A Framework for the Evaluation of Intrusion Detection Systems

Alvaro A. Cardenas

John S. Baras

Karl Seamon *

Department of Electrical and Computer Engineering
and The Institute of Systems Research
University of Maryland, College Park

{acardena,baras,kks} @isr.umd.edu

Abstract

Classification accuracy in intrusion detection systems
(IDSs) deals with such fundamental problems as how to
compare two or more IDSs, how to evaluate the perfor-
mance of an IDS, and how to determine the best configu-
ration of the IDS. In an effort to analyze and solve these
related problems, evaluation metrics such as the Bayesian
detection rate, the expected cost, the sensitivity and the in-
trusion detection capability have been introduced. In this
paper, we study the advantages and disadvantages of each
of these performance metrics and analyze them in a unified
framework. Additionally, we introduce the intrusion detec-
tion operating characteristic (IDOC) curves as a new IDS
performance tradeoff which combines in an intuitive way
the variables that are more relevant to the intrusion detec-
tion evaluation problem. We also introduce a formal frame-
work for reasoning about the performance of an IDS and
the proposed metrics against adaptive adversaries. We pro-
vide simulations and experimental results to illustrate the
benefits of the proposed framework.

1. Introduction

Consider a company that, in an effort to improve its in-
formation technology security infrastructure, wants to pur-
chase either intrusion detector 1 (IDS;) or intrusion de-
tector 2 (1DS,). Furthermore, suppose that the algorithms
used by each IDS are kept private and therefore the only
way to determine the performance of each IDS (unless
some reverse engineering is done [15]) is through empirical
tests determining how many intrusions are detected by each
scheme while providing an acceptable level of false alarms.
Suppose these tests show with high confidence that DS
detects one-tenth more attacks than DS, but at the cost of

*This material is based upon work supported by the U.S. Army Re-
search Office under Award No. DAAD19-01-1-0494 to the University of
Maryland College Park.

producing one hundred times more false alarms. The com-
pany needs to decide based on these estimates, which IDS
will provide the best return of investment for their needs and
their operational environment.

This general problem is more concisely stated as the
intrusion detection evaluation problem, and its solution
usually depends on several factors. The most basic of
these factors are the false alarm rate and the detection
rate, and their tradeoff can be intuitively analyzed with the
help of the receiver operating characteristic (ROC) curve
[16, 17, 35, 7, 14]. However, as pointed out in [3, 9, 10],
the information provided by the detection rate and the false
alarm rate alone might not be enough to provide a good
evaluation of the performance of an IDS. Therefore, the
evaluation metrics need to consider the environment the IDS
is going to operate in, such as the maintenance costs and the
hostility of the operating environment (the likelihood of an
attack). In an effort to provide such an evaluation method,
several performance metrics such as the Bayesian detection
rate [3], expected cost [9], sensitivity [6] and intrusion de-
tection capability [10], have been proposed in the literature.

Yet despite the fact that each of these performance met-
rics makes their own contribution to the analysis of intrusion
detection systems, they are rarely applied in the literature
when proposing a new IDS. It is our belief that the lack
of widespread adoption of these metrics stems from two
main reasons. Firstly, each metric is proposed in a different
framework (e.g. information theory, decision theory, cryp-
tography etc.) and in a seemingly ad hoc manner. Therefore
an objective comparison between the metrics is very diffi-
cult.

The second reason is that the proposed metrics usually
assume the knowledge of some uncertain parameters like
the likelihood of an attack, or the costs of false alarms and
missed detections. Moreover, these uncertain parameters
can also change during the operation of an IDS. Therefore
the evaluation of an IDS under some (wrongly) estimated
parameters might not be of much value.

More importantly, there does not exist a security model
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for the evaluation of intrusion detection systems. Several
researchers have pointed out the need to include the resis-
tance against attacks as part of the evaluation of an IDS
[25, 27, 11, 34, 29, 30, 13]. However, the traditional evalu-
ation metrics are based on ideas mainly developed for non-
security related fields and therefore, they do not take into
account the role of an adversary and the evaluation of the
system against this adversary. In particular, it is important
to realize that when we borrow tools from other fields, they
come with a set of assumptions that might not hold in an ad-
versarial setting, because the first thing that the intruder will
do is violate the sets of assumptions that the IDS is relying
on for proper operation.

1.1. Our Contributions

In this paper, we introduce a framework for the eval-
uation of IDSs in order to address the concerns raised in
the previous section. First, we identify the intrusion de-
tection evaluation problem as a multi-criteria optimization
problem. This framework will let us compare several of the
previously proposed metrics in a unified manner. To this
end, we recall that there are in general two ways to solve a
multi-criteria optimization problem. The first approach is to
combine the criteria to be optimized in a single optimization
problem. We then show how the intrusion detection capabil-
ity, the expected cost and the sensitivity metrics all fall into
this category. The second approach to solve a multi-criteria
optimization problem is to evaluate a tradeoff curve. We
show how the Bayesian rates and the ROC curve analysis
are examples of this approach.

To address the uncertainty of the parameters assumed in
each of the metrics, we then present a graphical approach
that allows the comparison of the IDS metrics for a wide
range of uncertain parameters. For the single optimization
problem we show how the concept of isolines can capture in
a single value (the slope of the isoline) the uncertainties like
the likelihood of an attack and the operational costs of the
IDS. For the tradeoff curve approach, we introduce a new
tradeoff curve we call the intrusion detector operating char-
acteristic (IDOC). We believe the IDOC curve combines in
a single graph all the relevant (and intuitive) parameters that
affect the practical performance of an IDS.

Finally, we introduce a robust evaluation approach in or-
der to deal with the adversarial environment the IDS is de-
ployed in. In particular, we do not want to find the best
performing IDS on average, but the IDS that performs best
against the worst type of attacks. To that end we extend
our graphical approach presented in section 4 to model the
attacks against an IDS. In particular, we show how to find
the best performing IDS against the worst type of attacks.
This framework will allow us to reason about the security of
the IDS evaluation and the proposed metric against adaptive

adversaries.

In an effort to make this evaluation framework accessible
to other researchers and in order to complement our presen-
tation, we started the development of a software application
available at [2] to implement the graphical approach for the
expected cost and our new IDOC analysis curves. We hope
this tool can grow to become a valuable resource for re-
search in intrusion detection.

2. Notation and Definitions

In this section we present the basic notation and defini-
tions which we use throughout this paper.

We assume that the input to an intrusion detection sys-
tem is a feature-vector x € X. The elements of x can in-
clude basic attributes like the duration of a connection, the
protocol type, the service used etc. It can also include spe-
cific attributes selected with domain knowledge such as the
number of failed logins, or if a superuser command was at-
tempted. Examples of x used in intrusion detection are se-
quences of system calls [8], sequences of user commands
[26], connection attempts to local hosts [12], proportion of
accesses (in terms of TCP or UDP packets) to a given port
of a machine over a fixed period of time [19] etc.

