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Abstract!

The analysis of a discrete multiscale edge representa-
tion is considered. A general signal description, called
an inherently bounded Adaptive Quasi Linear Rep-
resentation (AQLR), motivated by two important ex-
amples, namely, the wavelet maxima representation,
and the wavelet zero-crossings representation, is intro-
duced. This paper addresses the questions of unique-
pess, stability, and reconstruction. It is shown, that
the dyadic wavelet maxima (zero-crossings) represen-
tation is, in general, nonunique. Nevertheless, these
representations are always stable. Using the idea of
the inherently bounded AQLR, two stability results
are proven. For a general perturbation, a global BIBO
stability is shown. For a special case, where perturba-
tions are limited to the continuous part of the repre-
sentation, a Lipschitz condition is satisfied. A recon-
struction algorithm, based on the minimization of an
appropriate cost function, is proposed.

1 Introduction

An interesting and promising approach to a signal rep-
resentation is to make explicit important features in the
data. The first example, taught in elementary calculus,
is a “sketch” of a function based on extrema of a signal

and possibly of its first few derivatives. The second in--

stance, widely used in computer vision, is an edge repre-
sentation of an image. If the size of an expected feature is
apriori unknown, a need for a multiscale analysis is appar-
ent. Therefore, it is not surprising that multiscale sharper
variation points (edges) are meaningful features for many
signals, and they have been applied, for example, in edge
detection, signal compression, pattern classification, pat-
tern matching, and speech analysis.

Traditionally, multiscale edges are determined either as
extrema of Gaussian-filtered signals [9) or as zero-crossings
of signals convolved with the Laplacian of a Gaussian (see
e.g. [4] for a comprehensive review ). S. Mallat in series
of papers [8, 6, 7] introduced zero-crossings and extrema
of the wavelet transform as a multiscale edge represen-
tation. Two important advantages of these methods are
low algorithmic complexity and flexibility in choosing the
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basic filter. Moreover, [6] and [7] propose reconstruction
procedures and show accurate numerical reconstruction re-
sults from zero-crossings and maxima representations. In
[6, 7], as in many other works in this area, the basic al-
gorithms were developed using continuous variables. The
continuous approach gives an excellent background to mo-
tivate and justify the use of either local extrema or zero-
crossings as important signal features. Unfortunately, in
the continuous framework, analytic tools to investigate the
information content of the representation are not yet avail-
able. The knowledge about properties of the representa-
tions is mainly based on empirical reconstruction results.
From the theoretical point of view, there are still important
open problems, e.g. stability, uniqueness, and structure of
a reconstruction set {a family of signals having the same
representation). )

Our objective is to analyze these theoretical questions
using a model of an actual implementation. The main
assumption is that the data is discrete and finite. The

. discrete multiscale maxima and zero-crossings represen-

tations are defined in a general set-up of a linear filter

.bank, however, the main goal is to consider a particu-
"lar case where the filter bank describes the wavelet trans-
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form. Since reconstruction sets of both maxima and zero-
crossings representations have a similar structure, a gen-
eral form called the Adaptive Quasi Linear Representation
(AQLR) is introduced. Moreover, many generalizations
of the basic maxima and zero-crossings representations fit
into the framework of the AQLR. This paper uses the idea
of the AQLR to investigate rigorously three fundamental
questions: uniqueness, stability, and reconstruction. A

We first present conditions for uniqueness, then apply
these conditions to the wavelet transform-based represen-
tation, and obtain a conclusive result. It turns out, that
neither the wavelet maxima representation nor the wavelet
zero-crossings representation is , in general, unique. The
proof is based on constructing a sinusoidal sequence, whose
maxima (zero-crossings) representation cannot be unique
for any dyadic wavelet transform.

