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Abstract 
We consider the problem of robust output feedback 
control of set-valued discrete time systems. Such sys- 
tems appear frequently in applications such as process 
control. The aim is to motivate and obtain an efficient 
formulation of robust control problems and the result- 
ing structure of the controller for such systems. This 
formulation, and the controller structure are obtained 
by taking small noise limits of the information state 
dynamics arising in a related risk-sensitive stochastic 
control problem. The necessary and sufficient condi- 
tions for solvability are also presented. 

1 Introduction 
Robust control addresses the problem of designing 
high performance controllers when there is uncer- 
tainty in the system to be controlled. The most de- 
manding problems in robust control deal with model 
uncertainty. In most practical situations these types 
of uncertainties cannot be described as an additive 
disturbance; which is the typical model used in the 
literature on robust or H ,  control. This is more pro- 
found in the case of nonlinear systems, but even in 
the case of linear systems where the parameters are 
known to lie in certain numerical intervals (but their 
precise numerical values are not known). These con- 
siderations can be addressed if the problem of robust 
output feedback control is formulated in the context 
of systems modeled as 

where F and G are set-valued maps, and Zk  E R" are 
the states, U k  E U C Rm are the control inputs, and 
y k  E R is the measured variable. Furthemore, 50 is 
assumed to be 0. 
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The aim of this paper is to provide an appropri- 
ate formulation, and solution of the robust control 
problem for such systems. In particular, if we were 
given a regulated output z along with the above dy- 
namics, what would be an appropriate way to set up 
a control problem to minimize the influence of set- 
valuedness on z ,  while achieving certain performance 
objectives. Here, the set-valuedness is assumed to 
be due to bounded perturbations (additive and non- 
additive) of a nominal single-valued system. We deal 
with the restricted case (i.e. having 20 = 0), the 
results can be extended to the case of non-zero zo. 

We aim at obtaining the structure of the controller 
without invoking ad hoc assumptions on the struc- 
ture, and without restricting to overtly simplified sys- 
tem classes. A key idea used in our approach to 
achieve this, following [5],  is to study carefully the 
relationship between an associated risk-sensitive sto- 
chastic control problem and the dynamic game for- 
mulation of the robust control problem. The two 
are related via a small noise limiting procedure which 
helps to establish crisply the structure of the dynamic 
controller. The approach correctly constructs the in- 
formation state of the controller and its dynamics; a 
key concept. 

The main steps are as follows. In section 2, we con- 
sider a risk-sensitive stochastic control problem. We 
employ the idea in [5], where the small noise limit 
of a risk-sensitive stochastic control problem is taken 
to formally obtain an information state solution to 
the deterministic nonlinear H ,  control problem. In 
[5] an exponential cost function motivated from [3] 
was used, and small noise limits taken. We use the 
information state recursion derived from the stochas- 
tic control problem as the basis for the derivation of 
the dynamics of the controller for the deterministic 
problem. From our viewpoint, the stochastic control 
problem is entirely motivational, and we drop most 
of the assumptions associated with the small noise 
limit derivation when considering the deterministic 
problem in section 3. The information state has a 
natural cost interpretation associated with it, and we 
postulate the minimization of this cost as a candidate 
formulation for the deterministic robust control prob- 
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uiiknown, we could initialize the information state se- 
quence po as a smooth function weighing the initial 
states. We next define 

Lemma 3 For any U E UO,K-1, the  closed loop sys- 
t e m  C" satisfies (7) o n  [0, K], i f  and only if the in-  
formation state pk satisfies 

A 
rg,k(xO) = (20,k E %,,k122+1 E F(zZ,uZ), 

1 = 0 ,  ..., k - 1 )  

where R t , k  = (x0,kIZz E R",l = 0,.  . . , k ) ,  and 

A rt;i(.O> = ("0,k E rt,k(xo)Iyz+l E G(Zl,uZ)t 
1 = 0,.  . . , k - 1 )  

Furthermore, we write r,  s E Tg,k(xo) for trajectories 
T and s such that T E r g , k ( X O ) ,  and SZ+I E F (Tz ,uz ) ,  
for 1 = 0, .  . . , k - 1, with so = TO = 20. We similary 
write T ,  s E rE,';cY(xo). Consider the information state 
recusion (6). By inspection, one obtains 

Pk(x )  = SUpp,ser,U;;(o) {cl=o L(rZ+l, TZ+l - sl+1 ,uZ) 
k- 1 

1 - 21; lrZ+l - sZ+1 l 2  I r k  = Z) 