Let I denote whether a given instance x was generated
by an intrusion (represented by / = 1 or simply /) or not
(denoted as I = 0 or equivalently —/). Also let A denote
whether the output of an IDS is an alarm (denoted by A = 1
or simply A) or not (denoted by A = 0, or equivalently —A).
An IDS can then be defined as an algorithm DS that re-
ceives a continuous data stream of computer event features
X = {x[1],x[2],...,} and classifies each input x[j] as being
either a normal event or an attack i.e. IDS: X —{A,-A}.
In this paper we do not address how the IDS is designed.
Our focus will be on how to evaluate the performance of a
given IDS.

Intrusion detection systems are commonly classified
as either misuse detection schemes or anomaly detection
schemes. Misuse detection systems use a number of attack
signatures describing attacks; if an event feature x matches
one of the signatures, an alarm is raised. Anomaly detec-
tion schemes on the other hand rely on profiles or models of
the normal operation of the system. Deviations from these
established models raise alarms.

The empirical results of a test for an IDS are usually
recorded in terms of how many attacks were detected and
how many false alarms were produced by the IDS, in a data
set containing both normal data and attack data. The per-
centage of alarms out of the total number of normal events
monitored is referred to as the false alarm rate (or the prob-
ability of false alarm), whereas the percentage of detected
attacks out of the total attacks is called the detection rate
(or probability of detection) of the IDS. In general we de-
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note the probability of false alarm and the probability of
detection (respectively) as:
Pea=Pr[A=1|I=0] and Pp=PrlA=1I=1] (1)
These empirical results are sometimes shown with the
help of the ROC curve; a graph whose x-axis is the false
alarm rate and whose y-axis is the detection rate. The
graphs of misuse detection schemes generally correspond
to a single point denoting the performance of the detector.
Anomaly detection schemes on the other hand, usually have
a monitored statistic which is compared to a threshold T
in order to determine if an alarm should be raised or not.
Therefore their ROC curve is obtained as a parametric plot
of the probability of false alarm (Pry) versus the probability
of detection (Pp) (with parameter T) asin [16, 17, 35,7, 14].

3. Evaluation Metrics

In this section we first introduce metrics that have been
proposed in previous work. Then we discuss how we can
use these metrics to evaluate the IDS by using two general
approaches, that is the expected cost and the tradeoff ap-
proach. In the expected cost approach, we give intuition
of the expected cost metric by relating all the uncertain pa-
rameters (such as the probability of an attack) to a single
line that allows the IDS operator to easily find the optimal
tradeoff. In the second approach, we identify the main pa-
rameters that affect the quality of the performance of the
IDS. This will allow us to later introduce a new evaluation
method that we believe better captures the effect of these
parameters than all previously proposed methods.

3.1. Background Work

Expected Cost.  In this section we present the expected
cost of an IDS by combining some of the ideas originally
presented in [9] and [28]. The expected cost is used as an
evaluation method for IDSs in order to assess the investment
of an IDS in a given IT security infrastructure. In addition
to the rates of detection and false alarm, the expected cost of
an IDS can also depend on the hostility of the environment,
the IDS operational costs, and the expected damage done
by security breaches.

A quantitative measure of the consequences of the output
of the IDS to a given event, which can be an intrusion or not
are the costs shown in Table 1. Here C(0,1) corresponds
to the cost of responding as though there was an intrusion
when there is none, C(1,0) corresponds to the cost of failing
to respond to an intrusion, C(1, 1) is the cost of acting upon
an intrusion when it is detected (which can be defined as
a negative value and therefore be considered as a profit for
using the IDS), and C(0,0) is the cost of not reacting to

State of the system Detector’s report
No Alarm (A=0) | Alarm (A=1)
No Intrusion (I = 0) C(0,0) Cc(0,1)
Intrusion (A = 1) C(1,0) C(1,1)

Table 1. Costs of the IDS reports given the
state of the system

a non-intrusion (which can also be defined as a profit, or
simply left as zero.)

Adding costs to the different outcomes of the IDS is a
way to generalize the usual tradeoff between the probability
of false alarm and the probability of detection to a tradeoff
between the expected cost for a non-intrusion

R(O,PFA) = C(0,0)(l *PFA) +C(0, I)PFA
and the expected cost for an intrusion
R(1,Pp)=C(1,0)(1—Pp)+C(1,1)Pp

It is clear that if we only penalize errors of classification
with unit costs (i.e. if C(0,0) = C(1,1) =0 and C(0,1) =
C(1,0) = 1) the expected cost for non-intrusion and the
expected cost for intrusion become respectively, the false
alarm rate and the detection rate.

The question of how to select the optimal tradeoff be-
tween the expected costs is still open. However, if we let the
hostility of the environment be quantified by the likelihood
of an intrusion p = Pr[I = 1] (also known as the base-rate
[3]), we can average the expected non-intrusion and intru-
sion costs to give the overall expected cost of the IDS:

E[C(1,A)] = R(0,Ppa)(1 —p)+R(1,Pp)p )

It should be pointed out that R() and E[C(I,A)] are also
known as the risk and Bayesian risk functions (respectively)
in Bayesian decision theory.

Given an IDS, the costs from Table 1 and the likelihood
of an attack p, the problem now is to find the optimal trade-
off between Pp and P4 in such a way that E[C(I,A)] is
minimized.

The Intrusion Detection Capability. = The main motiva-
tion for introducing the intrusion detection capability Cip as
an evaluation metric originates from the fact that the costs in
Table 1 are chosen in a subjective way [10]. Therefore the
authors propose the use of the intrusion detection capability
as an objective metric motivated by information theory:

I(I;A)
H(7)

Cip = 3

where I and H respectively denote the mutual information
and the entropy [5]. The H(/) term in the denominator is
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a normalizing factor so that the value of C;p will always
be in the [0, 1] interval. The intuition behind this metric is
that by fine tuning an IDS based on C;p we are finding the
operating point that minimizes the uncertainty of whether
an arbitrary input event x was generated by an intrusion or
not.

The main drawback of Cjp is that it obscures the intuition
that is to be expected when evaluating the performance of
an IDS. This is because the notion of reducing the uncer-
tainty of an attack is difficult to quantify in practical values
of interest such as false alarms or detection rates. Informa-
tion theory has been very useful in communications because
the entropy and mutual information can be linked to prac-
tical quantities, like the number of bits saved by compres-
sion (source coding) or the number of bits of redundancy re-
quired for reliable communications (channel coding). How-
ever it is not clear how these metrics can be related to quan-
tities of interest for the operator of an IDS.

