Techniques, Performance
Attributes, G.2 [Discrete Mathematics]: G.2.2 Graph Theory:
Graph Algorithms, Network Problems, Trees.

General Terms
Algorithms, Performance, Design, Security.

Keywords
Group Key Agreement, Topology Driven Protocols, Performance
Evaluation, Optimization, Approximation Algorithms, Efficiency

1. INTRODUCTION
A basic security area in building secure protocols for group
communication is that of group key agreement (GKA). Indeed, this
area has received a significant amount of attention in the wired
network literature, and since the foundational Diffie-Hellman (DH)
protocol [2], several other protocols have been proposed for the
group case. The lack of infrastructure and, frequently, of trusted
entities in ad hoc networks further increases the importance of KA
over such networks. In fact, a secure KA protocol for ad hoc
networks can be used as the crucial component to bootstrap security
in most, if not all, applications over ad hoc networks that require any
type of security property. Previous work on KA over ad hoc
networks does not deal with what we believe to be basic features of
any realistic protocol implementation over the discussed
environment: partial connectivity due to limited radio range, and
parties’ self-processing of routing duties due to lack of trusted
authorities. As a result, the analysis of previously proposed protocols
only gives a partial account on their real performance. Also, existing
performance evaluation of the protocols has been done only with
respect to a logical abstraction of the underlying physical network,
without consideration of the underlying routing. While routing is
often assumed to be efficient and available between any two parties
in wired networks, this is not the case for ad hoc networks.
Therefore, in evaluating the efficiency of direct adaptations of
protocols for wireless networks, some protocols lose even significant
efficiency properties. On the other hand, it might be the case that KA
solutions naturally take advantage of the unique ad hoc network
features, such as topology-driven redundancy and localization of
communications and computations, possibly resulting in more
efficient protocols.

A thorough understanding of these basic features is essential towards
the design of optimal or at least more suitable KA schemes for the
environment of study, and in this paper, we propose methodologies
towards that. We propose non-trivial extensions of known KA
protocols over logical networks based on efficient simulation of

(*) Prepared through collaborative participation in the Communications
and Network Consortium sponsored by the U.S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Coop.
Agreement DAAD19-01-2-0011. The U.S Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWCMC’06, July 3-6, 2006, Vancouver, British Columbia, Canada.
Copyright 2006 ACM 1-59593-306-9/06/0007…$5.00.

39

logical networks over arbitrary physical networks. This defines, for
each known KA protocol, a network simulation problem similar
to the simulation (or, embedding) of logical networks over physical
networks of parallel computers, where the goal is to minimize some
metric inherent to the performance of the specific protocol itself.
Our contribution in this paper is to: a) formulate the corresponding
network simulation problem, b) define a number of optimization
problems related to the KA execution over the network, and c)
present our own solutions to these problems.

2. MODEL
We model the connectivity among the parties with a connectivity
graph G(V,E), where E∈V×V and an edge between any two nodes
exists if and only if the two associated parties are within each other’s
radio range (bidirectional connectivity considered). We make the
simplifying assumptions that each message from a node in G is
timely sent (i.e., there is no congestion) and reliably and timely
received by all neighbors. Additionally, in this current analysis we
do not consider link failure or party mobility. We stress that we only
deal with KA over an ad hoc network in the passive adversary
model. Extending our approaches to deal with party mobility or more
involved adversaries (i.e., active or Byzantine), is the object of our
future research. Similarly, the re-keying problem is out of the scope
of this paper. Our schemes inherit the same security properties as
those of their original ancestors. In addition to designing key
agreement protocols over arbitrary ad hoc networks satisfying
correctness and security requirements, we want to meet efficiency
requirements of low bandwidth (defined as the maximum, over all
possible graphs G and executions of protocol instances P over G, of
the total size of messages exchanged by all parties in V(G)),
computation (maximum, over all possible graphs G and executions
of P over G, of the number of exponentiations performed by all
parties in V(G)), and latency (maximum, over all possible graphs G
and executions of P over G, of the number of parallel protocol
atomic steps, such as communication rounds or 1-hop transfers).

3. TOPOLOGY BLIND GKA OVER AHNets
3.1 Overview of Logical GKA Schemes

The most immediate way to construct GKA protocols over AHNets
is a topology-blind approach, denoted as “tb”, where known GKA
protocols over logical wired networks are composed with an
underlying arbitrary routing protocol that implements on the physical
AHNet G any single step done on the logical wired networks. In this
paper we describe this approach for some among the most efficient,
to our knowledge, GKA protocols over wired networks currently:
GDH.1, GDH.2 [1], ING [4], and BD [3], referred all in [1]. We
briefly recall them for the sake of self-containment.