We now consider the following control problem for 

ment s  that can be generated by the closed loop sys t em 
E"". 
Remark: The above result yields a separation prin- 
ciple, since one now deals solely with the information 
state system (6), where the information states p plays 
the role of the states, and y the role of disturbance. 
Hence, we have converted a partially observed system 
(4) to a fully observed (infinite dimensional) system 
(6), with the cost now given by the left hand side of 
equation (8). The problem now is to find a control 
policy U E U0,K- l  which achieves 

inf SUP {(pk,O)IPO = 6{0}) 
"EU%k-l yl,kEA"(O) - 

the system (4). Find a control policy U E UO,K-I ,  
such that Such a policy will depend only on p ,  i.e. U k  = U b k ) ,  

and we call such policies information state feedback 
policies, and denote by I o , K - ~  C UO,K-1 the set of 
such policies. 

Let E be the space in which p lives. We define for 
a function W : & + R* 

1 2 

2P 

K-1 

{ ~ ( ~ k + l ~ ~ k + l - ~ k + l , ~ k ) - - ~ ~ k + l - ~ k + l ~  ) 5 0 

(7) 
for all trajectories r, s E l?g,K(0). Note that, if T - s  E 
Z2([0, K ] ,  R"), then the above guarantees that 

k=O 

w 2 { p  E &I W(P)  is finite) 

We employ dynamic programming to solve the prob- 
lem. Define the value function by 

M k b )  = inf SUP { b k , O )  ]PO = P I  This immediately yields a method to set up robust 

ample the following regulated output. 
control problems for the system E. Consider for ex- "Eu% k - 1 a, E Ay, (0) 

for k E [0, K] .  The corresponding dynamic program- 
ming equation is .%+I = h ( Z k + l ,  ? l k )  

where Xk evolve via the dynamics (4). One could now 
consider attenuating the (Lipschitz) induced norm of 
2, (provided of course that h is not, say, uniformly 
Lipschitz continuous in x) by defining L as 

L ( T , W , U )  = Ih(r,u) - h(r - W , U ) I 2  

Such a problem is considered in detail in [l], and an 
example of its application to disturbance attenuation 
for a discontinuous system subject to parameter vari- 
ations and additive noise is given in [2], where its 
performance is compared to an If, controller. 

3.1 Controller Structure 

(9) 
with the initial condition M o b )  = (p ,O) .  Then, we 
obtain the following necessary and sufficient condi- 
tions for the solvability of the output feedback robust 
control problem. 

Theorem 2 (Necessity) Assume  that  ii E 0 0 , ~ - 1  
solves the f inite t ime  output feedback robust control 
problem with xo = 0. T h e n  there exists a solution M 
t o  the dynamic programming equation (9) such that  
Mk(60)  = 0, M k b )  2 b,o), P E dom Mk, k E 10, K ] .  

Before, proceeding further, we define the following 
pairing, (p, q)  = sUp,,Rn ( p ( x ) + q ( z ) } .  We now state 
the solvability of the robust control problem in terms 
of a new cost function involving the information state 

Theorem 3 (Suf ic iency)  Assume  there exists a so- 
lution M t o  the dynamic programming equation (9) 
o n  some non-empty domain dom Mk, such that  60 E 
dom Mk Mk(60)  = 0, M k ( p )  2 (p,o), k E [O,K]. Let  
U* E Io,K-~ be a policy such that U ;  = G k - k ( p k ) ,  

A 

Pk. 
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Then it can be shown that this satisfies the following 
dynamic programming equation 

Vp$E(u, k) = infUEv,,, Et[VP9"(C@>"*(u, yk+l)u, 

Vpje(u, K )  = Et[< n, 1 >] 
k + 111 

for k = 0, .  . . , K - 1, where the infimizing control 
value uk (a )  solves the risk-sensitive control problem. 
It is clear that uk (the control value at time k) is a 
function only of (the information state) ut" at time k. 
Hence, the policy is separated, and the information 
state contains all the relevant information required 
for control. We now take the small-noise limit of the 
information state recursion to construct an analogow 
filter for the deterministic robust control problem. 

2.3 Small Noise Limit 
We first define some spaces following [5]. For 7 E 

M = {y E R2 171 > 0,72 2 0) define 
A 

D' ' {fi E C(R") 1 fi(5) 5 -71 12 l 2  +72}  ' {fi  E C(R") I $(z) 5 -71  I 5 l 2  + 7 2  
for some y E M }  

We equip these spaces with the topology of uniform 
convergence on compact subsets. Define A@* : 'D + 'D 
by 

hj'*(u,y)@(z) 
SUP$&  ̂ {fi(O + SUP,€F(<,U)(L(Z, 2 - r,  U>- 

I Z - r  1 2 )  - l i d  sCG(C)<a I s I 2  -sY)> 
for f i  E D. 

