John S. Baras


A Statistical Complexity Framework for Topology Preserving Adaptive Vector Quantization

M. K. Sonmez and J. S. Baras

CISS’96, Princeton, NJ, March 20-22, 1996.

Full-text article [ PDF]


We propose a statistical model complexity framework for topology preserving adaptive vector quantization. In this setting, adaption of the neighborhood function during training of the codebooks, which is essential for producing global organization, may be regarded as increasing the statistical model complexity as more data become available. Therefore, the training is equivalent to on the fly optimization of the bias/variance trade-off.

Biography | Site Map | Contact Dr. Baras | Send Feedback | ©2008 ISR