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Abstract

The time-recursive computation has been proved as a partic-
ularly useful tool in real-time data compression and in trans-
form domain adaptive filtering, with applications in the ar-
eas of audio, radar, sonar and video. Unlike the FFT based
ones, the time-recursive architectures require only local com-
munication. Also, they are modular and regular, thus they
are very appropriate for VLSI implementation and they al-
low high degree of parallelism. In this paper, we propose an
architectural framework for parallel time-recursive computa-
tion. We consider a class of linear operators that consists of
the discrete time, time invariant, compactly supported, but
otherwise arbitrary kernel functions. We define a shift prop-
erty of the linear operators and reveal its relation with the
time-recursive implementation. We demonstrate the poten-
tial of the proposed framework by designing a time-recursive
architecture for the Discrete Wavelet Transform.

1 INTRODUCTION

In many signal processing applications the key compu-
tation consists of a mapping operator [ho h1 --- hn_1] :
z(-) — X(-), which operates on the semi-infinite sequence
of scalar data z(-) and produces the sequence X(-) as fol-
lows:

N-1
X(t)=2hnz(t+n—N+1), t=0,1,---.

n=0

(1)

A time-recursive implementation of a mapping opera-
tor [hn hy -+ hn-—1]is the one that is based on an update
computation of the type

X(t+1) =U(X(),z(t+1)).

For example, if we have [h, = 1,2 = 0,1,---, N — 1], then
X (t) will be the sum of the last N values in the input stream.
The recursive algorithmic implementation of this operator
will be simply the computation

Xt+1)=X({t)+z(t+1)—z(t—N+1).

The time-recursive computation has been proved as a
particularly useful tool in real-time data compression [1, 2, 3]
and in transform domain adaptive filtering [4, 5, 6], with

applications in the areas of audio, radar, sonar and video.
There is a common infrastructure among the mapping op-
erators that are involved in these diverse applications. The
unifying feature is a shift property we discuss in the follow-
ing Section. We also show how this property dictates the
time-recursive architectural design. In Section 3, we de-
sign a time-recursive architecture for the Discrete Wavelet
Transform (DWT). We conclude with Section 4.

2 ARCHITECTURAL FRAMEWORK

We can specify a mapping operator [ho by -+ hn_1]
with a function f(-), for which the values at the points
0,1,---,N — 1 are the prescribed coefficients: h,, =
f(n), n =0,1,---,N — 1. In the sequel. we will use the
term kernel function or simply kernel for this function f(-).
Furthermore, we will call kernel group a vector of kernel
functions

f(:) = {fol-) fu(-) --- a1

Shift Property: A kernel group f(-) satisfies the shift
property (SP), if it satisfies the (matrir) difference equation

f(r—1)=Rf(n), n=12---.N, (2)
with specified final condition f(N), where R is a constant
maltriz of size M x M.

Lemma 1 A recursive implementation of a kernel group
f(-) is feasible if this kernel group salisfies the shift prop-
erty.

Proof: (2) gives:

M-}

fotn=1= 3 reafut

4=0

forn=12- N p=0.1,- M -1, where rpq,p.¢ =

0,1,---,M — 1 are the elements of the matrix R. Let
N-1
Xp(t) = Z foln)x(t+n—N+1), (3)
n=0

forp=0,1,..-, M — 1. Suppose this is available at the time
instant t+1. For the quantities \p(14+1). p=0,1.--- M —1
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we have:

Xp(t+1) =N st n+1 = N +1)fp(n) =
Z;__‘z(t+n—N+l)fp(n—l) =
En:] z(t+n—- N+ I)Z::: Tpafa(n) =

Taeo T4 (Laci 2t + 0= N +1)fo(n))
and therefore we obtain:

Xp(t+1) =3 005 {rpq @

[(Xo(t) = z(t — N +1)f4(0) + z(t + 1) fo(N)]},
p=0,1,---, M —1.If we assume knowledge of the boundary
values {f4(0), fo(N), ¢=10,1,---, M — 1}, (4) specifies the
algorithm that performs the update computation we were
after. Furthermore, note that if R is nonsingular, knowledge
of £(0) yields f(N). o

Corollary 1 A kernel group f(-) that satisfies the shift
property can be implemented recursively as follows:

1. Compute the matriz R by evaluatingf(n — 1) and us-
ing (2).

2. Evaluate f(n) at the pointsn =0 andn = N.
3. At each time instant t evaluate (4).

Note that the first two steps of the above procedure belong
in the initialization phase (off-line computation).