3.1.1 GDH1: This protocol assumes that all parties are connected
according to a logical Hamiltonian path and consists of two stages:
up-flow (collecting members’ contributions) and down-flow
(allowing all members to compute the common key). In the up-flow,
each member does 1 exponentiation and the message between Mi and
Mi+1 contains i intermediate values. After obtaining Kn, Mn initiates
the down-flow stage. Each member Mi does i exponentiations: 1 to
compute Kn and (i-1) to provide intermediate values to lower indexed
members, by raising them to the power of its own exponent. The size
of the down-flow message decreases on each link, as a message
between Mi+1 and Mi includes i intermediate values.

3.1.2 GDH2: In order to reduce the total number of rounds,
GDH.1 is slightly varied, so that: a) in the up-flow stage each
member has to compose i intermediate values (each with i-1
exponents) and one cardinal value with i exponents; Mn is the first
member to compute the key Kn and the last batch of intermediate
values, b) in the down-flow stage Mn broadcasts the (n-1)
intermediate values to all group members. It is assumed that all
parties are connected through a logical Hamiltonian path, and the last
party on the path can reach all others using a broadcast channel.

3.1.3 BD: This scheme only requires 2 logical rounds and can be
divided into three phases: (1) Member Mi generates random Ni and

broadcasts zi = iNa ; (2) Every member M computes and broadcasts

Xi = 1
1

() ii
i

Nz
z

+
−

; (3) Mi can compute the group key Kn =
1 2

1 1 2... modinN n n
i i i iz X X X p− −
− + − = 1 2 2 3 1... nN N N N N Na + + + . The key

defined by this scheme is different from the previous protocols. It is
assumed that parties can simultaneously reach all others through
broadcast channels.

3.1.4 ING: It requires that all parties are connected according to a
logical ring, and completes in (n-1) rounds after a synchronous
start-up. In any round, every party raises the previously-received
intermediate key value to the power of its own random exponent
and forwards the result to the next party. After (n-1) rounds
everyone computes the same key.

3.2 Topology Blind Implementation over
Arbitrary AHNets

The referred protocols describe the KA algorithms and the resulting
overhead from key exchanges only. If we consider however
executing the latter protocols in a resource constrained multi-hop
network, then every message exchange among the intended group
members may involve multiple relays that carry the intended key
messages. The overhead invoked by these relays is not considered
in the previous analyses. Also, in certain cases, it is assumed that a
member can directly reach the rest of the group members and
broadcast to them in one round, which is unrealistic in AHNets. In
the case that the selection of the parties is not “topology-aware”,
(e.g. based on members’ IDs), the placement of members and
consequently the routes formed are random and the physical graph
generated is actually not expected to resemble the logical graph and
therefore is not optimal. This arbitrary factor that emerges when we
merge the key generation algorithm “blindly” with the underlying
routing is what we try to capture and model. We quantify it in the
analytical results that follow as we merge and measure the overhead
of both communication and routing exchanges for the
aforementioned protocols. We denote as D the diameter diam(G) of
G; that is, the max number of hops between a pair of nodes in V.
Moreover, we denote the number of hops in the path between two
graph nodes Ni and Ni+1, as Route (Ni, Ni+1) = Ri,i+1. Throughout the
analysis, we will use the following two facts: first, for each i, it
holds that Ri,i+1≤D≤ |V(G)|=n; second, a logical broadcast step
requires at most |E(G)| messages (assuming a simple controlled
flooding strategy) and at most D≤ |V(G)|=n hop transfers over the
network graph G. We denote by K the length of an element in the
algebraic group used (over which the decision DH problem is
assumed to be hard). By Bdw we denote the total bandwidth, and by
Lt the total latency encountered to the network by any KA protocol.

40

We discuss the computation of metric performances for all
protocols and summarize them in a table.

3.2.1 GDH.1: We compute the efficiency metrics for this
protocol by summing the metrics obtained for the up-flow and
down-flow stages; since the two stages are symmetric, it is enough
to describe the computation for one stage only, and then multiply
both metrics by 2.