Theorem 1 
Then we have 

in 'D uniformZy on compact subsets of U x R x 'DT for 
each y E M .  
Proof: From (1) we have 

= log C@,"* (U,y).:q.) = 

=lOg(am) 2j' + L ( 2 , Z  -7- ,U)  + @ ( E )  + ;logX(E,u)+ 

@ 

;log SR" &(<,U) &(<) ew $($ I - ' 1' - 

$log$(t) - ;[$ I s 1' -sy])dsdr@ 

Under the assumptions made on the system, a 
straightforward application of the Varadhan-Laplace 

0 lemma (Appendix) yields the result. 

Remark: In particular, setting ufizs = e:@ in equa- 
tion (a),  and employing the result of theorem l ,  we 
obtain 
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3 Robust Control 
We now consider the deterministic system (corresp- 
onding to E + 0) defined by 

for k = 0,.  . . , K - 1. We assume that the system 
(4) satisfies the relevant assumptions of section 2. 
Namely, that F ,  G take on compact values with non- 
empty interior, and u k  E U ,  with U compact. We 
h s t  simplify the information state recursion (3) for 
this case. Here it is assumed that we have access to 
the function L, which is tied to the particular kind of 
robust control problem being considered. More will 
be said about this in the next subsection. Note that 
we have forced 50 = 0 here. The reason being that it 
simplifies the development. The general case can be 
dealt with in a similar manner [l]. 

We carry out the following change of variables in 
equation (3) 

P O b )  e h(2) . k-1 

Then equation (3) can be written as 

Pk+l(.) = suP<ERn{Pk(t) + SUP,€F(<,Uh) ( 
L(2,  z - T ,  U k )  - $12 - 7-12)- 

1 infs€G(<)b - Y k + d 2 )  

(5 )  
Using the convention that the supremum over an 
empty set is -CO, we can place a natural restriction 
on(. D e h e  

fib, Y, U )  {S E R" I 2 E m, U )  and Y E G( t ) )  

This just ensures that the values of are compati- 
ble with 2, U and y, given the dynamics (4). Then 
equation (5) can be written as 

Pk+1(2) suP<Efl(z,y*+~,Uk) (Pk((E) + SUPTEF(<,Uk) ( 
L(z,  z - r, U k )  - * 1 2 - r I"} 

(6) 
or by (compactly) writing H @ k ,  yk+l, u~)(z) for the 
right hand side of (6) as 

Pk+l  = H @ k , Y k + l , U k )  

Po = 6{0} 

yielding the information state recursion for the de- 
terministic system. Here, b ~ ( . )  : Rn + {-co,O} is 
defined as 6 ~ ( [ )  = 0 if [ E M ,  or else equal to -m 
i f t $ l M .  

Remark: Since, 20 = 0, we require po = 6{o}. This 
forces us to drop the requirement that p be contin- 
uous for the deterministic case. However, if zo were 



The result follows. 0 

It is clear that under P t ,  yf, and zf are independent. 
Furthermore, the existence of P t  is guaranteed by 
Kolmogorov's extension theorem. In a similar man- 
ner, we define the inverse transformation relating Pu 
to Pt as follows. 

2.2 Information State 
Consider the space Lm(Rn)  and its dual ,,*(En). 
We will denote the natural bilinear pairing between 
Lm(Rn)  and Lm*(Rn) by < ~ , q  > for T E Lm*(Rn), 

We define the information state process ailE E 
q E Lm(Rn). 

La* (R") by 

< u y 7 q  >= 
Et[d.;> exp(f E,"=, L ( Z M , U Z - l ) ) 2 , E  I Ykl 

for all test functions q E Lm(Rn), for IC = 1 , .  . . , K ,  
with U:>' = p E L1 (Rn). We introduce the bounded 
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=< Cfi'E*(U&l, yg).i-l, q > 
for any q E Lm(R"). 0 

Observe that for all U E U O , K - ~ ,  we have 

Et[< ugE, 1 >] 
K = Et [Et [exp( $KEz=l L(zf, wf ,W-I 1) -%% ~ Y K ] ]  

= Et[exp($ CZZ1 ~ 5 ( 3 $ , 7 4 , ~ - . 1 ) ) 2 & ]  