The issue of specifying a family of kernel groups that
satisfy the shift property is addressed by lemma 2:

Lemma 2 The shift property (SP) is satisfied by:

1. The singleton kernel group [cb"], where b and c are
non-zero free parameters.

- T
2. The kernel group [coob" + co1b™™, c10d" +cub'"] ,
where b is a non-zero parameter and the coefficients
are free parameters, such that coocyr — corcio # 0.

T .
8. The kernel group [co, an,---, CQ‘nQ] , where Q i3 an
arbitrary positive integer and the coefficients are non-
zero parameters.

4. The union of two kernel groups that satisfy SP.

5. The cartesian product of two kernel groups that satisfy
SP.

The proof of this lemma can be found in [7]. The kernel
functions of the Short Term Fourier Transform, the Discrete
Cosine Transform and the Modulated Lapped Transform [8]
belong in the class of kernels specified by lemma 2. Efficient
time-recursive architectures for these transforms have been
designed in [9], in a systematic way. On table 1, we provide
the relevant cost metrics. In the following Section, we ad-
dress the problem of the time-recursive architecture design
for the Discrete Wavelet Transform (DWT).

3 TIME-RECURSIVE ARCHITECTURE FOR
THE DWT

We consider the implementation of a pair of finite im-
pulse response filters (FIR),

H=[hn-1 hnv—2 -+ ho]

and

G = [gN-1 gN-2 - go,
that are used in the implementation of the DWT, in a time-
recursive way. Implementing the filters H and G is equiva-
lent to implementing the pair of mapping operators

ho hl
go 0N

v (5)
gN-—i

In order to proceed with the architecture design we need to
determine the kernel group associated to the pair of mapping
operators (5).

Lemma 3 The size of the smallest kernel group that can
be used to implement the pair of mapping operators (5) in
a lime-recursive way is equal to the minimal order of the
partial realization of the 1-input 2-output LTI system with
the N first Markov parameters being equal to the coefficients
of the specified operator *.

Proof: Given the pair of mapping operators (5) we can have
the following coefficient expansion:

[hn gn]" =cA™b. 2 =0.1...-,N -1, (6)
where the sizes of A,b and c are M x M, M x 1 and 2 x Af
respectively [10, 11]. Let
f(n) =A"b (7)
be a kernel group of size M. Since f(n —1) = A" 'b =
A~'f(n), this kernel group satisfies the shift property with
R=A"" and f(0)=h. (8)
From (6) and (7) we get a linear decomposition of the map-
ping operator coefficients [hn gn.]T = cf(n). Therefore, the
time recursive implementation of the mapping operator can
be based on the the kernel group f(-). In our construction,
the size of the kernel group M is equal to the order of the
realization {A,b,c}. Thus. minimizing the number of the
decomposition kernels is equivalent to minimizing the order
of the the partial realization of the LTI system, for which
the first N Markov parameters are equal to the coefficients
of our operator. O
We can proceed now with the architecture design as fol-
lows. We specify the partial realization {A. b, c} of minimal
order M for the linear system, so that
[hn ga]" = cA™D.

w=0,1.---.N -1 (9)

IFor a tutorial text on the linear time invariant (LTI) systems, the
partial order realization and the Markov parameters of an LTI system
one may refer to [10].
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{10, 11]. We bring the triplet {A,b,c} in the modal canon-
ical form [10]. Since H and G specify a lossless system the
magnitude of all the eigenvalues of the system matrix A is
equal to 1 [12]. For the sake of concreteness, suppose that
the order of the system is M = 3. The format of the matrix
A will be as follows:

cosa sina 0
A=| —sina cosa 0 |,
0 0 B

where o takes values in the interval [0,27) and B equals
either 1 or —1. The M x 1 vector b and the 2 x M matrix
¢ do not have any particular structure.