Up-Flow: On a logical Hamiltonian path, member Mi composes i
values to send to member Mi+1 through all relays in Ri,i+1.All relays
in Ri,i+1 will carry the same message (i×K bit size). Hence:

Lt =
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤D× (n -1) , Bdw(Mi)=Ri,i+1× i×K,

Bdw =
1

, 1
1

n

i i
i

KR i
−

+
=

× ×∑ ≤
1

1

n

i

KD i
−

=

× ×∑ =D×K× 1
2 (1)n n× − ,

3.2.2 GDH.2: We compute the efficiency metrics by summing
those obtained for the up-flow and down-flow stages.
Up-Flow: The analysis for the bandwidth and latency is identical to
the up-flow stage of GDH.1.
Down-Flow: Member Mn composes (n-1) values to broadcast to all
members Mi. We denote this broadcast cost as Bn(n-1). Assuming
that in a realistic implementation each node broadcasts the same
message only once to its neighbors, we could upper bound the
broadcast cost as follows: Bn(n-1)≤ |E(G)|× (n-1) × K . Under the
assumption of omni-directional antennas, allowing each node to
send messages to all of its neighbors, we can bound Bn(n-1) by :
Bn(n-1)≤D×(n-1)×K. Another physical implementation of the
logical broadcast can be obtained by (n-1) simultaneous unicasts
from the sender to each member of a single message corresponding
to each member i through the routing path Rn,i. The latency is
determined by the last member to get the broadcast and requires
time D in the worst case. Hence:

Lt≤D, Bdw =
1

1
,

i

n

n i KR
=

−

×∑ ≤D×n(n-1)×K.

3.2.3. BD: It can be abstracted as the execution of two
simultaneous broadcasts from each member to all others. We can
analyze each broadcast from a user in each phase according to the
down-flow stage of GDH.2. If we use a controlled-flooding
implementation of broadcast we obtain:

Bdw =|E(G)|×K×2n, Lt =D×2.

Using simultaneous unicasts instead, we obtain the following
analytical expressions for the previous costs:

Lt = Lt (Mi) = ,2 i jR ≤ 2D (max. distance for Mi), and

Bdw =
1

,
1 1,

2
n n

i j
i j j i

KR
−

= = ≠

×∑ ∑ ≤ 2n× (n-1)×D×K.

3.2.4 ING: It uses a logical ring where each member Mi processes
any value received from Mi-1 and communicates a new value to Mi+1
for (n-1) times, through Ri,i+1. Then: Bdw(Mi) = Ri,i+1× (n-1)×K.
Observe that in the worst case scenario, the size of the physical

implementation of the ring is D× (n-1). This also means that it takes
time (and routing) D× (n-1) for the contribution of member Mi+1 to
reach eventually member Mi, or, equally, for any member to
complete the (n-1) execution rounds. The related metrics are now:

Bdw =
1

, 1 (1)
i

n

i i KnR
=

+ × − ×∑ ≤ D×n× (n-1)×K, and

Lt (Mi) = Lt = D× (n-1).

Summary: Table 1 summarizes Lt and Bdw of the 4 protocols (Bdw
is divided by a factor of K), w.r.t. first the logical and then the tb
implementation over AHNETs. Observe that the efficiency of
essentially all tb protocols decreases by at least a factor of D.

Table 1. Performance of: (a) KA protocols over logical AHNets,
(b) tb KA protocols over AHNets

 Wired Lt Wired Bdw tb-Lt tb-Bdw
ING n-1 n(n-1) D(n-1) Dn(n-1)
BD 2 2n 2D 2Dn(n-1)
GDH1 2(n-1) n(n-1) 2D(n-1) Dn(n-1)
GDH2 n (n-1)(n/2+2) Dn Dn(n-1)/2