= P " ( p , u )  

Thus, the cost can be expressed as a function of a$' 
alone, and hence the name information state for ailE 
is justified. We can now obtain the solution to the 
risk-sensitive stochastic control problem via dynamic 
programming. This methodology is well known in the 
stochastic control literature [5] ,[4]. Define the value 
function for Q E L1(R") by 



lem. We also present necessary and sufficient condi- 
tions for the solvability of the deterministic problem. 
These conditions are derived independently of sec- 
tion 2. Thus, once the structure of the controller has 
been discovered by taking small noise limits to the 
risk-sensitive stochastic control problem, the actud 
deterministic results can be derived directly with less 
restrictive assumptions and easier mathematical ar- 
guments. 

2 Risk-Sensitive Stochastic 
Control 

We will consider a special case of the risk sensitive 
stochastic control problem. On a probability space 
(0, F ,  P") consider the stochastic control problem 

XI+l = <; f w i + i ,  E F(xz ,uk)  
Y i + l  = v i  + Vi+l ,  v i  G(G)  

on the finite time interval k = 0 , .  . . , K - 1. The 
process ye E R is measured, and is called the obser- 
vation process. x" E Rn represent the states. For 
convenience, we will write the dynamics as 

X 1 + 1  E F ( z i , u k )  f w ; + i  

'&+I  E G ( x i , U k )  +";+I 

A l .  

A2. 

A3. 

A4. 

A5. 

A6. 

Denote by Sk,k+j, the sequence {sk, s k + i , .  . . , s k + j } -  
Let CJ'k, y k  denote the complete filtrations generated 
by ( x E ~ , ~ ,  ~ 6 , ~ )  and Y:,~ respectively. We assume 

yg = 0 

{ w f }  is a Rn-valued i.i.d. noise sequence with 
density 

{vi} is a real-valued i.i.d. noise sequence with 
density 
+ & ( U )  = ( 2 7 r ~ ) - l / ~  exp(-& I v 1 2 ) ,  independent 

{(e} is a R"-valued random sequence with (i E 
F(z f ,  U k ) ,  having a uniform density 
x(% U k )  = (J tEF(s : ,"k)  for each k. Fur- 
thermore, for each k, <; is independent of wf 
and U:, 1 = k + 1, . . . , K .  Similarly, {vi} is a R- 
valued random sequence with 6 E G(xZ) hav- 
ing a uniform density 8(x;) = (JvEc(z:)  du)-l 
for each k. Furthermore, for each k, 6 is inde- 
pendent of (f ,  ~ f + ~ ,  for 1 = k,. . . , K - 1. 

The controls uk take values in U c Rm assumed 
compact and are J', measurable. 

F is a set-valued map from Rn x Rm to Rn, 
uniformly continuous in x ,  uniformly in U E U .  
G is a set-valued map from Rn to R, satisfying 
the same assumptions as F .  

+e(w) = ( 2 n ~ ) + ~ e x p ( - &  I w I 2 ). 

of {wf}. 

A7. Furthermore, F ,  G assume convex compact val- 
ues and have a non-empty interior for all x and 
U .  x, 8 are uniformly continuous in x ,  uniformly 
in U E U ,  and are bounded. 

A8. x: has density p ( x )  = ( 2 ~ ) - ~ / ~  exp(+lx12). 

We could let q$, and U; be generated by other (non- 
uniform) densities. However, the uniform density as- 
sumption allows simplification of the mathematical 
development. Note that assumption A7 places re- 
strictions on F and G. An example of F which satis- 
fies these assumptions is 

F ( x , u )  = A z  + BU + &(O) 

where, A, and B are matrices of appropriate dimen- 
sions, and &(O) is the closed ball of radius T ,  centered 
at 0. Note that t i , vi will in general depend on all the 
past values of w E ,  and U " ,  through the state x i ,  and 
control uk. At time k, let U ( k )  denote the set of con- 
trol functions U k  which satisfy A5, i.e. U ,  take values 
in U ,  and are a function of y&. For 1 3 0, we write 

the cost function for the risk-sensitive stochastic con- 
trol problem is defined for admissible U E U0,K- l  by 

P J ~ ~ ~ ( P , U )  = E"[exp(-- 1 A(X$,Wg,uk-l))]  

and the partially observed risk-sensitive stochastic 
control problem is to find U* E U O , K - ~  such that 

P E ( p ,  U * )  = inf . P E ( p ,  U )  

Uk,k+l = u(k) U u(k + 1) * .  * U U ( k  + I ) .  For /A > 0 ,  

K 

E k=1 

Z1EUO.K-1 

We further assume that 

A9. L E C(Rn x Rn x Rm)  is single-valued, non- 
negative, bounded and uniformly continuous. 