The next subject is stability of the representation. This
issue is of great importance because there are many known
examples of unstable zero-crossings representations. In or-
der to improve the stability properties, Mallat has included
additional sums in the standard zero-crossings representa-.
tion and, together with Zhong, they have introduced the
wavelet maxima representation, as a stable alternative to



the zero-crossings representation. Indeed, very good nu-
merical results have been reported, but stability analysis
has not been pursued. Using the idea of the inherently
bounded AQLR, we are able to prove stability results.
For a general perturbation, global BIBO (bounded input,
bounded output) stability is shown. For a special case,
where perturbations are limited to the continuous part of
the representation, a Lipschitz condition is satisfied.

One of the most important practical problems is the
need for an effective reconstruction scheme. Mallat and
Zhong [7] and Mallat [6] have used algorithms based on
alternate projections. In this paper, an alternative re-
construction scheme is proposed. The procedure is valid
for any inherently bounded AQLR and it is based on an
appropriate cost function, whose minimum is achieved at
the reconstruction set. Specifically, we focus on an algo-
rithm which is based on the integration of the gradient
of the cost function. It is shown that this algorithm ap-
proaches the reconstruction set. This method yields effi-
cient, parallel algorithms, which are especially promising
in the case of the wavelet-based representation. In particu-
lar, an analog-hardware implementation, similar to a neu-
ral network, may lead to a very efficient and fast scheme.

2

This section presents the definitions of a discrete multiscale
extrema (maxima) representation, an Adaptive Quasi Lin-
ear Representation (AQLR), and an inherently bounded
AQLR. The main result is to show that the multiscale
maxima representation, based on a wavelet transform, is

an inherently bounded AQLR.
Consider £, a linear space of real, finite sequences:

CE{ff={fMIZ f(n)e R},
Let X and Y denote operators on L which provide

the sets of local maxima and minima, respectively, of a
sequence f € L. The formal definitions are :

Xf={k: f(k+1) < J(F) and f(k~1) < f(K))
Y= {k: f(k+1)2 f(k) and f(k—1) 2 f(k)}

In this work, in order to avoid boundary problems, an N-
periodic extension of finite sequences is assumed.

Let Wy, W,,...,W,, S be linear operators on L. The
sets XW; f, YW, f are local maxima and minima points of
the sequence W;f. The values of W;f at extreme points
are denoted by {Wif(k)}reEw,s where
EW;f = XW,;fUYW,f. The multiscale local extrema
representation, R, f is defined as:

Rnf 2 {{Xij, YW;f, {ij(k)}kesw:'l};l ’Sff} :

Following [7}, R f, will be called the multiscale max-
ima representation as well. In the particular case, when
Wy, Wa, ..., Wy, 8; correspond to a wavelet transform,
R, f will be called the wavelet maxima representation.

The determination of the extrema point sets is highly
ponlinear. However, for the given extrema sets, XW,f

Multiscale Maxima Representation
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and YW;f, the remaining data are obtained by a linear
operation of sampling an image of a linear operator at
fixed points. This observation is the motivation to consider
R f as consisting of two parts: the sampling information
and the maxima information. The sampling information
is the sequence S;f and the values of W;f at the points
XW;fuYW;f (3=12,...,J). The maxima information
consists of the sets XW, f, YW, f and of the fact that the
elements of XW; f and YW, f are local maxima and min-
ima of W, f. _

Let T,.s denote the linear operator associated with the
sampling information. Then, R, f is written in an alter-
native way as:

Rof = {{XW; £, YW Y\ Tms f}. (1)

For a given representation Rf, a reconstruction set T{Rf)
is defined as a set of all sequences satisfying this represen-
tation, i.e.

T(Rf) £ {y€ £ Ry=Rf}. (2)

At this point, the structure of the reconstruction set of
the multiscale maxima representation is considered. It is
clear that in order to satisfy a given maxima representa-
tion, a sequence h € L, in addition to obeying the sampling
information Tinsh = Ty f, needs to meet the requirement
that W;h has local extrema at the points of XW;f and
YW;f. Loosely speaking, we have to assure that W;h is
increasing after a minimum and before a maximum and it
is decreasing otherwise. Since rigorous description requires
several definitions which will not be used in the sequel in
this paper, let us omit these details and present the result.