3.3 Implementation of GKA over MANETs
We have just evaluated the above protocols by executing them
blindly on a real network, where multi-path routing is required for
group members to communicate. We ran them on top of this
framework based merely on member IDs as designated by the key
generation algorithms. This tb approach leads to excessive
unnecessary routing and relay nodes, and high bandwidth
requirements, as also seen from the table of our relevant results. In
AHNets, bandwidth and power consumption are valuable resources,
that nodes cannot afford to waste. Reducing the combined costs
resulting from the routing and communication becomes essential if
we want to apply the KA schemes on resource-constrained AHNet.
In this paper, we attempt to improve the efficiency of each of these
protocols. Towards this end, we are exploring the potential of
optimizing the combined communication and routing costs for these
protocols with the use of a topology-driven “td” simulation of the
logical network over any arbitrary AHNet graph G. We formulate
several network simulation problems, which can be seen as
variations of the classical “network embedding problem” studied in
the area of Parallel Algorithms (see, e.g. [5]), with a few technical
differences: (a) we have to embed a logical simple graph such as a
cycle or a (broadcast) star into a given, arbitrary graph having the
same number of nodes; (b) we obtain various optimization
functions, depending on the behavior and performance of the
original protocol on the logical network. Specifically, each
protocol poses two different optimization problems as the
routing structure of each defines a specific optimization function
for each of the two metrics of latency and bandwidth. In summary,
we define and later focus on minimizing the following 6 quantities,
or performance metrics:

Bandwidth:

Bdw1 = (n-1)× , 1
1

n

i i
i

R +
=
∑ (1),

41

 Bdw2 =
1

, 1
1

2
n

i i
i

i R
−

+
=

× ×∑ (2),

 Bdw3 = (n-1)Bn (3),

 Latency:

 Lt1 = , 1
1

n

i i
i

R +
=
∑ , or = (n-1)×max{ , 1i iR + } (4),

Lt2 = 2× , 1
1

n

i i
i

R +
=
∑ (5),

Lt3 = max_length (Bn) (6).
Given these 6 quantities, we can develop bounds for the bandwidth
and latency of the four considered protocols (after scaling them
down by K) as follows: ING: from (1), (4), (5), GDH.1: from (1),
(2), (5), GDH.2: from (3), (5), (6), BD: from (3), (6).
Thus, finding approximations of optimal solutions to these 6
quantities, or even improving those provided via the tb approach,
results in more efficient metrics for the four protocols. We introduce
our td approach in the following section. In the remainder of this
section, we present two crucial low-cost auxiliary protocols that
generate the core framework for running our td extensions: a
randomized distributed leader election algorithm, and an arbitrary
rooted spanning tree generation algorithm.

3.3.1 A: Root Election Protocol
We wish to construct a rooted spanning tree, denoted as ST, with the
goal to perform a traversal of all tree members. In order to traverse
the tree, a starting point is required. However, each node, initially at
least, is ignorant of the global network topology: it is directly aware
only of its neighbors and their identities (IDs). Even if we impose
that a node with a certain attribute only initiates the tree traversal or
a broadcast, the issue is that it is not known among all nodes which
one acquires this attribute. Multiple nodes may attempt to start the
traversal thinking that they are the best or the only candidates. The
problem of a distributed network of nodes discovering one another
through their network connections is known as the resource
discovery problem, analyzed in [6, 7] and elsewhere. Discovering a
single node with a certain attribute constitutes a subset of the former
problem (nodes need to be aware of one node only) and we propose
a different approach from the existing, in order to lower the resulting
overhead as much as possible. To prevent a potentially
overwhelming flooding, we use a probabilistic approach that allows
only a small subset of members to initiate the search to learn or
propagate the ID of the root.

3.3.1.1 Overview
In a first trial each of the n network members attempts to become an
“initiator” with probability p = 1

n . In the end, the member with the
highest (or lowest) ID among the initiators becomes the global root.
Each initiator propagates its ID through link state information. When
a node receives a member ID it propagates it if it is greater than the
IDs received before, otherwise it drops it. Eventually, all members
will learn of the highest ID initiator, who becomes the root. If a node
does not hear from any other node for sometime, that could designate
that there are no initiators, or that the associated messages are lost.
To remedy this, the next trial is run and each node re-runs the

probabilistic trial for itself, after remaining idle for a given “silence
period”, defined from the maximum number of rounds required for a
message to be propagated to the network.

3.3.1.2 Properties and Analysis
A message originating from the initiator is propagated along the
vertices of the network graph. The message carrying the highest ID
will be allowed to propagate to all network nodes. Messages carrying
lower IDs will be propagated up to a point since they will be dropped
by nodes that have already received messages of higher or equal IDs.
In the worst case, they reach all nodes before they are dropped. In
order to compute an upper bound on the average overhead incurred
by B, we first bound the overhead due to any initiator and then
multiply it by the expected number of initiators in the network. We
see that for any initiator v, it takes at most D steps for all nodes for
all nodes to receive v’s ID (since at round i all nodes at distance i
from v receive its ID) or to discover that the current execution has
produced no initiators. Moreover, for any initiator v, at most 3n
messages are sent to disseminate v’s ID, since each node will receive
v’s ID at most twice and send it at most once. Let X be the random
variable denoting the number of initiators; the probability that no

initiator is generated in a trial is Pr{X=0}= q = 1(1)n
n− ≈ 1e .

