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Abstract

The analysis of the discrete multiscale edge rep-
resentation is considered. A general signal de-
scription, called an inherently bounded Adap-
tive Quasi Linear Representation (AQLR), mo-
tivated by two important examples: the wavelet
maxima representation and the wavelet zero-
crossings representation, is introduced. This pa-
per addresses the questions of uniqueness, sta-
bility, and reconstruction. It is shown, that
the dyadic wavelet maxima (zero-crossings) rep-
resentation is, in general, non unique. Never-
theless, these representations are always stable.
A reconstruction algorithm, based on the mini-
mization of an appropriate cost function, is pro-
posed. The convergence of the algorithm is guar-
anteed for all inherently bounded AQLR. In the
case, of the wavelet transform, this method yields
an efficient, parallel algorithm, especially promis-
ing in an analog-hardware implementation.

1. Introduction

Traditionally, multiscale edges are determined
either as extrema of Gaussian-filtered signals [10]
or as zero-crossings of signals convolved with the
Laplacian of a Gaussian (see e.g. [5] for a com-
prehensive review ). S. Mallat in a series of
papers [6,7,8] introduced zero-crossings and ex-
trema of the wavelet transform as a multiscale
edge representation. Two important advantages
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of this method are low algorithmic complexity
and flexibility in choosing the basic filter. More-
over, [6] and [7] propose reconstruction proce-
dures and show accurate numerical reconstruc-
tion results from zero-crossings and maxima rep-
resentations. From the theoretical point of view,
there are still important open problems, e.g. sta-
bility, uniqueness, and structure of a reconstruc-
tion set (a family of signals having the same rep-
resentation).

Our objective is to analyze these theoretical
questions using a model of an actual implemen-
tation. The main assumption is that the data are
discrete and finite. Since reconstruction sets of
both maxima and zero-crossings representations
have a similar structure, a general form called the
Adaptive Quasi Linear Representation (AQLR)
is introduced. This paper uses the idea of the
AQLR to investigate rigorously three fundamen-
tal questions: uniqueness, stability, and recon-
struction,

We refer to {3,4] for proofs and details.

2. The Multiscale Maxima Representa-
tion

Consider £, a linear space of real, finite se-
quences. Let X and Y denote operators on £
which provide the sets of local maxima and min-
ima, respectively, of a sequence f € £. In this
work, in order to avoid boundary problems, an
N-periodic extension of finite sequences is as-
sumed.

Let Wy, Wy, ..., W, Ss be linear operators on
L. The sets XW;f, YW,f are local maxima



and minima points of the sequence W;f. The
values of W; f at extreme points are denoted by
{W; f(k)}kexw; sjuyw, s The multiscale local ex-
trema representation, R,, f is defined as:

{{X W;f,YW;f, {ij(k)}keXijUYij};.]:l ,SJf} :

Following [7] R, f, will be called the max-
ima representation. In the particular case, when
Wi, Ws,...,W;,Ss correspond to the wavelet
transform, R, f will be called the wavelet max-
ima representation. Generally speaking, R,, is a
nonlinear operator. Qur approach is to separate
linear and non-linear components. This observa-
tion is the motivation to consider R,,f as con-
sisting of two parts: the sampling information
and the maxima information. The sampling in-
formation is the sequence Sy f and the values of
W; [ at the points XW; fUY W, f (j=1,2,...,]).
The maxima information consists of the sets
XW;f, YW, f and the fact that they contain lo-
cal maxima and minima of W f.

Let T, ¢ denote the linear operator associated
with the sampling information.

Now, R, f is written in an alternative way as:

Ruf = ({X W/, YW, Y1, Tms £}

For a given representation Rf, a reconstruction
set ['(Rf) is defined as a set of all sequences sat-
isfying this representation, i.e.

T(Rf) 2 {y € L:Ry=Rf}.

It is clear that in order to satisfy a given
maxima representation, a sequence h € L, in
addition to obeying the sampling information
Tmih = Tonysf, needs to meet the requirement
that W;h has local extrema at points of XW; f
and YW; f.