Theorem 1 R, f is a given multiscale mazima represen-

tation. h € T(R,. f) if and only if

Trnsh Ty f 3)

t{k) - (W;h(k + 1) - W;h(k)) > 0. (4)

The last inequality should be satisfied for j = 1,2,...,J
and for almost all k (if two consecutive k’s belong to EW; f

then the first is omitted here). t(k) is called the type of k
and can be either +1 or —1.

The maxima representations can be cast into the form
Rf ={Vf,Tf}, where Vf is aset of points and T is a lin-
ear operator which may depend on V f. However, the key
feature of the maxima representation is the fact that the
set V f yields additional constraints, in the form of linear
inequalities, which do not appear directly in Rf. Stimu-
lated by this observation, we define the following general
family of signal representations.

Definition 1 Rf = {Vf,Tf} is called an Adaptive Quasi
Linear Representation (AQLR) if there ezists a linear op-
erator A and a sequence a such that:

tel(RfyeTz=Tf and Az > a. " (5)

A,a may depend on V f, but they must be independent of
Tf.



The reasoning behind the name “Adaptive Quasi Linear
Representation” (AQLR) is as follows. This representation
is adaptive since T, A, a depend on the sequence f (via the
set Vf). It is quasi linear because it is based on a set of
linear equalities and inequalities.

Clearly, the following is true.

Proposition 1 Any multiscale mazima representation is

an AQLR.

The next definition is a generalization of an essential
boundness property of the wavelet maxima representation.

Definition 2 An AQLR is called inherently bounded if
there ezists a real X > 0 such that

z € T(&f) = |zl < K|T f].

In this work, || - || denotes the Euclidean norm. The coef-
ficient X can depend on the parameters of the representa-
tione.g. N, J, Wy,...,W,, S, but it must be independent
of Vfand Tf.

Proposition 2 The wavelet mazima representation is an °

inherently bounded AQLR.

Proof: Let h € T(Rn f). Weneed to find X > 0 such that
l2]l € K||Tmsfli. First recall (or see {7]) that the discrete

wavelet transform satisfies Parseval’s equality, namely:

J
1RI7 = 1Sshl1 + 3 | W;h|°.

i=

(6)

Therefore, it suffices to bound ||W;h]|, [|Ssh|l. Sy is in-
cluded in Ty f, hence:

IS5hll < Ty £1I- (7)

Consider:
I Wih(n) |< max | W;h(n) |= max | W; f(n) |< | T/ f.

The middle equality holds because W;h has the same local
extrema as W; f, in particular it has the same global ex-
trema as W;f. The right inequality is valid since
max, | Wjh(n) | appears (with its original sign) as a com-
ponent of Ty f. Therefore we conclude

Wkl < VN|[Tm/ ] (8)
Substituting (8) and (7) to (6) yields:
IRl < V(NI + 1){[ T s £1I. (9)

O

Remark: The above bound is not the best possible, for
example the factor v/J can easily be removed. However,
we conjecture that the best bound has to be of the order
of VN|| Ty f]I.

The above theorem is key for our work. The subse-
quent results concerning stability and reconstruction will
be developed in the framework of the inherently bounded
AQLR. On the other hand, one can easily learn from the
proof how to generalize the basic maxima representation,
while maintaining the property of the inherently bounded
AQLR.
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3 Multiscale Zero-Crossings

In defining the multiscale zero-crossings representation, we
essentially follow [6], but minor changes are necessary due
to our basic assumption that only a discrete signal version
is available. Let Z be an operator which provides the set
of zero-crossings of a given sequence f € £, i.e.