Then, Pr{X=k}=qk-1(1-q) (geometric distribution), and the expected
number of trials before success is E[X]= 1

p . Then the average Bdw
of protocol A is:
E[Bdw]= 1

p ×3n = 1
e

e− ×3n < 4.8 n,

And its average latency is
E[Lt] = 1

p ×2D = 1
e

e− ×2D < 3.2D.

3.3.2 B: Generation of a rooted Spanning Tree (ST)
In order to derive a good approximation for the minimum number of
hops necessary to visit all group members, we use the well-known
approach of simulating Hamiltonian paths and cycles with a full
walk over a rooted spanning tree – denoted as ST - of the connected
network graph G (V, E). A ST of G is a connected acyclic sub-graph
T(V ′ , E ′) of G , s.t. V=V ′ and E ′ ⊆ E, in fact | E ′ | = |V|-1. In a
rooted ST, the tree edges are consistently directed w.r.t. a particular
node (root). The purpose of our framework provides the flexibility
to generate STs with potentially various attributes (i.e. low weight,
where weight is typically the latency, loss rate, inverse of
bandwidth, or low node degree to promote load balancing, low
diameter, low edge count, etc.) at the expense of extra overhead
however. The impact of running our KA protocols on top of STs
with specific characteristics is not within the scope of this current
work, it is being explored in our on-going work. For the purposes of
this study, we are interested in applying a very simple and
lightweight algorithm for the generation of a ST. Hence, an
arbitrary ST is sufficient for our current focus. On the other hand,
we do not consider a weighted graph for our current GKA
algorithms. Below, we give an overview of the following - among
others - simple, low cost protocols to generate a ST.

3.3.2.1 Overview
It turns out that for the applications in this paper (i.e. to obtain
upper bounds on latency and bandwidth) we can even use the most
naive approach of generating a distributed ST after reduction to the
standard sequential algorithm (that is, first each node propagates its
neighborhood information to all other nodes, and then each node

42

computes the same ST by running the sequential algorithm). This
algorithm has latency O(D) and bandwidth O(n2) and yet it only
affects the overall performance of our KA protocols by a low-order
factor.

A more communication-efficient approach goes as follows. Each
node x that becomes part of the ST sends a single “connect”
message to each one of its neighbors (except for its ancestor in the
tree). A neighbor node y accepts node x as its parent (and sends an
ACK message to all 1-hop neighbors) if it receives the “connect”
message for the first time from node x (i.e. it did not receive and
accept a prior request from another node and it is not part of the ST
already). It is obvious that this algorithm converges (as long as the
graph remains connected) and does not generate cycles, since each
node accepts only one “connect” message, that is, it obtains only
one parent.

More generally, to deal with mobility issues in AHNets (which we
do not target in this paper), one may use self-stabilizing spanning
tree generation protocols (see, e.g. Dolev at al [11], or [13] for a
survey). The algorithm based on [11] has latency O(D) and
bandwidth approximately Bdw = O(D×n).

3.4 Topology Driven AHNet Simulation for
known GKA Schemes

We now use the auxiliary protocols A, B, to generate efficient
embeddings of logical networks over arbitrary ad hoc networks for
the protocols we are considering. We analyze the bandwidth and
latency of the resulting performance by computing upper bounds on
the six quantities related to the optimization problems defined in
section 3.3. All bounds reported in this section are scaled by K.

3.4.1 Solution to (1), (5): ST Full Walk
 Using protocols A and B we can simulate Hamiltonian paths and
cycles, by just performing a full walk of the rooted ST. Any of the
well-known tree visit walks traverses every edge exactly twice,
resulting in a cost twice the number of tree members. We then obtain

that:
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤ 2n in the simulation of Hamiltonian paths and

rings, and the quantities (1), (5) are upper bounded as

(1)≤ 2n(n-1) and

(5)≤ 4n.

However, this is still not enough to obtain an efficient simulation for
problem (2), which we now address.