The Base-Rate Fallacy and Predictive Value Metrics.
In [3] Axelsson pointed out that one of the causes for the
large amount of false alarms that intrusion detectors gen-
erate is the enormous difference between the amount of
normal events compared to the small amount of intrusion
events. Intuitively, the base-rate fallacy states that because
the likelihood of an attack is very small, even if an IDS
fires an alarm, the likelihood of having an intrusion remains
relatively small. Formally, when we compute the posterior
probability of intrusion (a quantity known as the Bayesian
detection rate, or the positive predictive value (PPV)) given
that the IDS fired an alarm, we obtain:

PPV =Pl = 1|A = 1]
Pr[A = 1|1 = 1] Pl = 1]
T PrfA= 1[I =1]Pr[l = 1] + Pr[A = 1|l = 0] Pr[l = 0]
Ppp

- 4
(Pp —Pra)p+ Pra @

Therefore, if the rate of incidence of an attack is very
small, for example on average only 1 out of 10° events is
an attack (p = 107>), and if our detector has a probability
of detection of one (Pp = 1) and a false alarm rate of 0.01
(Pra = 0.01), then Pr[l = 1]A = 1] = 0.000999. That is on
average, of 1000 alarms, only one would be a real intrusion.

It is easy to demonstrate that the PPV value is maximized
when the false alarm rate of our detector goes to zero, even
if the detection rate also tends to zero! Therefore as men-
tioned in [3] we require a trade-off between the PPV value
and the negative predictive value (NPV):

(1=p)(1 = Pra)
p(1—"Pp)+ (1 —p)(1 — Pra)
)

NPV =Pr[/ =0/A=0] =

3.2. Discussion

The concept of finding the optimal tradeoff of the metrics
used to evaluate an IDS is an instance of the more general
problem of multi-criteria optimization. In this setting, we
want to maximize (or minimize) two quantities that are re-
lated by a tradeoff, which can be done via two approaches.
The first approach is to find a suitable way of combining
these two metrics in a single objective function (such as the
expected cost) to optimize. The second approach is to di-
rectly compare the two metrics via a trade-off curve.

We therefore classify the above defined metrics into two
general approaches that will be explored in the rest of this
paper: the minimization of the expected cost and the trade-
off approach. We consider these two approaches as compli-
mentary tools for the analysis of IDSs, each providing its
own interpretation of the results.

Minimization of the Expected Cost. Let ROC denote
the set of allowed (Pra, Pp) pairs for an IDS. The expected
cost approach will include any evaluation metric that can be
expressed as

rf= min
(Ppa.Pp)EROC

E[C(1,4)] ©)
where r* is the expected cost of the IDS. Given DS, with
expected cost 1| and an IDS, with expected cost r5, we can
say IDS is better than DS, for our operational environ-
ment if r{ < r3.

We now show how Cjp, and the tradeoff between the
PPV and NPV values can be expressed as an expected costs
problems. For the Cjp case note that the entropy of an in-
trusion H(/) is independent of our optimization parameters
(Pra, Pp), therefore we have:

I1(;A
Py Pp) = ar max (134)
(Pgas Pp) g
(Pra,Pp)eroc H(I)
= arg max I(L;A)
(PFA,PD)EROC

= arg min

H(/]A)
(PFA,PD)€R0C

= arg min
(PFA ,PD)EROC

E[—logPr[I]A]]

It is now clear that Cyp is an instance of the expected cost
problem with costs given by C(i, j) = —logPr[I = i|A = j].
By finding the costs of Cjp we are making the Cjp metric
more intuitively appealing, since any optimal point that we
find for the IDS will have an explanation in terms of cost
functions (as opposed to the vague notion of diminishing
the uncertainty of the intrusions).

Finally, in order to combine the PPV and the NPV in an
average cost metric, recall that we want to maximize both

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06)
1081-6011/06 $20.00 © 2006 IEEE



Pr[l = 1|A = 1] and Pr[ = 0JA = 0]. Our average gain for
each operating point of the IDS is therefore

@ Pr[l = I|A = 1]Pr[A = 1] 4 @, Pr[I = 0]A = 0] Pr[A = 0]

where m; () is a weight representing a preference towards
maximizing PPV (NPV). This equation is equivalent to the
minimization of

—; Pr[l=1|A=1]Pr[A = 1] — 0, Pr[/ = 0|A = 0] Pr[A = 0]

(N
Comparing equation (7) with equation (2), we identify the
costs as being C(1,1) = —®;, C(0,0) = —@, and C(0,1) =
C(1,0) = 0. Relating the predictive value metrics (PPV and
NPV) with the expected cost problem will allow us to ex-
amine the effects of the base-rate fallacy on the expected
cost of the IDS in future sections.

IDS classification tradeoffs.  An alternate approach in
evaluating intrusion detection systems is to directly com-
pare the tradeoffs in the operation of the system by a trade-
off curve, such as ROC, or DET curves [21] (a reinterpreta-
tion of the ROC curve where the y-axis is 1 — Pp, as opposed
to Pp). As mentioned in [3], another tradeoff to consider is
between the PPV and the NPV values. However, we do not
know of any tradeoff curves that combine these two values
to aid the operator in choosing a given operating point.

We point out in section 4.2 that a tradeoff between Pry
and Pp (as in the ROC curves) as well as a tradeoff between
PPV and NPV can be misleading for cases where p is very
small, since very small changes in the Pr4 and NPV values
for our points of interest will have drastic performance ef-
fects on the Pp and the PPV values. Therefore, in the next
section we introduce the IDOC as a new tradeoff curve be-
tween Pp and PPV.

4. Graphical Analysis

We now introduce a graphical framework that allows the
comparison of different metrics in the analysis and evalu-
ation of IDSs. This graphical framework can be used to
adaptively change the parameters of the IDS based on its
actual performance during operation. The framework also
allows for the comparison of different IDSs under different
operating environments.

Throughout this section we use one of the ROC curves
analyzed in [9] and in [10]. Mainly the ROC curve describ-
ing the performance of the COLUMBIA team intrusion de-
tector for the 1998 DARPA intrusion detection evaluation
[18]. Unless otherwise stated, we assume for our analysis
the base-rate present in the DARPA evaluation which was
p=6.52x1077.

4.1. Visualizing the Expected Cost: The
Minimization Approach

The biggest drawback of the expected cost approach is
that the assumptions and information about the likelihood
of attacks and costs might not be known a priori. Moreover,
these parameters can change dynamically during the system
operation. Itis thus desirable to be able to tune the uncertain
IDS parameters based on feedback from its actual system
performance in order to minimize E[C(,A)].

We select the use of ROC curves as the basic 2-D graph
because they illustrate the behavior of a classifier without
regard to the uncertain parameters, such as the base-rate
p and the operational costs C(i, j). Thus the ROC curve
decouples the classification performance from these factors
[24]. ROC curves are also general enough such that they
can be used to study anomaly detection schemes and mis-
use detection schemes (a misuse detection scheme has only
one point in the ROC space).

C\p With p=6.52E-005

Figure 1. Isoline projections of C;p onto the
ROC curve. The optimal C;p value is C;p =
0.4565. The associated costs are C(0,0) =
3% 1073, €(0,1) = 0.2156, C(1,0) = 15.5255 and
C(1,1) = 2.8487. The optimal operating point
is Pry =2.76 x 10~* and Pp = 0.6749.