Zf={k:flk-1)- f(k) <0},

Mallat in [6] has stabilized the zero-crossings repre-
sentation by including the values of the wavelet trans-

(10)

form integral calculated between consecutive zero-crossing
points. Therefore, the multiscale zero-crossings represen-
tation, R, f, is defined as:

R.f2 {{Zij,U;ff}j=l’SJf}' (1)
where
n(k)-1
Uik = 3 Wil

I=k

k and n(k) are two consecutive zero-crossings of W, f.

As in the maxima representation case, for fixed sets
ZW,;f, the remaining data szjf and S;f are obtained
by a linear operator, denoted by T,,;. The zero-crossings
representation can also be written as:

sz = {{vajf}}LUTsz} .

We have the following characterization of the reconstruc-
tion set.

(12)

Theorem 2 Let R, f be a given multiscale zero-crossings
representation. h € I'(R, f) if and only if

Tyh = Tuf
t(k)- Wih(k) > 0.

t(k) is the type of k and can be either +1 or —1. The last
inequality should be satisfied for almost all k (if
W;f(k) = 0 then k is omitted).

As an immediate consequence of Theorem 2 we have:

Proposition 3 Any multiscale zero-crossings representa-
tion is an AQLR.

Moreover:

Theorem 3 The wavelet zero-crossings representation is
an inherently bounded AQLR.

4

A representation Rf = {V f,Tf} is said to be unique, if
the reconstruction set I'(Rf) consists of exactly one ele-
ment. We have the following uniqueness characterization

for AQLR's.

Nonuniqueness

Lemma 1 Let Rf = {Vf,Tf} be an AQLR. Then Rf is
unigue if and only if the kernel of the operator T is trivial,
i.e. NT = {0}



The proof is clear from topological considerations. Nev-
ertheless, an elementary but constructive proof is given in
3]

This claim has some significant consequences. Using
the above lemma, an algorithm which tests for unique-
ness can be developed. One option is to derive it from a
rank test of the operator T. Another, more ambitious, ap-
proach is to characterize, for a particular application, all
sets V f giving rise to a unique representation. Perhaps
the most important consequence of Lemma 1 is the fact
that uniqueness of the representation Rf is equivalent to
uniqueness of the underlying irregular sampling Tf. In
_ other words, in the unique case, all the information about
‘the signal is already contained in Tf. Additional con-
straints Af > a are redundant. On the other hand, from
the signal compression, understanding and interpretation
point of view, it seems to be desirable that a little infor-
mation would be specified explicitly by Tf and as much
as possible information about a signal should be described
implicitly by Af > a. Therefore, in our opinion, the most
important and interesting features of AQLR’s appear in
the nonunique case.

Using the previous lemma, we are able to show that:

Theorem 4 A discrete dyadic wavelet mazima (zero-
crossings) representation based on a discrete low pass filter
H(w) is given. If H(x) =0, J >3, and N is a multiple of
27 then there ezists a sequence f which has a nonunique
mazima (zero-crossings) representation.

Let us point out that, although, the hypothesis of the
theorem may seem to be demanding, it is just a technical
condition. Usually the number of levels, J, satisfies J > 3.
In order to benefit from the fast wavelet transform N has
to be a multiple of 27. Since H(w) is a low pass filter, it is
natural to assume that | H{w) | reaches its minimum at =.
If this minimum is nonzero, then essentially Sy f contains
all information about f and the remaining maxima (zero-
crossings) information is redundant. Indeed, all filters used
by Mallat, Zhong and many others fulfill the conditions of

the theorem.
As a generic example of nonuniqueness the following

sequence is proposed.

f(n):cos(%r%) n=01,...,N-1.

(15)
Observe that the same sequence is proposed for all dyadic
wavelet transforms and for both the maxima representa-
tion and the zero-crossings representation. For details of
the proof see [3], for the specific example see [1, 2].