3.4.2 Solution to (2), (4): Extended ING Ring with
Dilation 2
 Under this approach, the basic idea is that of “doubling” the size of
the Hamiltonian ring or path by using the rooted ST generated
obtained at the end of the distributed protocols described in (A, B),
and then executing the same protocol previously run over a logical
path or ring, which is now of at most twice the size. Specifically, a
(say, preorder) visit of all ST nodes goes through at most (2n-1)
nodes. We map every node visited consecutively during the full walk,
to an “entity” placed on a new Hamiltonian ring/path. This ring/path
consists of (2n-1) “entities” that represent the nodes visited in the
order of the full walk. For example, a visit of a depth-2 complete
binary tree results in the sequence of node visits: N1, N2, N4, N2, N5,

N2, N1, N3, N6, N3, N7, N3, N1. These entities are in fact the n = 7
network nodes, some of which are replicated in the extended
ring/path, in the spaces designated by the full walk. All parties are one
hop away from their predecessor and successor (if any) in the new
path, as is the case in the original logical n-size ring/path.

3.4.3 Solution to (2): Closest Point Heuristic
The following inequality should hold for the minimization of (2)
that corresponds to GDH.1 Bdw: 1, 2, 1 1,2....n n n nR R R− − −≤ ≤ ≤ .

Since the number of values a member communicates to its
successor in the schedule is always incremental in GDH.1, the
routing paths of successive members must be non-increasing. In
GDH.1 the last visited member Mn uses the established schedule
backwards to forward the intermediate messages to the rest of
members. An approximation to (2) is given by the closest point
heuristic. It begins with a trivial cycle of an arbitrarily chosen
vertex. At each step, a vertex u that is not on the cycle but whose
distance to any vertex on the cycle (e.g. vertex v) is minimum is
identified. We extend the cycle to include u by inserting u just after
v. We repeat this procedure until all vertices are on the cycle. This
heuristic returns a tour whose total cost is not more than twice the
cost of an optimal tour. If we fix the backward schedule first, so
that the first edge selected in the cycle (minimum) is assigned to
relay the maximum number of messages (n-1), the second edge is
assigned to relay (n-2) messages, etc., we immediately satisfy the
“non-incremental” requirement. We can obtain a ST by deleting any
edge from a tour, and we already acquire the MST in our setting.
Thus, the closest point heuristic has direct application to our
problem. We use the appropriate traversal method to visit all
vertices of the ST and establish the GDH.1 backward schedule
first. By examining the common traversal methods, we select the
pre-order tree walk. An intuitive reason for this is that a pre-order
tree walk prints (visits) the root before the values in either sub-tree.
So, it uses a rather greedy approach by adding the “best nodes”
first, in a forward manner, the earliest possible in the generated
schedule. Under this method, the root is the last member visited,
whereas the node that initiates GDH.1 is the last node listed by the
pre-order walk. We want to upper limit (2) by using a td schedule
that generates the backward GDH.1 path of the n nodes. The
topology of the nodes and their configuration determines the nature
of the formed ST, and consequently the value of (2). Towards this
end, we studied a few examples of particular ST and computed (2)
over them. A few indicative cases considered are: the single chain
tree, the star tree of depth X, the fully balanced Z-ary tree, etc. It
can be shown that the value of (2) computed via pre-order traversal

of any ST, is upper bounded by 23
2 n .

3.4.4 Solution to (3), (6): Broadcast Tree
 The controlled flooding strategy discussed before is based on a
broadcast tree (BT) over the network nodes. An internal node that
receives a message from its parent, forwards it to its immediate tree
offspring only once. For each different source, the same ST is used,
but rooted at the given source each time. It is assumed the parent-
children associations are modified on the fly. Now, we only need to
perform broadcast over a rooted tree, which is quite simple as the root
can broadcast to its children who can recursively broadcast into their
sub-trees. W.r.t. GDH.2, (3) is further improved if each parent
removes this part from the received message that corresponds to itself
before forwarding the remaining message to its children. Under the

43

worst case scenario that the ST is a chain, (3) =
(1)

2
n n−

. Computing

(3), (6) on a BT with height h(BT) we obtain: (3)<
(1)

2
n n−

, and

(6)≤ h(BT)≤D.

3.4.5 Solution to (3),(6): Simultaneous Unicasts
Another physical implementation of the logical broadcast is obtained
by (n-1) simultaneous unicasts from the sender Mn to each member
Mi of a single message through Rn,i. We then obtain: (3)

=
1

1

,

n

i
n iR

−

=
∑ ≤D× (n-1), and (6)≤D.