In the graphical framework, the relation of these uncer-
tain factors with the ROC curve of an IDS will be reflected
in the isolines of each metric, where isolines refer to lines
that connect pairs of false alarm and detection rates such
that any point on the line has equal expected cost. The eval-
uation of an IDS is therefore reduced to finding the point
of the ROC curve that intercepts the optimal isoline of the
metric (for signature detectors the evaluation corresponds
to finding the isoline that intercepts their single point in the
ROC space and the point (0,0) or (1,1)). In Figure 1 we can
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see as an example the isolines of Cyp intercepting the ROC
curve of the 1998 DARPA intrusion detection evaluation.

One limitation of the C;p metric is that it specifies the
costs C(i, j) a priori. However, in practice these costs are
rarely known in advance and moreover the costs can change
and be dynamically adapted based on the performance of
the IDS. Furthermore the nonlinearity of C;p makes it diffi-
cult to analyze the effect different p values will have on Cjp
in a single 2-D graph. To make the graphical analysis of the
cost metrics as intuitive as possible, we will assume from
now on (as in [9]) that the costs are tunable parameters and
yet once a selection of their values is made, they are con-
stant values. This new assumption will let us at the same
time see the effect of different values of p in the expected
cost metric.

Under the assumption of constant costs, we can see that
the isolines for the expected cost E[C(I,A)] are in fact
straight lines whose slope depends on the ratio between the
costs and the likelihood ratio of an attack. Formally, if we
want the pair of points (Pra1,Pp1) and (Ppa2,Ppp) to have
the same expected cost, they must be related by the follow-
ing equation [23, 31, 24]:

PD2—PD1 - l—pC(O,l)—C(0,0) o l—p 1
p C(1,00-C(1,1) p C

®)
where in the last equality we have implicitly defined C to be
the ratio between the costs, and mc ), to be the slope of the
isoline. The set of isolines of E[C(1,A)] can be represented
by

mc, P =
’ Pra1 — Pra2

ISOg ={mcp xPra+b:b€0,1]} )

For fixed C and p, it is easy to prove that the optimal op-
erating point of the ROC is the point where the ROC inter-
cepts the isoline in I SOf with the largest b (note however
that there are ROC curves that can have more than one opti-
mal point.) The optimal operating point in the ROC is there-
fore determined only by the slope of the isolines, which in
turn is determined by p and C. Therefore we can readily
check how changes in the costs and in the likelihood of an
attack will impact the optimal operating point.

Effect of the Costs.  In Figure 2, consider the operat-
ing point corresponding to C = 58.82, and assume that after
some time, the operators of the IDS realize that the number
of false alarms exceeds their response capabilities. In order
to reduce the number of false alarms they can increase the
cost of a false alarm C(0, 1) and obtain a second operating
point at C = 10. If however the situation persists (i.e. the
number of false alarms is still much more than what op-
erators can efficiently respond to) and therefore they keep
increasing the cost of a false alarm, there will be a critical
slope m¢ such that the intersection of the ROC and the iso-
line with slope m® will be at the point (Pga,Pp) = (0,0).

Isolines of the expected cost under different C values (with p=6,53<10'°°5)
T T T T

0.7+
06 C=58.82
051
C=10.0
o 04t
0.3
0.2+
o1 Cc=250
o . . . .
0.2 0.4 0.6 0.8 1
P 3

FA x10"

Figure 2. As the cost ratio C increases, the
slope of the optimal isoline decreases

The interpretation of this result is that we should not use
the IDS being evaluated since its performance is not good
enough for the environment it has been deployed in. In or-
der to solve this problem we need to either change the envi-
ronment (e.g. hire more IDS operators) or change the IDS
(e.g. shop for a more expensive IDS).

The Base-Rate Fallacy Implications on the Costs of an
IDS. A similar scenario occurs when the likelihood of
an attack changes. In Figure 3 we can see how as p de-
creases, the optimal operating point of the IDS tends again
to (Pra,Pp) = (0,0) (again the evaluator must decide not to
use the IDS for its current operating environment). There-
fore, for small base-rates the operation of an IDS will be
cost efficient only if we have an appropriate large C* such
that mc+ ,» < m°. A large C* can be explained if cost of
a false alarm much smaller than the cost of a missed de-
tection: C(1,0) > C(0,1) (e.g. the case of a government
network that cannot afford undetected intrusions and has
enough resources to sort through the false alarms).

Generalizations. This graphical method of cost analysis
can also be applied to other metrics in order to get some
insight into the expected cost of the IDS. For example in
[6], the authors define an IDS with input space X to be
G — sensitive if there exists an efficient algorithm with the
same input space £ : X — {—A,A}, such that P} — P%, > o.
This metric can be used to find the optimal point of an ROC
because it has a very intuitive explanation: as long as the
rate of detected intrusions increases faster than the rate of
false alarms, we keep moving the operating point of the IDS
towards the right in the ROC. The optimal sensitivity prob-
lem for an IDS with a receiver operating characteristic ROC
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Isolines of the probability of error under different p values
0.8 T T T T

07f
08 p=0.01 P01
05f p=0.001
0 04t
0.3F
0.2
p=0.0001
0.1
o ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1
Pea x107°

Figure 3. As the base-rate p decreases, the
slope of the optimal isoline increases

is thus:
max PD — PFA (10)
(Pra.Pp)EROC
It is easy to show that this optimal sensitivity point is the
same optimal point obtained with the isolines method for
mcp=1(@Ge C=(1-p)/p).

4.2. The Intrusion Detector Operating
Characteristicc @~ The Tradeoff Ap-
proach

Although the graphical analysis introduced so far can be
applied to analyze the cost efficiency of several metrics, the
intuition for the tradeoff between the PPV and the NPV is
still not clear. Therefore we now extend the graphical ap-
proach by introducing a new pair of isolines, those of the
PPV and the NPV metrics.

Lemma 1 Two sets of points (Pra1,Pp1) and (Ppa2,Pp2)
have the same PPV value if and only if

Praa  Prai

= =tan0 (11)
Ppy  Pp

where 0 is the angle between the line Ppy = 0 and the iso-
line. Moreover the PPV value of an isoline at angle © is

p

PPV, = ——————
op p+(1—p)tan6

(12)
Similarly, two set of points (Pra1,Pp1) and (Pga2,PD2)
have the same NPV value if and only if

I1—Ppy  1—Pp
1 —Pra1 1 =Py

=tan¢d (13)

Iso—Performance lines for P(I|A)
P(I|A)=1

P(I|A)=p(p+(1-p)tand )’

06 P(|A)=p

L L L L L L L L L )
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FA

Figure 4. The PPV isolines in the ROC space
are straight lines that depend only on 6. The
PPV values of interest range from 1 to p

where ¢ is the angle between the line Pp = 1 and the isoline.
Moreover the NPV value of an isoline at angle ¢ is

1—p

NPVy,=— L
&P p(tanp—1)+1

(14)

Iso—Performance lines for P(—I|-A)

09 PlI-A)=1 ¢
0.8
o7 P(l-A)=(1-p)(p(tanp—1)+1)~"
06
P(I-A)=1-p
04r
0.3F

0.2

0.1

Figure 5. The NPV isolines in the ROC space
are straight lines that depend only on ¢. The
NPV values of interest range from 1 to 1 —p

Figures 4 and 5 show the graphical interpretation of
Lemma 1. It is important to note the range of the PPV and
NPV values as a function of their angles. In particular no-
tice that as 0 goes from 0° to 45° (the range of interest), the
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value of PPV changes from 1 to p. We can also see from fig-
ure 5 that as ¢ ranges from 0° to 45°, the NPV value changes
from one to 1 — p. Therefore if p is very small NPV =~ 1. As
shown in Figure 6, it turns out that the most relevant metrics
to use for a tradeoff in the performance of an IDS are PPV
and Pp.

