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Abstract. We consider the problem of nonlinear filtering within the framework of deterministic
uncertain systems (i.e. control systems with disturbances). We investigate the relationship between
the two main approaches to the problems: the set-membership approach and the nonlinear Hoo
approach. We establish an interesting connection between the two basic constructs of these two
approaches: the information state and the information domain. This connection helps to establish a
clearer understanding for the problem and will play a fundamental role in nonlinear robust output
feedback control.

Key Words. nonlinear control, nonlinear filtering, nonlinear Ho,, set-membership, information

state.

INTRODUCTION

At the present time, it appears, that two ba-
sic approaches have emerged for the deterministic
treatment of uncertainty in the dynamics of con-
trolled processes. The first of these is the “set-
membership” or “bounding” approach based on
the techniques of set-valued calculus where the
uncertain items are taken to be unknown but
bounded with given bounds and the performance
range for the uncertain system is sought for in
the form of a set [1-4]. The second one is the
so-called H,, approach based on the calculation
of the minimal-norm disturbance-output map for
the investigated system, the error bound for the
system performance expressed through this norm
and a differential game formulation [5-6,13-15].
Although formally somewhat different, these two
approaches appear to show close connections, be-
ing figuratively “two sides of one coin”. We shall
demonstrate the specificities and the interconnec-
tions of these approaches through the treatment
of the nonlinear filtering problem which will thus
also serve as a “case study”. The more general
issue of applying the two approaches to the prob-
lem of output feedback control under uncertainty
will be the topic of a separate publication.. Some
related results can be found also in [12].

1. THE NONLINEAR FILTERING PROBLEM

Consider a system described by the nonlinear
ODE
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z = f(t,z) + c(t, z)v(t) (1.1)

v = g(tz) + w(t) (1.2)
where z € R™ is the state vector, y(t) the available
measurement, v(t) € RP, w(t) € RY, the unknown
“noises” or “disturbances” in the system and mea-
surement inputs, z(fg) = z° the unknown initial
state. The functions f(¢,z), c(t, z) are taken to be
such that they ensure existence and uniqueness of
solutions.

The unknown items ((-) = {z% v(t), w(t),to <
t < 7} may be assumed to be bounded by the
inequality

¥(r¢()) =
| vt w0 + 06 < (1)

where, particularly, the bounds may be of the
quadratic integral iype, namely, such that

#(z°) = (2° — a, Py(2° — @) (1.4)
¥(t, v(t), w(t)) = (1.5)
(v(®) — v" (2), M(8)(v(2) — v"(2)))?

(w(t) = w (), N(t)(w(t) - w"(2)))* < 4?

-+

where (p,q) (p,g € R*), stands for the scalar
product in the respective space R¥;a € R"
is a given vector; v™(t), w*(t) are given func-
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tions of respective dimensions, square-integrable
int € [to, 7); M(t), N() are positive definite, con-
tinuous, and Py > 0.

Another common type of restriction is given by
magnitude bounds, a particular case of which is
described by the inequalities for t € {to, 7]

Io(z°) = (z° = q, Py(z° —a)) < p? (1.6)
Ii(r,v()) =
esssup, (v(t) — v*(t), M (t)(v(t) — v*(2))
<p? (1)
L(r,w())=
esssup(w(t) — w*(t), N(t)(w(t) — w*(¢))
<u? (18)

In this case the functional is
\II(T)C()) = max{If)vIl:I?} (19)

The aim of the filtering problem could be de-
scribed as follows: .

(a) Determine an estimate z°(7) for the unknown
state z(7) on the basis of the available informa-
tion: the system parameters, the measurement
y(t), t € [to, 7], and the restrictions on the uncer-
tain items {(-) (if these are specified in advance).

(b) Calculate the error bounds for the estimate
z%(7) on the basis of the same information.

(c) Describe the evolution of the estimate z°(7))
and the error bound in T, preferably through a dy-
pamic recurrence-type relation, an ODE -“filter”,
for example, if possible.