5 Stability

To address the stability issue, the standard approach is to
introduce the notion of perturbation of the representation,
and of the reconstruction set. In addition, distance mea-
sures between distinct representations and between differ-
ent reconstruction sets should be defined. In general, this
is not an easy task. Observe that V f,Tf may have dif-
ferent sizes for different representations. Fortunately, for
inherently bounded representations, the following charac-
terization of BIBO (bounded input, bounded output) sta-
bility is easily verified.
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Proposition 4 Let Rf; = VA T} (1 =1,2) be inker-
ently bounded AQLR’s. Then for all K; > 0 there ezists
Ko such that:

”Tlfl” S 1\,1 (l = 1’2) =

lzr = 22| £ Ko Yz € T(Rf)

Proof: This claim is an immediate consequence of the
definition of an inherently bounded AQLR.

€ D(Rfi) = o S K Tfi| S K- Ky

21 = zill < llzall + flzal] < 2K - K,

In many applications, the reasons for perturbations in
a representation are arithmetic or quantization errors in a
reconstruction algorithm. This kind of perturbations may
change the continuous values of Tf but it preserves the
discrete values of V f. Therefore the perturbed represen-
tation, (Rf),, can be written as:

(Bf)y ={V£,Tf+A(Tf)}

Let I be the corresponding reconstruction set. In general,
we define the distance, d, between two reconstruction sets,

I'and T, as:

d(T,I;) = sup{fly = %l : v € T, %, € T}
Observe, that for an inherently bounded AQLR, d(T,T,)

is always finite. The measure of the perturbation in the
reconstruction set is the difference between d(I',T,) and
the size of T' which is defined as follows:

s(0) 2 d(I,T) =sup{llm =l i m, 2 €T} (17)

s(T') and d(I',T,) describe the largest possible Euclidian
norm of a reconstruction error, from the original represen-
tation and from a perturbed one, respectively.

One remark is in order. In general, for an arbitrary
A(Tf), the associated reconsiruction set may be empty
and then d(T', T} ) would not be defined. In the sequel, it is
assumed that this problem is treated by a reconstruction
algorithm and hence A(T'f) yields a nonempty I',. In this
case, the following Lipschitz condition is satisfied.

Theorem 5 For all inherently bounded AQLR, there ez-
ists I{ > 0 such that:

d(T,Tp) < K - AT )] + s(T).

0

(16)

(18)

Due to limited space, the detailed proof is omitted.
The technique of the proof is borrowed from linear para-
metric programming. The first step is to observe that the
distance between two reconstruction sets is given as the
norm of the difference between two vertices, one from each
set. Then by careful analysis of possible perturbation in
these vertices, the claim of the theorem can be shown.
The complete proof is given in [3]. Observe that the above
result is global in the sense that as long as A(T'f) gives
rise to a nonempty reconstruction set, the theorem holds
regardless of the size of A(T f).



6 A New Reconstruction Scheme

In 2 nonunique case, there are several ways to define a
reconstruction algorithm. One can require to find all ele-
ments from the reconstruction set, sometimes it is desired
to determine a smallest element satisfying a given repre-
sentation. In this work, the reconstruction is defined as a
procedure to find any element z belonging to the closure
of the reconstruction set, I'. As mentioned earlier, we pro-
pose a reconstruction algorithm based on an appropriate
potential function v(z). This function should satisfy:

v(z) =0 VzeT (19)
v(z) >0 Vze (T)". (20)

where (f)c denotes the complement of T in £. Further-
more, it will be shown that the proposed v(z) does not
have any local extremum outside T, i.e.

IVo(z)[| >0 Vze (T)". (21)

Vu(z) denotes the gradient of v(z) with respect to z,
namely it is a column vector of derivatives of v with respect
to components of z. We will focus on the reconstruction
algorithm based on the differential equation:

2(t) = =V (v(z(1))) (22)

whose analog hardware implementation gives rise to a very
fast algorithm.

In this section, a general inherently bounded Adaptive
Quasi Linear Representation (AQLR) is considered. By a
standard procedure, the closure of the reconstruction set,

T, can be written as:
T'={z:Bz>¥) ‘(23)

for a given p x N matrix B and a p-dimensional vector
b. The function v(z) is derived from this representation in
the subsequent way.

v(z) = if(BI - b); (24)

1=1
where (Bz — b); denotes the i-th component of the vector

Bz — b. The function f(-) is defined by:

iféE<0

otherwise °

roe{§

Using the above definitions, it is easy to verify that indeed
(19) and (20) hold.