For all k € (XW;fUYW,f), the type of k,
t(k) 1s defined by:

(k) = {

In view of these considerations, the following

~1 if ke XW,;f

1 otherwise.

theorem is easily verified.
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Theorem 1 R,,f is a given mazima represen-

tation. h € T(R,, f) if and only if

Tmfh = Tmff
t(k) - (Wif(k+1)—W;f(k)) >0

The last inequality should be satisfied for j =
1,2,...,J and for all

k€ XW;fUYW,fU(XW;fUYW,;f).

The maxima representations can be cast into the
form Rf = {Vf,Tf} where V f is a set of points
and 7' is a linear operator which may depend on
Vf. However, the key feature of the maxima
representation is the fact that the set V f yields
additional linear inequalities.

Definition 1 Rf = {Vf,Tf} is called an
Adaptive Quasi Linear Representation (AQLR)
if there exists a linear operator A and a sequence
a such that:

tEL(Rf)< Te =Tf and Az > a.

A,a may depend on V f, but they must be inde-
pendent of Tf.

Definition 2 An AQLR is called inherently
bounded if there exists a real K > 0 such that

z e D(Rf) = ll=]| < KNIT/I.

The coefficient K can depend on the parameters

of the representation e.g. N, J, Wy,... . W;, Sy

but it must be independent of V f and T'f.
Clearly, the following is true.

Proposition 1 The wavelet mazima represen-

tation s an AQLR.

Proposition 2 The wavelet marima represen-
tation is inherently bounded AQLR.

3. The Multiscale Zero-Crossings Rep-
resentation

Let Z be an operator which provides a set of
zero-crossings points of a given sequence f € L.
The sequence of sums of h(n) between consecu-
tive zero-crossings points of f at level j is, szfh.
As in the maxima representation case, for fixed
sets ZW; f, the remaining data U;ff and Sy f



are obtained by the linear sampling operator, de-
noted T,s. The zero crossings representation be-
comes:

Rof = {{ZW; Yo, Ty 1}

In order to have h € I'(R, f), in addition to obey-

ing
Tth = Tszu

W;h has to satisfy sign constraints yielding zero-

crossings exactly at ZW; f points. We have

Theorem 2 Let R,f be a given 2€T0-CTOSSINgS
representation. h € I'(R, f) if and only if
T,sh =Ty f
sgn (U;ff(k)) - W;h(i)) > 0.
The last inequality should be satisfied for

i=1,2,...,J and for all i € ZW;J U (ZW;f)"
where k satisfies 1 € szf(k).

As an immediate consequence of the theorem we
have:

Proposition 3 The maultiscale
representation ts an AQLR.

28T0-CT0OSSINGS

Theorem 3 The wavelet zero-crossings repre-
sentalion 1s an inherently bounded AQLR.

Notice, that for the wavelet ZEero-crossings rep-
resentation, K = 1, regardless the values of N
and J.

4. Basic Properties of AQLR’s

A representation Rf = {V f,Tf} is said to be
unique, if the reconstruction set I'(Rf) consists
of exactly one element. We have the following
uniqueness characterization for AQLR’s.

Lemma 1 Let Rf = {Vf Tf} be an AQLR.
Then Rf is unique if and only if the kernel of
the operator T is trivial, i.e. N'T = {0}.

Perhaps the most important consequence of
Lemma 1 is the fact that uniqueness of the rep-
resentation Rf is equivalent to uniqueness of the
underlying irregular sampling Tf. On the other
hand, from the signal compression, understand-
ing and interpretation point of view, it seems
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to be desirable that little information would be
specified explicitly by T'f and as much as possible
information about a signal should be described
implicitly by Af > a. Therefore, the most im-
portant and interesting features of AQLRs ap-
pear in the non unique case.

The closure of the reconstruction set,! I is a
convex polyhedron.

I={z:Tz=Tf, Az > a)}.
Without loss of generality, we can assume that
I'“={z: Bz > b}

for a p x N matrix B and a p x 1 vector b. For
inherently bounded AQLR’s, the associated T is
bounded. Thereforeas a special case of the theo-
rem of Krein and Milman, the following holds.

Theorem 4 For an inherently bounded AQLR,
the closure of the reconstruction set is the conves
hull of 1ts finitely many vertices.