By substituting the above expression of A in (9) and
expanding the matrix notation we obtain

[hn yn]T
cosan sinan 0 bo
Coo Co1 Co2 .
[ c c c } —sinan cosan 0 b1
10 €t €12 0 0 gn by
and consequently
hn | _ | coobo + corbs cos ant
gn c1obo + c11b1 (10)
—co1bo + coods sinan + co2b2 gn
c11bo + ci0b1 c12b2 ’

The kernel groups we need to implement are
foo(n) | _ | cosan
sin an

Jor(n) |
fi(n) = fio(n) = 8™
For the kernel group fo(-) we have fo(n — 1) = Rfo(n) with

fo(n) = [

and

R= [ cosa sino ]
—sina  cosa |’
We also have
Joo(0) | _ | 1 foo(N) | _ | cosaN
fau(0) } T {0 | for(N) | 7 | sinaN |~

The resulted architecture implies module M, in figure 1.
On the other hand, for the singleton kernel group fi(-) we
have fi(n — 1) = Rfi(n) with R = 5 and also fi0(0) =
1, fio(N) = BY. The associated architecture is demon-
strated by module M; in figure 1. No multipliers are needed
for the implementation of fi(-), since all the parameters in-
volved have unit magnitude. The architectural implemen-
tation of the given pair of mapping operators for the case
where M = 3 is shown in figure 1.

For the general case of a system of an arbitrary order
M we need to implement M kernel functions. Among these
functions no more than two are of the form of fi(-) seen
above (since only two distinct such functions exist with
B =1and § = —1) and they are implemented by mod-
ule M;. The rest of the kernel functions will group into

pairs of cosine-sine functions specified by the parameter a,
as dictated by fo(-) in the above example, and they can be
implemented by module Af.

The implementation of module My in figure 1 requires 2
multipliers, 3 adders and one CORDIC processor that will
evaluate the rotation involved. For the implementation of
module M; we need 2 adders. We implement the desired
pair of mapping operators as two weighted sums of the out-
puts of the above described parts. If the size of the associ-
ated kernel group is M the cost of this interconnection is 2M
multipliers and 2(M — 1) adders. The overall cost of the de-
sign is not higher from 3M multipliers. |73//2] adders and
M /2 CORDIC processors.

Let us consider now the implementation of the pair of
wavelet filters H and G, whose coefficients are given on ta-
ble 2 [13). The lengths of the filters H and G are 9 and 7
respectively. The size of the kernel group we have to imple-
ment (that is the order of the associated linear system) is
M = 6. The architecture involves 2 copies of module Ay
and 2 copies of module A;. The values of the parameters
a and f3, as well as the output weights are given on table 2.
The resulted architecture is shown on figure 2.

For the inverse Discrete Wavelet Transform (IDWT) we
have to implement the mirror filters H and G of G and
H respectively [13]. The architectural implementation is
obtained if we simply replace the parameter a with # — n
in the Mo modules and the parameter 3 with —# in the A1,
modules in figure 2. The size of the kernel group is M =6
and the implementation cost is 15 multipliers, 20 adders and
2 CORDIC processors.

4 CONCLUSION

The shift property dictates the common infrastructure
of the time-recursive computation in a variety of applica-
tions. The time-recursive approach yields architectural im-
plementations that are modular, regular and require local
communication, thus they are very appropriate for VLSI
implementation. The time-recursive implementation of the
DWT is discussed in detail. The same design procedure
can be applied for implementing an arbitrary lossless sys-
tem [12], thus it establishes the generic nature of the time-
recursive architectural framework. The implementation cost
depends on the eigenvalue decomposition of this system [9].
In terms of cost efficiency, representative examples among
the time-recursive architectures are the STFT. the DCT and
the MLT [9].
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Figure 2: Time-recursive architecture for the DWT filters
Table 1: Operator counts for time-recursive architectures of Specified in table 2.
some N-point block transforms.
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