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Abstract mal control problem for the system
. Inthis paper we carry out a formal analysis of an out- (1.1)
E put feedback risk-sensitive stochastic control prob- dje = h(zf)dt + /e diy
= lem. Using large deviation limits, this problem is re-
" lated to a deterministic output feedback differential is to minimize the functional
- game. Both problems are solved using appropriate r
" information states. The use of an information state U
for the game problem is new, and is the principal Jhe(u) = E [exp z (/ L(z5,us)ds + ‘ﬁ(w%))]
contribution of our work. Our results have impor- 0
tant implications for the nonlinear robust stabiliza- _ (1-2)
tion problem. over the class Uy, of control policies which are non-

anticipating functionals of the observation process y.
In (1.1), @ and ¥ are standard independent Wiener

processes, and b € C}H(R™ x R™,R"), h € C}(R"),
LeClR"xR™),de C;(R"), with L >0, ® > 0.
1. Introduction In this paper we explain how this problem can be

solved using an information state process, and we re-
late it to a deterministic output feedback dynamical

In a recent paper [9], the authors analyzed the out- game using large deviations type limits. The game is
put feedback risk-sensitive stochastic control prob- defined for the system

lem for discrete-time nonlinear systems and related

it to a deterministic output feedback dynamic game. = bz, us) + we,

In particular, it was shown how the use of an ap- (1.3)

propriate information state can be used to solve the
game problem. While the use of information states
in stochastic control theory is standard practice [13],
we remark that the information state for the risk-
sensitive problem is not the familiar (unnormalized)
conditional density, and our use of an informations
state in the context of differential games appears to
be new. An important application of these results is
to the output feedback robust control problem {12].

¥ = h(ze) + o,
where w and v are unknown square integrable distur-

bances on [0,T], and the problem is to minimize the
cost

T
]#(u) = S“p(w,v)eL,([o,T],R"H){fo L(:Et,’lu)

The purpose of this paper is to show at least formally — 1 (|2 2\ dt + &(z }

that the same results can be obtained in the mathe- 2p (I o o el ) + &(er)

matically technical continuous-time setting. . . (1.4)
over the class Up,r of control policies which are non-

The output feedback risk-sensitive stochastic opti- anticipating functionals of the observation y.
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An important consequence of our analysis is the so-
lution of the deterministic output feedback dynamic
game in terms of an information state. We believe
these results are new. The application of our results
to the output feedback robust control problem will
appear elsewhere.

The problems and solutions in this paper are dis-
cussed purely in heuristic terms. A detailed math-
ematical treatment appears to be quite difficult, as
is the case for continuous-time partially observed
stochastic control [5], [7]. This paper is also quite
brief; a more complete paper will appear elsewhere.
For rigorous results, we refer the reader to the paper
[9], where the discrete-time case is considered.

2. Risk-Sensitive Stochastic Control

The stochastic system (1.1) is assumed defined on
a probability space (2, F,P%), and we write G, =
0(zs5,§5;0 <5 < t) and Yy = 0(§,;0 < s < t). There
is an equivalent probability measure Pt under which
¥ is a standard Wiener process independent of the

state process [4]. For u € Uy 1 we have

aP® _
E'Fg_lgz -

exp (=1 [ fy In(z2)P? ds - f; (z2) dgz)])

Write Z{ for the right hand side of this expression.

Following an idea of [2] for linear systems, we seek
to express J#¢(u) in terms of a new “state”process
and then solve the resulting optimal stochastic con-
trol problem with complete “state”information. To
this end, we define an information state o/**(z) in

L, (Rn) by
(00" m) =

Et [n(mf)Zf exp (% fot L(z¢,u,) ds) Iyt] )
(2.5)

for all test functions 7, where

= [ o).

The evolution of the information state process is gov-
erned by the SPDE

dof"® = (A¥* 4 EL%) gl dt 4 Lhot** dge,

oy p in Li(R"™),

(2.6)
where A¢ = £A¢ +b*- D¢, L* = L(-,u), and b* =
b(-,u).

Using the information state process, one obtains the
representation

Jhe(u) = B (o, e?@)] . (2.7)
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Remark 2.1 We note that there is an adjoint pro-
cess v{*® such that (o}"%, v/} is independent of t,

and formally satisfies a backward SPDE.

Thanks to the representation 2.7), the problem now
is to minimize the RHS of (2.7) with dynamics (2.6)
which are completely observable. We use dynamic
programming to solve this problem. The value func-
tion is defined by

SHe(o,t) =

inf Bl [(oh, e¥%)].  (29)

uely, T

The Hamilton-Jacobi-Bellman (HJB) equation for
St is (c.f. [L)):

e c
gSh® 4 = D2S#(ho, ho)
+infy,ev {DS"'5 . (A“‘U + gL“J)} =0
in L;(R™) x [0, 77,

§#¢(a,T) = (o, e€®) in L;(R™).
(2.9)
A verification theorem for this problem would say
that if there exists a sufficiently smooth solution S*¢
to (2.9) and if u* € Uy r is a policy such that up =

4 (0"°), where @} (o) achieves the minimum in (2.9),
then u* is optimal.