Let {x : Bz > b} be a polyhedron and vt its
vertex. Then, there exist N rows of B, which
constitute a regular matrix [B]* such that:

v = ((B)

where [b]' is a subvector of b corresponding to
these N rows. By inserting zero columns to the
matrix ([B]') ™", the matrix D' is obtained:

vt = D',

Since the closure of the reconstruction set is the
convex hull of its vertices, the above equation can
characterize the changes in the reconstruction set
due to perturbations in either the matrix B or
the vector b. Accordingly it will be used to prove
the stability results.

5. The theory of non-uniqueness

The section aims to construct that, in gen-
eral, the discrete dyadic wavelet maxima (zero-
crossings) representation is not unique. The re-
sults are consequences of Lemma 1, which re-
lates uniqueness of the representation to the set
NT, the kernel of the sampling information. The
main idea is to show a sequence f such that the
set N'T corresponding to the representation Rf
cannot be {0}.

' The abbreviated notation T is used instead of L'(RSf).



Theorem 5 A discrete dyadic wavelet mazima
(zero-crossings) representation based on a dis-
crete low pass filter H(w) is given. If H(mw) = 0,
J >3, and N is a multiple of 27 then there ez-
ists a sequence f which has a non-unique marima
(zero-crossings) representation.

Let us point out that although the hypothe-
sis of the theorem may seem to be demanding,
it i1s just a technical condition. All filters used
by Mallat, Zhong and many others fulfill these
conditions.

The construction of the counter example is
based on the set B, defined as follows:

2./—1

B= {5 {1257}

where

2
cr(n):cos(—ggﬂ) n=0,1,... N-1

21rn

QJ)

sy(n) = sin( n=20,1,...,N —1.

Proposition 4 The set B is included in NSy,
the kernel of the operator Sj.

Notice, that sys-1 does not appear in the set
B. The reason is that sys—1 = 0 and in the next
proposition the independence of the set B is as-
serted.

Proposition 5 The set B is linearly indepen-
dent.

As a universal counter example of non-
uniqueness the following sequence is propos:d.

f(n) = cos(27r2%) n=01...,N -1

Observe that the same sequence is proposed for
all dyadic wavelet transforms and for both the
maxima representation and the zero-crossings
representation.

The representation R, f (R.f) is unique if
and only if NT,,; = {0} (NT,; = {0}). Con-
sequently, the non-uniqueness of Ry, f (R f) is
easily deduced from the following proposition.

Proposition 6 The equation

Tnfh=0 (T;h =0) h € span(B)

has a non trivial solution.
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Some remarks need to be made at this point.
It turns out, that it is relatively easy to produce
more examples of non unique dyadic wavelet
maxima (zero-crossings) representations using
2P-periodic signals, where p is an integer. Hum-
mel with Moniot [5], Mallat [6], and Mallat
with Zhong [7] have reported that high fre-
quency errors may occur in the discrete maxima
(zero-crossings) representation. For these 27-
periodic signals, components of the reconstruc-
tion error can appear as 2P-periodic signals for
p=12...,J. Most of them cannot be related
as high frequency errors. For more details the
reader is referred to [1,2].

From our simulations and from Mallat’s results
it turns out that for the vast majority of signals,
the representation is unique. We even conjecture
that the wavelet maxima (zero-crossings) repre-
sentation is unique for a generic family of signals.

6. Stability

Addressing the stability issue, the standard
approach is to introduce the notion of pertur-
bations: of the representation and of the recon-
struction set. In addition, measures for a dis-
tance between distinct representations and for
a distance between different reconstruction sets
should be defined. Recall that V f,Tf may have
different sizes for different representations. For-
tunately, for inherently bounded representations,
the following characterization of BIBO (bounded
input, bounded output) stability is easily veri-
fied.

Proposition 7 Let Rf; = {Vfi,T;f;} i = 1,2
be inherently bounded AQLR’s. Then for all
Ki > 0 there exist Kp such that:

ITifill < K1 (6=1,2) = ||lz1—2a|| < Ko Va; €

In many applications, the reasons for a per-
turbation in a representation are arithmetic or
quantization errors in a reconstruction algo-
rithm. This kind of perturbations may change
the continuous values of T'f but it preserves the
discrete values of V f. Therefore the perturbed
representation, (Rf),, can be written as:

(Rf)p ={VI.TF+A(TS)}.

Let ', be the corresponding reconstruction set.
The distance between two reconstruction sets, I’



and I, is defined by:

d(T,Tp) £ sup{|ly — 7|l : y € T, 9, € T, }.