However, even when you select as tradeoff parameters
the PPV and Pp values, the isoline analysis shown in Fig-
ure 6 has still one deficiency when compared with the iso-
line performance analysis of the previous section, and it
is the fact that there is no efficient way to represent how
the PPV changes with different p values. In order to solve
this problem we introduce the Intrusion Detector Operat-
ing Characteristic (IDOC) as a graph that shows how the
two variables of interest: Pp and Pr[/ = 1|/A = 1] (the PPV
value) are related under different base-rate values of inter-
est. An example of an IDOC curve is presented in Figure
(7). Although we show p varying substantially in this fig-
ure, the final choice for the uncertainty region of p is the
choice of the user. Also note, for comparison purposes, that
the IDOC curve of a classifier that performs random guess-
ing is just a vertical line intercepting the x-axis at p, since
Prl=1A=1] =p.

PPV and NPV with p=6.52E-005

0.8 £ l

o7k S 50.99998 ad
. .
2 0.4

06 PPV isolines

0.5

o 04 0.99996

0.3F

0.2

0.1
00

Figure 6. PPV and NPV isolines for the ROC
of interest.

NPV isolines
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We believe that the IDOC provides a better way to evalu-
ate IDS systems than most of the other previously proposed
metrics. The ROC curve analysis alone does not take into
account the estimated value of p. Furthermore, the operat-
ing points for an ROC might lead to misleading results as
we do not know how to interpret intuitively very low false
alarm rates where the precision might be misleading, e.g. is
Pra = 1073 much better than Pg4 = 5 x 1073? This same
logic applies to the study of PPV vs NPV as we cannot
interpret precisely small variations in NPV values, e.g. is
NPV = 0.9998 much better than NPV = 0.99975? On the

other hand in the IDOC curve we are comparing tradeofts
that are easier to interpret.
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Figure 7. IDOC for the ROC of Figure 6.

5. Threat Models and Security Properties of
the Evaluation

Traditional evaluation of intrusion detection schemes as-
sumes that an intruder behaves similarly before and after
the implementation of the IDS (i.e. a non-adaptive intruder).
Now consider an intruder who adapts its attack when it faces
a target system which hosts a given IDS.

For our evaluation analysis we were assuming three
quantities that can be, up to a certain extent, controlled by
the intruder. They are the base-rate p, the false alarm rate
Pr4 and the detection rate Pp. The base-rate can be modi-
fied by controlling the frequency of attacks. The perceived
false alarm rate can be increased if the intruder finds a flaw
in any of the signatures of an IDS that allows him to send
maliciously crafted packets that trigger alarms at the IDS
but that look benign to the IDS operator. Finally, the detec-
tion rate can be modified by the intruder with the creation
of new attacks whose signatures do not match those of the
IDS, or simply by evading the detection scheme, for exam-
ple by the creation of a mimicry attack [34, 13].

In an effort towards understanding the advantage an in-
truder has by controlling these parameters, and to provide
a robust evaluation framework, we now present a formal
framework to reason about the robustness of an IDS eval-
uation method. Our work in this section is in some sense
similar to the theoretical framework presented in [6], which
was inspired by cryptographic models. However, we see
two main differences in our work. First, we introduce the
role of an adversary against the IDS, and thereby introduce
a measure of robustness for the metrics. In the second place,
our work is more practical and is applicable to more realistic
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evaluation metrics. Furthermore we also provide examples
of practical scenarios where our methods can be applied.

In order to be precise in our presentation, we need to
extend the definitions introduced in section 2. For our mod-
eling purposes we decompose the DS algorithm into two
parts: a detector D and a decision maker DM. For the
case of an anomaly detection scheme, D(x[j]) outputs the
anomaly score y[j] on input x[j] and DM represents the
threshold that determines whether to consider the anomaly
score as an intrusion or not, i.e. DM (y[j]) outputs an alarm
or it does not. For a misuse detection scheme, DM has to
decide to use the signature to report alarms or decide that
the performance of the signature is not good enough to jus-
tify its use and therefore will ignore all alarms (e.g. it is not
cost-efficient to purchase the misuse scheme being evalu-
ated).

Definition 1 An DS algorithm is the composition of algo-
rithms 9D (an algorithm from where we can obtain an ROC
curve) and DM (an algorithm responsible for selecting an
operating point). During operation, an DS receives a con-
tinuous data stream of event features x[1],x[2],... and clas-
sifies each input x[j] by raising an alarm or not. Formally:'

1DS(x)
y=D(x)
A— DM (y)
Output A (where A € {0,1})

%

We now study the performance of an IDS under an ad-
versarial setting. We remark that our intruder model does
not represent a single physical attacker against the IDS. In-
stead our model represents a collection of attackers whose
average behavior will be studied under the worst possible
circumstances for the IDS.

The first thing we consider, is the amount of information
the intruder has. A basic assumption to make in an adversar-
ial setting is to consider that the intruder knows everything
that we know about the environment and can make infer-
ences about the situation the same way as we can. Under
this assumption we assume that the base-rate p estimated
by the IDS, its estimated operating condition (P4, Pp) se-
lected during the evaluation, the original ROC curve (ob-
tained from ) and the cost function C(1,A) are public val-
ues (i.e. they are known to the intruder).

We model the capability of an adaptive intruder by defin-
ing some confidence bounds. We assume an intruder can de-
viate p— 9;, p+ 9, from the expected p value. Also, based
on our confidence in the detector algorithm and how hard
we expect it to be for an intruder to evade the detector, or to
create non-relevant false positives (this also models how the

I'The usual arrow notation: a < DM (y) implies that DM can be a
probabilistic algorithm.

normal behavior of the system being monitored can produce
new -previously unseen- false alarms), we define o and B as
bounds to the amount of variation we can expect during the
IDS operation from the false alarms and the detection rate
(respectively) we expected, i.e. the amount of variation from
(Pra,Pp) (although in practice estimating these bounds is
not an easy task, testing approaches like the one described
in [33] can help in their determination).