Observe that f(€) is continuously differentiable. There-
fore v(z) is continuous and continuously differentiable. The
gradient of v(z) is given by:

Vv(z) =2B'Z(Bz - b)
where Z is a p x p diagonal matrix satisfying:

1 H(Bz—-b);<0
20,1 = { 0 otherwise )
Naturally, B’ denotes the transpose of the matrix B.
The following theorem states that v(z) does not have

local extrema outside the set T.

Theorem 6 Let T be nonempty. Then Vu(z) =0 if and
only ifr € T.

The proof is given in (3]. The idea is to represent Zb as
a sum of two elements: one from the range of Zb and its
orthogonal complement. Then applying Farkas' Lemma
to the fact that T is nonempty verifies the claim of the
theorem.

In view of these considerations, a reconstruction scheme
can be implemented as:

argmin {v(z):z € L}. (25)

The minimization is significantly facilitated by the prop-
erty that local extrema of v(z) appear only in T. We are
going to focus on the algorithm based on the differential
equation (22). The desired property is that for all z(0),
z(t) will approach the set T as t — oco. The convergence
result is stated as follows.

Theorem 7 Let T be the closure of the reconstruction set
of the inherently bounded AQLR. Then for all z(0), the
solution of

(1) = -V (v(z(1))). (26)

will approach T ast — oo.

The detailed proof of Theorem 7 is given in [3].

The complexity of calculating the gradient of v, in the
case of the wavelet-based maxima (zero-crossings) repre-
sentation, is of the order of complexity of the wavelet trans-
form itself. Therefore, in this case, applying an analog-
based integration can lead to a very efficient implementa-
tion.

7 Conclusions

Perhaps the most important outcome of this work is to
show feasibility and capability of discrete analysis. In
general, the discrete approach described here may be ap-
plied to a variety of representations and reconstruction
algorithms, providing new insights into their properties.
We believe that, even for complex algorithms, testing for
uniqueness and computing a precise reconstruction set,
even for a few examples, is worth the effort.

As mentioned earlier, many important and interesting
features of the multiscale edge representation appear in the
nonunique case. However, the core of theoretical studies
has been developed in the framework of unique representa-
tions. In our opinion, the need to develop more analytical
tools and applications for nonunique representations is ap-
parent.

As a first step in the undergoing research, this work
dealt only with one dimensional signals. The reason is
twofold: firstly, we thought that in the simpler case the
basic properties would be better recognizable, secondly,
the one dimensional multiscale edge representation has its
own variety of applications. One of the most promising
application areas is speech analysis, for example, pitch de-
tection (5] or modeling signal transformations in auditory
nervous system [10]. On the other hand, up to this point,
the vast majority of multiscale edge representations has
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been implemented in computer vision. Therefore, it is ad-
visable to extend these results for two dimensional signals.
Surprisingly, there is an essential difference between max-
ima and zero-crossings representations. A two dimensional
multiscale zero-crossings representation can easily be cast
into the structure of the inherently bounded AQLR, thus
the related results are valid in this case. However, a two
dimensional maxima representation appears to have a dif-
ferent structure. In order to proceed with a similar analysis
one either has to extend the framework of the AQLR, or to
change the definition of the two dimensional maxima rep-
resentation to match the structure of the AQLR. We are
in the process of deciding which choice is more suitable for
analysis and applications.

Summarizing, the described theoretical results about
uniqueness and stability are new. In our opinion, the most
significant contribution of this work is to create a frame-
work to define, analyze, and reconstruct a wide family of
representations. Important examples are generalizations
of a basic maxima representation obtained by using only
a subset of local extreme points. Their properties are the
subject of the undergoing research.
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