2. THE SET-MEMBERSHIP (BOUNDING)
AND THE H., APPROACHES

Suppose that the constraints (1.3) with specified
i are given together with the available measure-
ment y = y*(t), t € [to,7]. The first, or “set-
membership” approach then requires that the so-
lution to the problem would be given through
the information domain X(7) of states z con-
sistent at instant t = 7 with the system equa-
tions, the measurement y*(t) and the constraints
on ((-). With X(t) calculated, one may be cer-
tain that for the unknown actual value z(r) we
have: z(r) € X(r), and may therefore find a cer-
tain point z*(r) € X(r) that would serve as the
required estimate for z(7). This point z* may be
particularly selected as the “Chebyshev center” of
X () which is the center of the smallest ball that
includes the set X (7). The inclusion z*(7) € X(7)
will be secured, as we shall see in the sequel, if
X(7) is convex. This may not be the case for
the general nonlinear problem, however, when the
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configuration of X (r) may be quite complicated
(in fact, X(r) may not even be a connected do-
main). The set X(7) gives an unimprovablie esti-
mate of the state vector z{r), provided the bound
on the uncertain items (the number ) is given in
advance.

On the other hand, in the second or Hye ap-
proach, the value y for the bound on the uncer-
tain items is not presumed fo be known, while the
value of the estimation error

e(r) = (z(r) —27(7),2(r) —2*(7))  (2.1)

is then estimated merely through the smallest
number 2 that ensures the inequality

e(r) < (L0 (2.2)

under restrictions (1.1), (1.2). In the linear case
the smallest number 42 is clearly the square of the
minimal norm of the disturbance-ouiput mapping
T e.g. (e(r) = T(¢(-))) with y = y*(t) given. It
obviously depends on the type of norm (the type
of functional ¥(¢(-)) selected.

Both approaches have been thoroughly developed
for the linear-quadratic case, while both have nat-
urally encountered difficulties in generalization of
the results to nonlinear systems [7,8], with promis-
ing results in [13-17] for the second approach. At
first glance, the techniques of the two approaches
may seem quite apart (as also are the communities
of the scientists involved). Nevertheless, the aim
of this paper is to emphasize the connections be-
tween the two approaches and to indicate, through
a generalized Hamiltonian technique, a general
framework that incorporates both of these, pro-
ducing either of them, depending on the “a priori”
information, as well as on the required accuracy
of the solutions.

3. THE INFORMATION DOMAIN AND THE
INFORMATION STATE

Assume system (1.1), (1.2) and restriction (1.3)
with preassigned g to be given and measurement
y*(t), t € [to, 7] to be specified.

Denote X(-) = {z(-,t0, 2% v())} to be the set (the
bundle) of trajectories z(t) = z(t,t0,2°,v()) of
system (1.1) that also satisfy (1.2) for y(t) = ¢ (1)
and some w = w(t), t € [t°, 7], whilst alltogether
the triplet {(-) satisfies the given restriction (1.3).

Definition 3.1. The cross section X(7) of the
tube X(-) at instant ¢ = 7 will be referred to as
the information domain at instantt = 7 gener-
ated by measurement y =y"(t),t € [to, 7] under
restriction (1.3), (see[1-4]).




The calculation of the domains X (7) and their
evolution in time is the topic of many papers
that range from theoretical schemes to numerical
techniques and develop into the theory of guaran-
leed stale estimation (see for example, references

[3,4,9]).

-,

Let us now introduce a scheme for describing the
information domains X (), presuming y*(-) to be
given and the restriction (1.3) to be of the integral
type. To start with, denote

() = {z% v(t);t € [to, 7]},
z(t, t0, 20, () = z(t,t0, 7))

and
S(rn() = (P —a, Pz —a)+  (3.1)
/‘ ((o(t) = v" (¢), ME)(u(t) — v (£))) +

(¥" () — 9(t, 2(t, 2(t, 20, n(-)) — w* (1)),
Ny (1) — 9(¢, 2(t, 2(t, L0, 7)) — w™ (2)))dt

Define

V(r,z) = jl!(l_f){ﬂﬂ 7()) [ (7, %0, 1(-)) = =} (3:2)

An obvious assertion is given by

Lemma 3.1. The information domain X(1) is
the level set

X(r)={z:V(r,z) < s’} (3.3)
for the information state V(r,z).