The intruder also has access to an oracle Feature(-,-)
that simulates an event to input into the IDS. Feature(0, )
outputs a feature vector modeling the normal behavior of
the system that will raise an alarm with probability { (or
a crafted malicious feature to only raise alarms in the case
Feature(0,1)). And Feature(1,{) outputs the feature vec-
tor of an intrusion that will raise an alarm with probability

C.

Definition 2 A (8,0, ) — intruder is an algorithm J that
can select its frequency of intrusions p; from the interval
d=[p—38;,p+3,]. Ifitdecides to attempt an intrusion, then
with probability p € [0, B], it creates an attack feature x that
will go undetected by the IDS (otherwise this intrusion is
detected with probability Pp). If it decides not to attempt an
intrusion, with probability p3 € [0,0] it creates a feature x
that will raise a false alarm in the IDS

3(8,0.B)
Select py € [p—&;,p+ 8]
Select p, € [0, 0
Select p3 € [0, f]
I — Bernoulli(p;)
Ifr=1
B — Bernoulli(ps)
x « Feature(1, (min{(1 —B),Pp}))
Else
B — Bernoulli(ps)
x « Feature (0, max{B, P })
Output (I,x)

where Bernoulli({) outputs a Bernoulli random variable
with probability of success C.

Furthermore, if §; = p and 8, = 1 — p we say that J has
the ability to make a chosen-intrusion rate attack.

¢

We now formalize what it means for an evaluation
scheme to be robust. We stress the fact that we are not ana-
lyzing the security of an IDS, but rather the security of the
evaluation of an IDS, i.e. how confident we are that the IDS
will behave during operation similarly to what we assumed
in the evaluation.
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5.1. Robust Expected Cost Evaluation

We start with the general decision theoretic framework
of evaluating the expected cost (per input) E[C(1,A)] for an
IDS.

Definition 3 An evaluation method that claims the ex-
pected cost of an IDS is at most r is robust against a
(8,01, B) — intruder if the expected cost of IDS during the
attack (E®*B[C[1,A)]) is no larger than r, i.e.

E>P[C[1,A)] = X.Cli,a)x

Pr[(I,x) — J3(8,0,B); A— IDS(x): I=i,A=a]<r
¢
Now recall that the traditional evaluation framework
finds an evaluation value r* by using equation (6). So by
finding r* we are basically finding the best performance of
an IDS and claiming the IDS is better than others if r* is
smaller than the evaluation of the other IDSs. In this sec-
tion we claim that an IDS is better than others if its expected
value under the worst performance is smaller than the ex-
pected value under the worst performance of other IDSs. In
short

Traditional Evaluation Given a set of IDSs
{IDS,IDS,,...,IDS,} find the best expected
cost for each:

rf=  min

E[C(1,A)] (15)
(P2, ,PRYeROC;

Declare that the best IDS is the one with smallest ex-
pected cost 7.

Robust Evaluation Given a set of IDSs
{IDS,IDS,,...,IDS,} find the best expected
cost for each 1DS; when being under the attack of a
(8,0, B;) — intruder®. Therefore we find the best IDS
as follows:

l{‘obust _ min

max E>% P [C(1,A)]
(P PherOCT TP

3(5,0(['76,')
(16)

Several important questions can be raised by the above
framework. In particular we are interested in finding the
least upper bound r such that we can claim the evaluation of
I1DS to be robust. Another important question is how can
we design an evaluation of DS satisfying this least upper
bound? Solutions to these questions are partially based on
game theory.

Note that different IDSs might have different o and B values. For
example if DS is an anomaly detection scheme then we can expect that
the probability that new normal events will generate alarms o/ is larger
than the same probability o, for a misuse detection scheme 1D.S,.

Lemma 2 Given an initial estimate of the base-rate p, an
initial ROC curve obtained from D, and constant costs
C(I,A), the least upper bound r such that the expected cost
evaluation of I'DS is r-robust is given by

r=RO.PR)(1-p°)+ROLPYF (D)
where
R(0,P%) = [C(0,0)(1 = Pg) +C(0, DP] - (18)
is the expected cost of 1'DS under no intrusion and
RO, =[c(1,001 =P8 +c(1, )l (19

is the expected cost of 1'DS under an intrusion, and ﬁs,
P2, and ﬁg are the solution to a zero-sum game between
the intruder (the maximizer) and the IDS (the minimizer),
whose solution can be found in the following way:

1. Let (Pga,Pp) denote any points of the initial ROC ob-
tained from D and let ROC (©B) be the ROC curve de-
fined by the points (PI‘?A,PLE), where Pg = Pp(1—P)
and Py, = o+ Ppa(1 — o).

2. Using p+ 9, in the isoline method, find the optimal
operating point (x,,y,)in ROC'“P) and using p —
in the isoline method, find the optimal operating point
(x1,y1) in ROC(®-B),

3. Find the points (x*,y*) in ROC'“P) that intersect the
line

€(0,0) —C(0,1)

C(1,0)—C(1,1) ' “¢(1,0)—C(1,1)

(under the natural assumptions C(1,0) > R(0,x"*) >
C(0,0), C(0,1) > C(0,0) and C(1,0) > C(1,1)). If
there are no points that intersect this line, then set x* =
vy =1

4. If x* € [x1,x,] then find the base-rate parameter p*
such that the optimal isoline of Equation (9) intercepts
ROCP®) ar (x*,y*) and set p® = p*, P% =x* and
f’g =y

5. Else if R(0,x,) < R(1,y,) find the base-rate param-
eter p, such that the optimal isoline of Equation (9)
intercepts ROC'“P) ar (x,,y,) and then set p® = p,,
131%4 =Xx, and ISg = yyu. Otherwise, find the base-rate
parameter p; such that the optimal isoline of Equation
(9) intercepts ROC\®P) at (x7,y1) and then set p° = py,
png = x; and joi- V.
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The proof of this lemma is very straightforward. The ba-
sic idea is that if the uncertainty range of p is large enough,
the Nash equilibrium of the game is obtained by selecting
the point intercepting equation (3). Otherwise one of the
strategies for the intruder is always a dominant strategy of
the game and therefore we only need to find which one is
it: either p+ 9, or p —§;. For most practical cases it will
be p+9,. Also note that the optimal operating point in
the original ROC can be found by obtaining (Prs,Pp) from

(P4, PD).
5.2. Robust IDOC Evaluation

Similarly we can now also analyze the robustness of the
evaluation done with the IDOC curves. In this case it is also
easy to see that the worst attacker for the evaluation is an
intruder J that selects p; = p—§;, po = o and p3 = .

