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ABSTRACT

In recent work, we have shown that morphological
openings and closings can be viewed as consistent MAP
estimators of morphologically smooth binary image sig-
nals immersed in i.i.d. union (clutter) noise, or suffer-
ing from i.i.d. random dropouts. We revisit this view-
point under a different set of assumptions, which allows
the explicit incorporation of geometric and morpholog-
ical constraints into the noise model, i.e., the noise may
now exhibit geometric structure; surprisingly, it turns
out that this affects neither the optimality nor the con-
sistency of these filters.

1. INTRODUCTION

In recent work [1, 2], we have obtained proofs of MAP
optimality and strong consistency of openings and clos-
ings, viewed as estimators of morphologically smooth
binary image signals in i.i.d. noise. These results
were made possible by casting the filtering problem
within a general framework of Uniformly Bounded Dis-
crete Random Set (or, Discrete Random Set (DRS), for
short) theory (3, 4].

A DRS X can be formally defined as a measur-
able mapping from some probability space to a mea-
surable space (£(B), L(Z(B))), where L(B) is a com-
plete lattice with a finite least upper bound (usually.
the power set of some finite B C Zz), and L(X(B)) is
a o-field over B(B) (usually, the power set of the power
set of B). A DRS X induces an associated probabil-
ity structure Px(-) on ¥(X(B)). DRS’s can be viewed
as finite-alphabet random variables, taking values in a
finite partially ordered set (poset). Thus, the basic dif-
ference with ordinary finite-alphabet random variables
is that the DRS alphabet naturally possesses only a
partial order relation, instead of a total order relation.
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The following Theorem summarizes some of our ear-
lier results [1, 2]. In what follows o, e denote mor-
phological opening, and closing, respectively, whereas
Ow (B), Cw (B) denote the set of root signals of open-
ing by W, (i.e., the collection of all images (subsets
of B) which are invariant under opening by W, i.e.,
spanned by unions of translates of W [6]), and the set
of root signals of closing by W, respectively.

Theorem 1 Assume we observe Y™ = (Y1, Y],
where Y; = X UN;, {Ni}‘ivil is an i.i.d. sequence of
noise DRS’s, which is independent of X, and each N;
is i.i.d. of intensity v € [0,1) (i.e., each point z € B is
included in N; with probability r, independently of all
other points). Let us further assume that X is uni-
formly distributed over a collection, ®(B) C X(B),
of all subsets K of B which are spanned by unions
of translates of a family of structural elements, Wi,
[=1.---,L. ie., those K C B which can be written as
K = U{‘zlfv{'l, K, € Ow‘,(B), { =1,--,L. Then
Saap(YMY = UE, (NM,Y;) o W) is the unique
MAP estimator of X on the basis of YM) vr € (0,1).
In addition, under the foregoing assumptions, and

vr € [0,1), Xprap(Y) — X, as.as M — oo,

i.e., this MAP estimator is strongly consistent.

The proof critically depends on the following assump-
tions: B is finite; and the noise process is i.i.d., both
within a given observation (pixel-wise), and across a
sequence of observations (sequence-wide). As a result,
the Theorem does not apply when the noise process is
“smooth™; e.g., one cannot accommodate a composite
noise process resulting by taking the union of trans-
lated replicas of some noise “primitives”. In effect, the
Theorem cannot be applied in the case of “colored”
noise. However, as it turns out, the pixel-wise i.i.d. as-
sumption, as well as the sequence-wide assumption of
identical distribution can both be removed, as long as
the sequence-wide independence assumption is main-



tained, and a uniformity condition (to be specified) is
imposed. This is the subject of this paper. The net
result is that we end up with a new set of optimality
conditions, which neither implies, nor is implied by the
previous set. The most interesting feature of this new
set of conditions is that it allows the explicit incorpo-
ration of geometric and morphological constraints into
the noise model, thus establishing optimality in a more
flexible and interesting environment.

2. BACKGROUND

The fundamental elements of Mathematical Morphol-
ogy have been developed by Matheron [5, 6], Serra
[7, 8], and their collaborators. Morphological filter-
ing is one of the most popular and successful branches
of this theory!. One good reason for the widespread
use of morphological filters is their excellent shape-
preservation (syntactic) properties. Important char-
acterizations (e.g., root signal structure, relations to
other filter classes) are well developed and understood
[10, 11, 12, 13]. Another aspect of filter behavior is
revealed through statistical analysis. We are mostly
interested in optimizing filter behavior with respect
to some statistical measure of goodness [1, 2, 3, 4].
Dougherty et al. [14, 15, 16, 17, 18, 19], Schonfeld et al.
(20, 21, 22], and Goutsias [23] have worked on several
related problems, using different measures of optimal-
ity and/or families of filters. We concentrate on MAP
optimality and strong consistency.

3. NEW RESULTS

We have the following results. Proofs can be found in
[24].