Remark 2.2 Note that @}(0) is an information state
feedback policy.

3. Small Noise Limit

The deterministic differential game is related to the
risk-sensitive stochastic control problem via large de-
viation type small noise limits. For the full state feed-
back case, this connection was established in [10], {6}
For linear systems, the relationship is more direct [8 ,
[16]. In the nonlinear output feedback case, we need
to evaluate two limits; one for the information state,
and one for the value function.

As in [11], one can show that

lim < logoi"®(z) =

lim ~ (), (3.10)

provided §f — Ot Ys ds, and p}’ satisfies the first order

nonlinear PDE

B =supyer. [-DpH(b% 4 w) - ahol] + L

_-1/2 [%lh‘l2 - h'yi] )

(3.11)



The corresponding limit result for the value function
is

lim < log S¥¢(ef?,t) = W¥(p,t),

tim ~ (3.12)

where W* satisfies the Hamilton-Jacobi-Isaacs (HJI)
equation

%“ +infuer SUP (R, {DW#.

(SupweR" [—Dp“(b" +w) — %‘-}wlz] + L¢
L [3AP - m]) - &P} = 0,

WH(p,T) = (p,‘I’).
(3.13)
Here, we have used the pairing

Il

(p, 9) sup_.Rr~ {P(z) +q(z)}

. By, B
= lim.p ﬁlog(e-”, e<9).

Equations (3.11) and (3.13) are obtained by taking
logarithmic transformations, writing down the appro-
priate PDE, and formally sending ¢ — 0. In addition,
we have expressed (3.13) in a way which uses the lin-
earity of the operator DW#. The information state
limit can be made precise using the robust version of
(2.6) and standard viscosity solution methods [11].
The value function limit requires an analogous frame-
work. These issues will be dealt with in more detail
elsewhere.

Remark 3.3 There is an “adjoint”quantity g;' such
that the quantity (p!, gi’) is independent of ¢, and
satisfies a backward first order nonlinear PDE.

4. Output Feedback Differential Game

In this section we interpret the HJI equation (3.13)
as a dynamic programming equation for the determin-
istic output feedback differential game defined in §1,
and p!' as an information state with dynamics (3.11).
In this way the game problem can be solved.

Indeed, the cost function J#(u) can be represented
in terms of the information state p* (with o = 0):

T
sup {(pﬁ, ) - ﬁ/ s |? dS}-
yeLy (o, T),R) 0

(4.14)
This can be seen with the aid of the following repre-

JH) =

3359

sentation of the information state:
t
pé‘(:z:) = Supfec([O,T],R") {a(ﬁﬂ) + fo L(fg,u,)
1 (31 = b(&, u)P + FIR(E)P — h(Ed)vs) ds

&=z}
(4.15)

The problem now is to minimize the RHS of (4.14)
with dynamics (3.11) which are completely observ-
able. Using dynamic programming, the value func-
tion is given by

WH(p,t) = infueu, s SUPy e, ((t, 7, R) {(r7, ®)

T
"'21;7 fz |y3|2 ds : Pé‘ = P} )
(4.16)
and formally satisfies the HJI equation (3.13).

The verification theorem then says that if there ex-
ists a sufficiently smooth solution W# to the HJI
equation (3.13) and if u* € Up,p is a policy such that
u} = u}(p}), where @;(p) achieves the minimum in
(3.13), then u* is optimal.

Remark 4.4 As was the case for the output feed-
back risk-sensitive stochastic control problem, %} (p)
is an information state feedback policy for the deter-
ministic output feedback differential game. Thus the
information state concept provides the appropriate
framework for solving such differential games.

Finally, we provide a condition under which a cer-
tainty equivalence principle holds (c.f. [16], [17],
(9])-

Consider the solution f/(z) of the HJI equation
%tﬁ“+ inf,, sup,, {Df“ - (B% + w) = o |wl? + L“}
= 0 in R™ x [0,T),
fr = & inR™

(4.17)
f* is the value function associated with a state feed-
back differential game. Note that in (4.17), the Isaacs
condition holds. Let @}(z) denote a control value

which achieves the minimum in (4.17). This defines
an optimal policy for the corresponding game.

The minimum stress estimate T; of x; is defined by

z, € argmax{p;(z)+ fi'()},

(4.18)
EER"

the RHS being a set valued map.



Assume that the following condition holds:

inf, sup, {DW-

(supw [-—-Dp“(b“ +w) — ﬁ[w(z] + L

~ % BIAP - h]) - P} =

DW - (infusup,, [~Dp(6* +w) - A ful® + 1+]).

(4.19)
Then the value function has the explicit form

W¥(p,t) = (p, ff)

and the certainty equivalence policy u* € Uy  defined
by

(4.20)

uy = U; (&) (4.21)
is an optimal policy for the deterministic output feed-
back differential game. This follows from representa-
tion of the HJI (3.13) using the condition (4.19) and
the verification theorem.

Remark 4.5 The equality (4.19) is perhaps an Isaacs
condition for the deterministic output feedback differ-
ential game. In general, if (4.19) fails, we expect that
WH(p,t) > (p, f{'), and consequently the certainty
equivalence policy will be suboptimal.
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