Corollary 3 For any point (PPV,Pp) corresponding to p
in the IDOC curve, a (8,0, B) — intruder can decrease the
detection rate and the positive predictive value to the pair

(PPVS’G’B,ISg), where PP = Pp(1 — B) and where
5 Php— PR3
ppvP — P (20)

 Pp+ P (1—p)+ P2, — P

5.3. Example: Minimizing the Cost of a
Chosen Intrusion Rate Attack

We now present an example that shows the generality of
lemma 2 and also presents a compelling scenario of when
does a probabilistic IDSs make sense. Assume an ad hoc
network scenario similar to [20, 36, 32, 4] where nodes
monitor and distribute reputation values of other nodes’ be-
havior at the routing layer. The monitoring nodes report
selfish actions (e.g. nodes that agree to forward packets in
order to be accepted in the network, but then fail to do so) or
attacks (e.g. nodes that modify routing information before
forwarding it).

Now suppose that there is a network operator consider-
ing implementing a watchdog monitoring scheme to check
the compliance of nodes forwarding packets as in [20].
The operator then plans an evaluation period of the method
where trusted nodes will be the watchdogs reporting the
misbehavior of other nodes. Since the detection of misbe-
having nodes is not perfect, during the evaluation period
the network operator is going to measure the consistency of
reports given by several watchdogs and decide if the watch-
dog system is worth keeping or not.

During this trial period, it is of interest to selfish nodes
to behave as deceiving as they can so that the neighboring

not permanently established. As stated in [20] the watch-
dogs might not detect a misbehaving node in the presence
of 1) ambiguous collisions, 2) receiver collisions, 3) limited
transmission power, 4) false misbehavior, 5) collusion or 6)
partial dropping. False alarms are also possible in several
cases, for example when a node moves out of the previous
node’s listening range before forwarding on a packet. Also
if a collision occurs while the watchdog is waiting for the
next node to forward a packet, it may never overhear the
packet being transmitted.

In this case, the detector algorithm 9D is the watchdog
mechanism that monitors the medium to see if the packet
was forwarded F or if it did not hear the packet being for-
warded (unheard U) during a specified amount of time. Fol-
lowing [20] (where it is shown that the number of false
alarms can be quite high) we assume that a given watch-
dog D has a false alarm rate of Py = 0.5 and a detection
rate of Pp = 0.75. Given this detector algorithm, a (non-
randomized) decision maker DM has to be one of the fol-
lowing rules (where intuitively, 43 is the more appealing):

h(F)=0 hi(U)=0
h(F)=1 hy(U)=0
h3(F)=0 h3(U)=1
ha(F)=1 hy(U) =1

Now notice that since the operator wants to check the
consistency of the reports, the selfish nodes will try to max-
imize the probability of error (i.e. C(0,0)=C(1,1)=0and
C(0,1) =C(1,0) = 1) of any watchdog with a chosen intru-
sion rate attack. As stated in lemma 2, this is a zero-sum
game where the adversary is the maximizer and the watch-
dog is the minimizer. The matrix of this game is given in
Table 2.

1

oot 4 h
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PriError]
°
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Figure 8. Probability of error for i; vs. p

It is a well known fact that in order to achieve a Nash
equilibrium of the game, the players should consider mixed

watchdogs have largely different results and the system is strategies (i.e. consider probabilistic choices). For our
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h() h1 hz h3
I=0 | R(0,0) | R(0,Pp) | R(0,Pra) | R(0O,1)
I=1 | R(1,0) | R(L,Pra) | R(L,Pp) | R(1,1)

Table 2. Matrix for the zero-sum game theo-
retic formulation of the detection problem

example the optimal mixed strategy for the selfish node
(see Figure 8) is to drop a packet with probability p* =
Pra/(Pray + Pp). On the other hand the optimal strategy
for DM is to select h3 with probability 1/(Pra + Pp) and
hy with probability (Pry — (1 —Pp))/(Pra — (1 —Pp) +1).
This example shows that sometimes in order to minimize
the probability of error (or any general cost) against an
adaptive attacker, DM has to be a probabilistic algorithm.

Lemma 2 also presents a way to get this optimal point
from the ROC, however it is not obvious at the begin-
ning how to get the same results, as there appear to be
only three points in the ROC: (P4 = 0,Pp = 0) (by se-
lecting A1), (Prpa = 1/2,Pp = 3/4) (by selecting h3) and
(Pra = 1,Pp = 1) (by selecting h4). The key property of
ROC curves to remember is that the (optimal) ROC curve
is a continuous and concave function [23], and that in fact,
the points that do not correspond to deterministic decisions
are joined by a straight line whose points can be achieved
by a mixture of probabilities of the extreme points. In
our case, the line y = 1 — x intercepts the (optimal) ROC
at the optimal operating points P, = Pra/(Pp + Pra) and
135 = Pp/(Pra+ Pp) (see Figure 9). Also note that p* is the
value required to make the slope of the isoline parallel to
the ROC line intersecting (P4, P}y).

ROC of a watchdog
T T

1 /:
0.9 h,
h
0.8F 3,
0.7
0.6
a® 05f o)
0.4
0.3
0.2
0.1
hl
C‘}/ . . . .
0.2 0.4 06 08 1
PFA

Figure 9. The optimal operating point

The optimal strategy for the intruder is therefore p* =
2/5, while the optimal strategy for DM is to select ~; with
probability 1/5 and h3 with probability 4/5. In the robust
operating point we have P;, = 2/5 and P}, = 3/5. There-

fore, after fixing DM, it does not matter if p deviates from
p* because we are guaranteed that the probability of error
will be no worse (but no better either) than 2/5, therefore
the IDS can be claimed to be 2/5-robust.

5.4. Example: Robust Evaluation of IDSs

As a second example, we chose to perform an intrusion
detection experiment with the 1998 MIT/Lincoln Labs data
set [1]. Although several aspects of this data set have been
criticized in [22], we still chose it for two main reasons. On
one hand, it has been (and arguably still remains) the most
used large-scale data set to evaluate IDSs. In the second
place we are not claiming to have a better IDS to detect at-
tacks and then proving our claim with its good performance
in the MIT data set (a feat that would require further test-
ing in order to be assured on the quality of the IDS). Our
aim on the other hand is to illustrate our methodology, and
since this data set is publicly available and has been widely
studied and experimented with (researchers can in princi-
ple reproduce any result shown in a paper), we believe it
provides the basic background and setting to exemplify our
approach.

Of interest are the Solaris system log files, known as
BSM logs. The first step of the experiment was to record
every instance of a program being executed in the data set.
Next, we created a very simple tool to perform buffer over-
flow detection. To this end, we compared the buffer length
of each execution with a buffer threshold, if the buffer size
of the execution was larger than the threshold we report an
alarm.

We divided the data set into two sets. In the first one
(weeks 6 and 7), our IDS performs very well and thus we
assume that this is the “evaluation” period. The previous
three weeks were used as the period of operation of the IDS.
Figure 10(a)® shows the results for the “evaluation” period
when the buffer threshold ranges between 64 and 780. The
dotted lines represent the suboptimal points of the ROC or
equivalently the optimal points that can be achieved through
randomization. For example the dotted line of Figure 10(a)
can be achieved by selecting with probability A the detector
with threshold 399 and with probability 1 — A the detector
with threshold 773 and letting A range from zero to one.