Observe, that for inherently bounded AQLR’s,
d(T',T',) is always finite. The measure of the per-
turbation in the reconstruction set is the differ-
ence between d(T',T',) and the size of I which is
defined as follows:

s(T) £ d(T,T) = sup{|J71 — 72l| : 71,72 € T}

s(T) and d(T', T'p) describe the largest possible Lo
norm of a reconstruction error, from the original
representation and from a perturbed one.

Theorem 6 For all inherently bounded AQLR,
there ezists K > 0 such that:

d(T,Tp) < K - ||A(TF)]) + (T)

Observe that the above result is global in the
sense that as long as A(Tf) gives rise to a non
empty reconstruction set, the theorem holds re-
gardless the size of A(Tf).

7. A Reconstruction Scheme

In a non unique case, there are several ways to
define a reconstruction algorithm. In this work,
it 1s defined as a procedure to find any element z
belonging to the closure of the reconstruction set,
. The proposed reconstruction algorithm is
based on an appropriate potential function v(z)
satisfying:

Ve eT°
Yz ¢ Te.

v(z) =0
v(z) >0

where T'¢ denotes the complement of I'* in L.
Furthermore, it will be shown that the proposed
v(z) does not have any local extremum outside
e 1e

IVu(z)|| >0 VzeT.

With such a potential function, the reconstruc-
tion is achieved by any minimization algorithm
operating on v(z). We will focus on the re-
construction algorithm based on the differential
equation:

z(t) = =V (v (z(t))
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whose analog hardware implementation give rise
to a very fast algorithm.

In this section, a general inherently bounded
Adaptive Quasi Linear Representation (AQLR)
is considered. As mentioned in Section 4, the clo-
sure of the reconstruction set, I'*, can be written
as:

I'“={z: Bz > b}

for a given p x N matrix B and a p-dimensional
vector b. The function v(z) is derived from this
representation in the subsequent way.

Z f(Bz — b);

b

v(z) =

where (Bz — b); denotes the i-th component of
the vector Bz — b. The function f(-) is defined

by:
2
ﬂaé{g

Observe that f(£) is continuously differentiable.
Therefore v(z) is continuous and continuous dif-
ferentiable. The gradient of v(z) is given by:

ifé€ <0

otherwise

Vo(z) = 2B'Z(Bx — b)
where Z is a p x p diagonal matrix satisfying:

o 1 if(Bz-b)y<0
2(,4) = { 0 otherwise

Naturally, B’ denotes the transpose of the matrix
B.

The following theorem states that v(z) does
not have local extrema outside the set I'°.

Theox‘erh 7 Let T be non
Vv(z) =0 if and only if z € T°.

empty. Then

Theorem 8 Eractly one of the two alternatives
holds:

1. 3z s.t. ZBzx > Zb.

2. 3b, such that
0 (Zb)'b, > 0.

(ZBYb, = 0 b,

v



In view of these considerations, a reconstruc-
tion scheme can be implemented as:

argmin {v(z) :z € L}.

The minimization is significantly facilitated by
the property that local extrema of v(z) appear
only in I'°. We are going to focus on the algo-
rithm based on the differential equation. The
desired property is that for all z(0), z(¢) will ap-
proach the set I'“ as t — oo. The convergence
result is based on La Salle’s Theorem.

Theorem 9 Let ' be the closure of the re-
construction set for of the inherently bounded

AQLR. Then for all (0), the solution of

(t)y = =V (v (z(t))).
will approach T'° as t — oo.

The 1dea to minimize a cost function in order
to reconstruct a signal from the multiscale edge
representation has appeared in many works. The
comparison reveals the following advantages of
the proposed algorithm.

¢ This algorithm is based on continuously dif-
ferentiable cost function.

e It does not apply approximations.

e Itisadapted for both unique and non unique
cases.

o Its validity and convergence is guaranteed

Conclusions

Summarizing, the results described about
uniqueness and stability are new theoretical re-
sults. In our opinion, the most significant con-
tribution of this work is to create a framework
to define, analyze, and reconstruct a wide fam-
ily of representations. Important examples are
generalizations of a basic maxima representation
obtained by using only a subset of local extreme
points. This is the subject of the undergoing re-
search.
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