The respective measurement y*(t) = g(¢,n*(-)) +
w*(t) is the “worst-case” realization and the re-
spective value V*(7) = VO(r)|y(y=y+() = 0.

Definition 3.2 Given the measurements y*(t),
t € [to, 7] and function ®(r, n(-)) of (3.1), the re-
spective function V (7, z) will be referred to as the
information state of system (1.1), (1.2), relative
to measurement y*(-) and criterion ®.

Therefore the main conclusion here is that:

(i) The information domain X (1) is the level set
for the information state V(r,z) that corresponds
to the given number u.

(i) The information state depends both on y*(-)
and on the type of functional ®.

Let us now specify the function V(r, .1:)' for the

case of magnitude constrainis, presuming ¢ is de-
fined through relations (1.5) - (1.8).
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Denote

A(T: 77(')1 Q,B(‘), 7())

= {a(zo - a, Po(z0 —a))
+ / (BO((t) — v° (2), ME)(o(2) — v* (1))
Fr(B)(w(t) — w (&), N(E)(w(t) — w* (1))))dt)

Lemma 3.2. The function ®(7,n(-)) of (1.9),
may be ezpressed as

®(r,n(-)) = S“P{A(T,U('),a,ﬁ(')ﬁ(‘))
I e B()7()} (3-4)

under the condition

a+/7(b’(t)+7(t))dt =1, a>0;
B(t),¥(t) 2 0; t € [to, 7] (3.5)

The proof of an analogous result may be found in
reference [4].

The crucial difficulty here is the calculation of the
sets X (1), of the function V (7, z) and further on,
of the estimate z*(7) for the unknown state z(7).
The calculations ate relatively simple for an excep-
tional situation - the linear-quadratic case with

ft,z)+et,z)v = A@z+C@)v, (3.6)
yt) = Glt)z+ w(?) (3.7)

and ¥(r,¢(-)) given by (1.3).

4. THE HAMILTON-JACOBI TECHNIQUES
(QUADRATIC CRITERIA)

Let us introduce a Dynamic Programming-type
of equation treating V{7, z) as the value function
for the problem (3.2) with & given by (3.1), (1.3).
Presuming the forthcoming partial derivatives ex-
isting and continuous in the corresponding vari-
ables, the respective equation is
v v
oy = max{(5—, (F(t,2) + c(t, 2)v))
—(v(t) — v (), M()(v(t) — v * (1))
~((t) = g(t, ), N(D)(¥(t) — 9(t, 2)))} = 0,(4.1)

with boundary condition
V(to,z) = (z - a, P°(z — a)). (4.2)

The existence of a solution to (4.1), (4.2) requires
special considerations. It surely exists, however, if
the system (1.1), (1.2) is linear. Presuming (3.6),
(3.7), and after the elimination of v equation (4.1)



transforms into

Is)% av .
73—{' (—B—;,A.’t-{-—v )
LoV L av
+ Z(a—x’c(t’I)M (t)e(t, z) 6z)

- (¥() -Gz,
N{®)(y(1) - G(t)z)) = 0. (4.3)

Its solution with boundary condition (4.2) is a
quadratic form

Vir,z) = (z-2(7),
P(r)(z = () + (1) (49)

where P(t), z(t), k2(t) are the solutions to the fol-
lowing well-known equations [3,9]

i o= Atz +PTIGRN@BE)
. G(t)z) + C(t)v", z(te) =a,  (4.5)
P + PA@)+A(t)P

+ PC'()MIC@)P

— G')N{®)G@) =0, P(ty) = P°, (4.6)
B = (y) - G()z,

N@®)(y(t) - G(t)2)), k*(to) =0 (4.7)

An obvious consequence of the given reasoning is
the following assertion.

Lemma 4.1. Under restrictions (1.8), on the
uncertain inputs () = {n(),w()} the in-
formation domain X(r) for the linear system
(1.1),(1.2),(3.6),{3.7) is the level set (3.8} for
the information state V(r,z), being an ellipsoid
E(z(7), P(7)) given by the relation

X(r)= E(z(7), P(7)) = {z : (z — 2(7),
P(r)(z = 2(m))) < * = K*(1)} (4.8)
where z(1), P(1), k*(7) are defined through equa-
tions (4.5)-(4.7).