Summary: Table 2 summarizes the upper bounds on the bandwidth
and latency of the 4 protocols, when the above td improvements are
performed; all scaled by K. These values should be contrasted with
those in Table 1. In almost all cases the efficiency of all protocol
increases by a factor of D or n.

Table 2. Performance Comparison of 4 td protocols over AHNets.

 Latency Bandwidth Exp.

tdING 7n+4.2D+3 2n2+ n× (2D+7.6) n2
tdBD 3D 2n2 + (D-2)n n2+n

tdGDH1 4.2D+9n 23
2 n +(D+7.6)n (n2+3n)/2

tdGDH2 7n+6.2D 25
2 n + 17

2 +(D-0.4)n (n2+3n)/2

3.5 Comparative Performance Evaluation
We compared the td-known KA schemes in terms of the following
characteristics: a) latency, b) bandwidth resulting from the combined
consideration of the relays for the message exchanges over multi-hop
routing, which reflects the actual communication overhead in the
network, and c) the total number of modular exponentiations .

Figure 1. Comparative evaluation of tb-GDH.1 and td-GDH.1
(framework (wf) vs. non-framework (nf) consideration).

 B andw idth for tb , td -n f, td -w f GD H .1 (packets)
Logarithm ic S cale

1.00E + 02
1.00E + 03
1.00E + 04
1.00E + 05
1.00E + 06
1.00E + 07
1.00E + 08
1.00E + 09
1.00E + 10

100 300 500 700 900 1100 1300 1500

Ne tw ork S iz e (n), d ia m e te r D= a n, a = 0.8

tb-GDH.1
td-nf-G DH.1
td-wf-GDH.1

The views and conclusions in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.

Figure 2. A comparison of td-GKA protocols w.r.t. bandwidth,
including the OH for framework generation, D is assumed spheric.

Bandwidth of KA Protocols with framework

1.00E+04

1.00E+05

1.00E+06

1.00E+07

100 300 500 700 900 1100 1300 1500

Group Size(n)

td-w f-ING

td-w f-BD

td-w f-GDH.1

td-w f-GDH.2

4. REFERENCES
[1] M. Steiner, G. Tsudik G, M. Waidner, Diffie-Hellman Key

distribution extended to groups. 3d ACM Conf. on Computer &
Communication Security, ACM Press, 1996, 31-37.

[2] W.Diffie, M.Hellman, New directions in cryptography, IEEE
Transactions on Information Theory, 22 (1976), 644-654.

[3] M. Burmester, Y. Desmedt. A Secure and Efficient Conference
Key Distribution System. Advances in Cryptology-
EUROCRYPT '94, Lecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, 1994.

[4] I. Ingemarsson, D. Tang, C. Wong. A Conference Key
Distribution System. IEEE Transactions on Information Theory,
28(5):714-720, Sept. 1982

[5] F.T. Leighton. Introduction to Parallel Algorithms and
Architectures, Morgan Kauffman, 1992

[6] M. Harchol, T. Leighton, D. Lewin. Resource discovering in
distributed networks. Procs 15th, ACM Symp., on Principles of
Distributed Computing, May 1999, 229-237

[7] S. Kutten, D. Peleg. Deterministic distributed resource
discovery. In 19th annual ACM SIGOPS symp. on Principles of
Distributed Computing, Portland, OR, 16-19 July 2000.

[8] R. Gallager, P. Humblet, P. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems (TOPLAS), 5(1): 66-77,
January 1983

[9] C. Cheng, I. Cimet, S. Kumar. A protocol to maintain a
minimum spanning tree in a dynamic topology. In symp. Procs’
on Communication architectures and protocols, 330-337, ACM
Press, 1988

[10] A. Mooij, W. Wesselink. A formal analysis of a dynamic
distributed spanning tree algorithm. Computer Science TR 03-
16, Technische Universiteit Eindhoven, Dec. 2003

[11] S. Dolev, A. Israeli, S. Moran. Self-stabilization of dynamic
systems assuming only read/write atomicity. Distributed
Computing, 7:3-16,1993.

[12] L. Blin, F. Butelle. The first approximated distributed
algorithm for the minimum degree spanning tree problem on
general graphs. Int’l Parallel and Distributed Processing
Symposium (IPDPS’03), p. 161a.

[13] F. Gärtner, A Survey of Self-Stabilizing Spanning-Tree
Construction Algorithms, EPFL Technical Report, 2003.

44