2.1 Change of Measure 
Using an idea from [4], suppose there exists a refer- 
ence measure Pt such that under Pi, {y$) is i.i.d. 
with density q!F, independent of { x i }  where x E  satis- 
fies 

Define 
x1+1 E F ( & U k )  + Wi+l 

A; = &=, ( 6 ( ~ ; - ~ )  1 @(U;  + E>dE/@(v(vf)) 
G ( R , )  

and define Pt by setting 
dPt 
dpu = 

i.e. by setting the Radon-Nikodym derivative, re- 
stricted to CJ'k to equal &. Note that in general Pt at 
k, may depend on the states X5,k-l (but not on xi), 
however we hide this to prevent notational clutter. 
We write Et, E" to denote expectations with respect 
to the measures Pt, P" respectively. Then 
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k = 0,. . . , K - 1; where ti;(p) achieves the mini- 
mum in (9), PO = 60, and let p be the corresponding 
information state trajectoy with pk E d m  M K - k ,  
k = 1,. . . , K .  Then U* solves the finite time output 
feedback robust control problem with the initial condi- 
tion xo = 0 .  

3.2 A Note on Feasible States 
For the remainder of the paper, we lift the restriction 
that xo = 0, and let it be arbitrary, but known. An 
interesting property of the information state is that it 
also acts as an indicator function for feasible states. 
Definition: For a given initial state 20, an out- 
put trajectory g l , k + l ,  and a control trajectory U O , ~ ,  a 
state %k+l is called feasible at time k + l  if there exists 
a state trajectory xo,k+l with xk+1 = Zk+l such that 
zj+1 E F(z j ,u j )  and yj+1 E G(xj )  for j = 0,. . . , k. 

Consider the following recursion 

x;; (xo)  = F ( G - Y ~ ~ + ~ )  n x;yxo), U k )  

x,"2"(xo) = ( 2 0 )  

for k = 0, .  . . , K - 1, where G-'(yk+l) = { x  E Rn I 
yk+l E G(x ) ) ,  and for a set M c R", we define 
F ( M ,  U )  = UzEM F(x ,u) .  Define the following lim- 
iter function ~ ( 9 )  : R+ + R- as 

0 i f x > O  
x else r ( x )  = 

where R+ denotes the extended real line and R- de- 
notes { x  E R+ I x < 0). 

Theorem 4 Suppose po = 6{zo j  then 

T ( P k ( X ) )  = Gx;+(zo)(4,vz E R" 

Remark: Thus, we see that the information state 
can be transformed by a simple limiting operation to 
the indicator function of the set of feasible states. 
This has implications on the computability of the 
problem, as suppose the system starts from rest (i.e. 
xo = 0). Then, clearly by lemma 3, the informa- 
tion state is always nonpositive. Hence, it is zero on 
feasible states, and -CO elsewhere. Thus, instead of 
computing the information state via (6), one could 
consider propagating the set of feaible states (the SO 
called problem of guaranteed estimation [7] ,[6]). 

Appendix 
Here, we state an extension of the Varadhan-Laplace 
lemma presented in [5]. Below p denotes a metric on 
C(R" x Rp) corresponding to uniform convergence 
on compact subsets. &(x)  denotes the open ball cen- 
tered at x of radius r ,  and Ga is a set-valued map, 
Ga : R" += Rp. 

Lemma 4 Let A be a compact space, FZE, 
Fa E C(Rn x Rp) and assume 

i. lim,,o SUP,~A p(F,E, Fa) = 0 

ii. The function Fa as uniformly continuous in each 
argument on each set Z?R(O) x Bh(0); R, R > 0 ,  
uniformly in a E A. 

iii. 371 > 0,  7 2  > 0 such that 

F,E(x,w),Fa(x,w) 5 -71 (I x l 2  + I w 1 2 )  +% 

Vx E R", Vw E R", Vu E A, VE > 0. 

iv. Ga is uniformly continuous with conuex com- 
pact values on each set f ? ~ ( 0 ) ,  uniformly in a E 
A. 

U. Int Ga(x)  # 4, Vx E R", Vu E A .  
Then 

lim sup JE log J J eF,(z,W)/Edwdx- 
E,OaEA R" @(z)  

sup sup F,(z,w)l = 0 
%ER" wEG"(z) 
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