During the evaluation weeks there were 81108 execu-
tions monitored and 13 attacks, therefore p = 1.6 x 1074,

3Care must always be taken when looking at the results of ROC curves
due to the "unit of analysis” problem [22]. For example comparing the
ROC of Figure 10(a) with the ROC of [14] one might arrive to the erro-
neous conclusion that the buffer threshold mechanism produces an IDS
that is better than the more sophisticated IDS based on Bayesian networks.
The difference lies in the fact that we are monitoring the execution of ev-
ery program while the experiments in [14] only monitor the attacked pro-
grams (eject, fbconfig, fdformat and ps). Therefore although we
raise more false alarms, our false alarm rate (number of false alarms di-
vided by the total number of honest executions) is smaller.
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ROC for Evaluation
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(a) Original ROC obtained during the evaluation
period
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Figure 10. Robust expected cost evaluation

Assuming that our costs (per execution) are C(0,0) =
C(1,1) =0, C(1,0) =850 and C(0,1) = 100 we find that
the slope given by equation 8 is mc s = 735.2, and therefore
the optimal point is (2.83 x 104, 1), which corresponds to a
threshold of 399 (i.e. all executions with buffer sizes bigger
than 399 raise alarms). Finally, with these operating condi-
tions we find out that the expected cost (per execution) of
the IDS is E[C(I,A)] = 2.83 x 1072,

In the previous three weeks used as the “operation” pe-
riod our buffer threshold does not perform as well, as can be
seen from its ROC (shown in Figure 10(b).) Therefore if we
use the point recommended in the evaluation (i.e. the thresh-
old of 399) we get an expected cost of EPT3ONC(1,A)] =
6.934 x 1072, Notice how larger the expected cost per ex-
ecution is from the one we had evaluated. This is very no-
ticeable in particular because the base-rate is smaller during
the operation period (p°Peraion — 7 % 107>) and a smaller
base-rate should have given us a smaller cost.

To understand the new ROC let us take a closer look at
the performance of one of the thresholds. For example, the
buffer length of 773 which was able to detect 10 out of the
13 attacks at no false alarm in Figure 10(a) does not perform
well in Figure 10(b) because some programs such as grep,
awk, find and 1d were executed under normal operation
with long string lengths. Furthermore, a larger percent of
attacks was able to get past this threshold. This is in general
the behavior modeled by the parameters o and P that the
adversary has access to in our framework.

Let us begin the evaluation process from the scratch by
assuming a ([1 x 107,0],1 x 107#,0.1) — intruder, where
8 = [1 x 1073,0] means the IDS evaluator believes that the
base-rate during operation will be at most p and at least
p—1x107. o= 1x 107> means that the IDS evalua-
tor believes that new normal behavior will have the chance
of firing an alarm with probability 1 x 107>, And B = 0.1
means that the IDS operator has estimated that ten percent
of the attacks during operation will go undetected. With

these parameters we get the ROC*P shown in Figure 10(c).

Note that in this case, p is bounded in such a way that
the equilibrium of the game is achieved via a pure strat-
egy. In fact, the optimal strategy of the intruder is to attack
with frequency p+ 9, (and of course, generate missed de-
tections with probability 3 and false alarms with probability
o) whereas the optimal strategy of DM is to find the point
in ROC®P that minimizes the expected cost by assuming
that the base-rate is p+ §,.

The optimal point for the ROC®P curve corresponds
to the one with threshold 799, having an expected cost
E>*B[C(I,A)] = 5.19 x 102, Finally, by using the opti-
mal point for ROC*B, as opposed to the original one, we
get during operation an expected cost of E°Perion[C (1, A)] =
2.73 x 1072, Therefore in this case, not only we have main-
tained our expected 5.19 x 1072 — security of the evalu-
ation, but in addition the new optimal point actually per-
formed better than the original one.

Notice that the evaluation of Figure 10 relates exactly to
the problem we presented in the introduction, because it can
be thought of as the evaluation of two IDSs. One IDS hav-
ing a buffer threshold of length 399 and another IDS having
a buffer threshold of length 773. Under ideal conditions we
choose the IDS of buffer threshold length of 399 since it has
a lower expected cost. However after evaluating the worst
possible behavior of the IDSs we decide to select the one
with buffer threshold length of 773.

An alternative view can be achieved by the use of IDOC
curves. In Figure 11(a) we see the original IDOC curve dur-
ing the evaluation period. These curves give a false sense of
confidence in the IDS. Therefore we study the IDOC curves
based on ROC®P in Figure 11(b). In Figure 11(c) we can
see how the IDOC of the actual operating environment fol-
lows more closely the IDOC based on ROC B than the orig-
inal one.
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Figure 11. Robust IDOC evaluation

6. Conclusions and Future Work

There are two main problems that any empirical test of
an IDS will face. The first problem relates to the inferences
that once can make about any IDS system based on experi-
ments alone. An example is the low confidence on the esti-
mate for the probability of detection in the ROC. A typical
way to improve this estimate in other classification tasks is
through the use of error bars in the ROC. However, since
tests of IDSs include very few attacks and their variations,
there is not enough data to provide an accurate significance
level for the bars. Furthermore, the use of error bars and any
other cross-validation technique gives the average perfor-
mance of the classifier. However, this brings us to the sec-
ond problem, and it is the fact that since the IDSs are subject
to an adversarial environment, evaluating an IDS based on
its average performance is not enough. Our intruder model
tries to address these two problems, since it provides a prin-
cipled approach to give us the worst case performance of a
detector.

The extent by which the analysis with a (3,a,p) —
intruder will follow the real operation of the IDS will de-
pend on how accurately the person doing the evaluation of
the IDS understands the IDS and its environment, for ex-
ample, to what extent can the IDS be evaded, how well
the signatures are written (e.g. how likely is it that normal
events fire alarms) etc. However, by assuming robust pa-
rameters we are actually assuming a pessimistic setting, and
if this pessimistic scenario never happens, we might be op-
erating at a suboptimal point (i.e. we might have been too
pessimistic in the evaluation).

Finally we note that IDOC curves are a general method
not only applicable to IDSs but to any classification algo-
rithm whose classes are heavily imbalanced (very small or
very large p). We plan to propose their use in other fields as
a general alternative to ROCs for these type of classification
problems. In particular, we point out that another choice

for the x-axis on an IDOC curve is to select 1 — Pr[l =
1|A = 1] = Pr[l = 0JA = 1], instead of Pr[l = 1|A = 1].
This can be done in order to mimic the ROC evaluation,
since Pr[/ = 0|A = 1] intuitively represents the Bayesian
false alarm rate. That is, the x-axis would then represent
the probability that the IDS operator will not find an in-
trusion when he investigates an alarm report (informally, it
would represent the waste of time for the operator of the
IDS). The final decision on which x-axis to use will depend
on the personal interpretation of the user.
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