Theorem 2 (MAP Optimality) Assume we observe
YO = ¥y, Y], where Y; = X UN;, (N},
is an independent but not necessarily identically
distributed sequence of noise DRS’s, which is inde-
pendent of X, and each N; 1s uniformly distributed over
some arbitrary collection, U;{(B) C X(B), of sub-
sets of the observation lattice B. Let us further as-
sume that X is uniformly distributed over a collection,
®(B) C X(B), of all subsets K of B which are spanned
by unions of translates of a family of structural ele-
ments, Wy, l=1,---,L, i.e., those K C B which can be
written as K = UlelKl, K, € Ow/(B), l=1,---,L.
Then Xarap(YOD) = U, ((NM,Y3) o W)) is a MAP
estimator of X on the basis of Y (M),

1See [9] for a recent survey of the status of morphological
filtering
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What does a uniform distribution model? We may
think of it as modeling an “unbiased” or “fair” adver-
sary. If the noise is “biased”, then, depending on the
particular type of probabilistic noise structure, and as-
suming we can uncover this structure, we might well be
able to construct better estimators, or, we might not
even be able to guarantee consistency.

Theorem 3 (Strong Consistency) In addition, if § €
\gi(B), Yi > 1, then, under the foregoing assumptions,
Xprap(YM)) — X as. as M — o, i.e., this MAP
estimator is strongly consistent.

We now present two more theorems. They can both be
established by appealing to duality (note that closing
is the dual of opening with respect to lattice comple-
mentation).

Theorem 4 (MAP Optimality Dual) Assume we 0b-
serve Y (M) Y, -, Yum], where Y, XN,
{Ni}f\il is an independent but not necessarily iden-
tically distributed sequence of noise DRS’s, which is
independent of X, and each N; is uniformly distributed
over some arbitrary collection, ¥,(B) C X(B), of
subsets of the observation lattice B. Let us further as-
sume that X is uniformly distributed over a collection,
®(B) C X(B), of all subsets K of B which can be writ-
ten as K = ﬂ[L:IK[, K, € CWI(B), [ = 1,---,L.
Then Xprap(YOD) = N2, (UM, Y)) o W)) is a MAP
estimator of X on the basis of Y.

Theorem 5 (Strong Consistency Dual) In addition, if
B e U;(B), Vi>1, then, under the foregoing assump-
tions }Z'MAP(Y(M)) — X, a.5s. as M — oo, te., this
MAP estimator is strongly consistent.

4. DISCUSSION

A little reflection on the above resuits is in order. The
discussion will focus on Theorems 2,3, but the remarks
are equally applicable to the case of Theorems 4,5.

The first remark is that proof of both theorems cru-
cially depends on B being finite. We view this as fur-
ther evidence of the utility of this restriction. The sec-
ond remark is that the results are fairly general: apart
from the mild condition § € ¥,(B), ¥ ¢ > 1, which
is needed for consistency, we have imposed absolutely
no other restrictions on the sequence of range spaces
{@,(B)} of the noise DRS’s {N;}.

In general, we cannot derive analytical formulas
for some standard measures of estimator performance,
such as bias and variance, without specifying the se-
quence of range spaces {¥;(B)} of the noise DRS’s
{N;}; this is obvious, since these measures strongly de-
pend on the structure of this sequence. Based on our



experience in (2], our feeling"is that these derivations
are going to be nasty, except in some limited cases.
However, it should be noted that the MAP principle
leads to optimal estimators in a particular Bayesian
sense: it minimizes the total probability of error, P
[25]. In other words, even though the MAP estimator
may not be unbiased and/or minimize the error vari-
ance (as a MMSE estimator typically does} it is optimal
in the sense that for each and every M, it minimizes
the total probability of error. This is just an alternative
concept of optimality.

Let us now consider two special cases.

e U;(B) = X(B), Vi>1: The noise DRS’s are
identically distributed, each noise DRS is uniformly dis-
tributed over the power set of B. This is in fact the
only nontrivial noise distribution compatible both with
our earlier results in [2], and with our results herein.
This corresponds to the case of an i.i.d. sequence of
iid. DRS’s, each being a Bernoulli lattice process of
constant intensity A = é In addition to MAP optimal-
ity and strong consistency, compatibility with {2] buys
uniqueness of the functional form of the MAP estima-
tor, and a handle on the bias.

e U,(B) =¥(B), Vi>1, where ¥(B) C Y(B), is
the collection of all subsets i of B which are spanned
by unions of translates of a family of structural el-

ements, Vi, | = 1,---,A ie. those K C B which
can be written as K = UL K, K, € Ovw(B), | =
1,---A. The noise is now a system of overlapping par-

ticles of several different types, i.e., constrained to be
smooth with respect to a union of openings by an ap-
propriately chosen family of structural elements. Noise
particles overlap with signal particles. Regardless of
the degree of overlap and the particular types of sig-
nal and noise particles, we can claim optimality and
strong consistency’. However, small sample behavior
will be governed by the interplay between the two fam-
ilies of structural elements which span the signal and
noise DRS’s ({Win},{Vi}, respectively). For example,
if V1] < |[Wya], ¥m = 1,--- L then application of the
M = 1 MAP filter will eliminate all isolated instances
of V; noise patterns. This may well be the case in ap-
plications, where the signal is usually associated with
the more prominent image structures.

5. CONCLUSIONS

We have revisited the problem of estimating realiza-
tions of random sets immersed in random clutter, or
suffering from random dropouts, under a new, and, in a
sense. more appealing set of assumptions, which allows

2(Observe that the consistency condition is satisfied, since @ o
V=20 VV.
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the explicit incorporation of geometric and morpholog-
ical constraints into the noise model, i.e., the noise may
now exhibit geometric structure; Surprisingly, it turns
out that this affects neither the optimality nor the con-
sistency of these filters.
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