Formula (4.8) immediately indicates the worst-
case realization of the measurement y*(t) which
yields the “largest” set X(t) (with respect to in-
clusion). '

Lemma 4.2. The worst-case realization of the
measurement y*(t) is generated by the triplet
{z% = a, v(t) = v*(t), w(t) = w"(t)} which yields
E2(t)=0.

In the more general case the assertion is loose:

Lemma 4.3. Under existence and uniquen.ess as-
sumptions for the solution to the boundary-value
problem ({.1),(4.2) the level set

X(r)={z:V(r,2) < 4’}

is the information domain for the system (1.1)-
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(1.3).

In the absence of classical solutions one may apply
either one of the equivalent concepts of “viscosity”
or of “minmax” solutions ({10}).

5. THE HAMILTON-JACOBI TECHNIQUES
(NONQUADRATIC CRITERIA)

In this section we indicate a Dynamic Program-
ming - type of equation when the functional
®(7,n(-)) is given by relations (1.9), (3.4). A
direct derivation of the corresponding equation
under obvious nondifferentiability properties is a
separate topic which will not be discussed in this
paper. We will follow another scheme, however,
under the following assumption.

Assumption 5.1. The iniegral
A(r.n(),,B8(),7())
{z%,v(-)} for any

is convez in n(-) =

{z:z(r,n()) ==}

This assumption always holds for the linear case
(8.6), (3.7).

Under Assumption 5.1 the order of operations inf,
sup may be interchanged due to the minmaz the-
orem, we come to the relation

V(r,z)=

= sup min A(T’ 7}()7 C!,ﬁ('),‘)’('))‘ (51)
a,B,y n(-)

Denote x(-) = {a, B(-),7(-)}. The internal mini-
mization problem may be solved through equation
(4.3) with V/(r, z) substituted by V(r,z,x(-)) and
M(t), N(t) by B()M(t), ¥(t)N(t) respectively
with boundary condition

V(to, z,x(-)) = a(z — a, P°(z — a)). (5.2)
This leads to

Lemma 5.1. Under criteria_(1.9), (3.4) and As-
sumption 5.1 the information state is given by

V(r,z) = sup{V(r, z,x()) | x(), 3-8)} (5:3)

where V(7,z,x(")) is the solution to equation
(4-8), under (5.2), with M(t), N(t) substituted by
BM (), Y(R)N(2).

Passing to the linear case (3.6), (3.7), we observe

V(rz,x()) = (z = 2(mx()),
P(r,x())z = 2(r,x(M) + K (r.x()),  (5:4)

where
P = P(t,x()),z = =t,x() k = ktx()



satisfy equations similar to (4.5)-(4.7) with
M (), N(t) substituted by SM (1}, v(1)N(t), and

Py, = aPP, z(tg) = z°, k(to) = 0 (5.5)

o

Finally this develops Thto the assertion

Lemma 5.2. For the linear system (1.1), (1.2),
(3.6), (3.7) the information staie V' (7, z) relative
to measurement y(-) and nonguadratic criterion

(1.9),(5.4) is the upper bound

V(7 z) =sup{V(r,z,x(-)) | x(),(3.5)} (5.6)

of a parametrized family of quadratic forms
V{7, z,x(-)) of type (5.4) over the functional pa-
rameler x(-) = {a, B(-),¥()} restricted by rela-
tions (3.5).

As we have observed in the previous sections, the
information domain X(7) = E(z(7), P(7)) is de-
fined by V(¢,z) through inequality (3.3), given u.
Therefore (5.6) yields the following

Lemma 5.3. For the linear system (1.1), (1.2),
(3.6), (3.7) with criterion (1.9), (3.4) the infor-

mation set X(7) is the intersection of ellipsoids

X (r,x()) = E(z(m,x(")), (#* = B (1) P(7, x()))
namely,
X(r) = {nE((7, x()),
(B = (NP x(N) [ x(), 38} (5.7)
where
z(t) = 2(¢, x()) = 2(t,7(),
P(t) = P(t,x()), ¥ (1) = £*(t,x() = K*(t,7())-
The worst case measurement y(t) = y*(t) is gen-

erated by the triplet z° = a, v(t) = v*(t), w(t) =
w*(t) and yields k*(r) = 0.

6. THE ESTIMATES AND THE ERROR
BOUNDS

Consider the information domain X (r) to be spec-
ified. Under the assumptions of this paper and the
restriction (1.3) X (r) will be closed and bounded.
Let us seek an expression for the Chebyshev cen-
ter of X(-). Applying the conventional generalized
Lagrangian technique, we have ,

niinmzax{(z —z,z—-2) - A%, V(r,z)} (6.1)

V(r,z) <’

Under the assumptions made the solution to this
problem exists. Summarizing the results, we have
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Lemma 6.1. For the set-membership estimalion
problem the minmaz estimate z*(t) = z(r) (the
Chebyshev center of X (7)) satisfies the property

z*(r) €coX(r)

In the linear-conver case, with ®(r,7(-)) of type
(8.1),(1.8) or (8.4), (1.9), we have

z(7) € X(1)

and z* (1) = z,(7).

In the linear-quadratic case (3.1),(1.3)
z°(r) = z(7)

is the center of the ellipsoid E(r, P(r)) described
by the system (4.5)-(4.7) and does not depend on
the number i .

In order to find the estimate z%(r) for the Hy
estimation problem, we have to solve the following
problem:

Find the smallest number v7 that ensures

rmnncl(a)x{(z —z,z—2) =~V (r,z)} <0

under the condilions
z(r, () = z gt z(t,n(-) = y"(t);to <t ST

This, however, is equivalent to the problem of
finding the smallest number 42 = 42 that ensures

min max {(z — z,z — z) — v?V(r,2)} < 0(6.2)
It 1s not difficult to observe the following:

Lemma 6.2. In the linear-quadratic case (3.1},
(1.3) the Lagrange multiplier A, of Lemma 6.1
satisfies the equality

X =93, Vu
and the solution z°(7) to (6.2) satisfies
22(r) = z*(7), Vu,

In the linear-conver case (1.9),(3.4) with magni-
tude constraints we have

A2 =2, (u— )

and
z,(r) — 2%(7), (g — )

Remark 6.1. Among the conventional estimates
for the nonlinear filtering problem is the following
one, ([11,16,17]):

z*(7) = argmin{V(7,z) |z € R"}.




This selection is certainly justified for the linear-
quadratic problem as in this case one has

(1) = 2"(r) = 2°(r) = (1),

so that all the estimate types coincide. However,
as soon as we apply a nonquadratic functional
&(7,7(-)), all the previous estimates may turn to
be different (even for 2 linear system). This is all
the more true for the nonlinear case, since always
z*(r) € X(7), while even in simple nonlinear ex-
amples one may observe that z*(7) ¢ X (r).

One of the basic elements of the solution to the fil-
tering problem is the computation of error bounds
for the estimates. These are given in the form of
sets, once the restrictions on the uncertain items
¢(-) are specified in advance. Then the error set
is taken to be either

Q(r) = X(r) — z7(7)
or, more roughly,

Qu(1) = co(X (1) — 2* (7))

The set 2 will be the largest possible (with respect
to inclusion) if the realizations of the uncertain
items ((-) will generate the worst-case measure-
ment y*(1).

As for the H., approach, the estimation error
¢?(r) will depend upon the number v? in the in-
equality (2.2) (which depends in general on the
measurement y(¢) in (2.2)).

7. Conclusions

This paper presents an introductory discussion on
the similarities and differences in solving deter-
ministic problems of nonlinear filtering under un-
certainty in the system inputs through the two
conventional approaches: the set-membership ap-
proach and the so-called H, techniques. The ba-
sic ideas that lead to a unified approach for the
topic use the dual notions of the information state
and the information domain. These ideas may
also be readily applied to indicate the connections
between the solutions of problems of output feed-
back control with deterministic uncertainty under
the set-membership and H,, settings.
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