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Abstract

We consider the problem of estimating realizations of
highly nonstationary Discrete Random Sets, distorted
by a degradation process which can be described by
a union/intersection model. We start by present-
ing some important structural results concerning the
probabilistic description of Discrete Random Sets de-
fined on a finite lattice. Then we propose a family of
filters which can be viewed as lattice operators, and,
for each degradation model, derive the optimal filter
by means of minimizing a suitable fidelity criterion.

1 Introduction

An important problem in digital image processing
and analysis is the development of optimal filtering
procedures which attempt to restore a binary image
(“signal™) from its noisy version [14, 3, 5, 4]. Here,
the noise process usually models the combined ef-
fect of two distinct types of degradation, namely, im-
age object obscurations because of clutter, and sen-
sor/channel noise. It is typically assumed that the de-
graded image can be accurately modeled as the union
of the uncorrupted binary image with an independent
realization of the noise process, which is a binary im-
age itself [8]. This degradation model is known as the
union noise model. Other models exist, such as the
intersection noise model, and the union/intersection
noise model, which are defined in the obvious fashion.

These models are well justified in practice, because,
usually, binary images are obtained by thresholding
gray-level images. If the threshold value is set suffi-
ciently low, then the resulting degraded binary images
will be well described by a union noise model. Alter-
natively, if the threshold is set sufficiently high, then
the intersection noise model will be appropriate. In
between these extreme choices, a union/intersection
noise model will be most appropriate. The assump-
tion of independence is crucial for the theoretical anal-
ysis of optimal filters, and it is plausible in many prac-
tical situations.
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In this paper, we consider some classes of simple
yet intuitive spatially varying filters, which we collec-
tively refer to as Mask Filters, and, for each degrada-
tion model, derive an explicit characterization of the
optimal filter, within the class of filters under consid-
eration. These filters are appropriate when the images
of the signal and/or the noise are highly nonstation-
ary. A complementary study, dealing with optimal
Morphological filters (which are appropriate when the
images of signal and noise are stationary) will appear
elsewhere.

2 Discrete Random Set Fun-
damentals

Definition 1 Let B be a bounded subset of Z%. As-
sume that B contains the origin. Let £(Q) denote
the o-algebra on Q. Let £(B) denote the power set
(i.e. the set of all subsets) of B, and let £(3(B)) de-
note the power set of £(B). A Discrete Random
Set (DRS), X, on B, is a measurable mapping of
a probability space (Q, L(Q), P) into the measurable
space (L(B),Z(E(B))). A DRS X, on B, induces a
unique probability measure, Px, on £{%(B)).

Definition 2 The functional
Tx(K) = Px(X N K #0)
is known as the capacity functional of the DRS X.
Definition 3 The functional
Qx(K)=Px(XNK=0)=1~-Tx(K)

is known as the generating functional of the DRS
X.

The following Lemma will be useful. Its proof can
be found in the appendix. See (1] for basic Mobius
inversion.

Lemma 1 (Variant of Mobius inversion for Boolean
algebras) Let v be a function on Z(B). Then v can be
represented as

“external decomposition”



The function u is uniquely determined by v, namely

u(S) =Y (-1)I€ly(ScuC)

ccs

where ¢ denotes complement with respect to B.

The capacity functional, Tx (or, equivalently, the
generating functional, Qx) carries all the information
about a DRS X. This is clearly stated in the following
theorem.

Theorem 1

Given Qx(K'), VK € I(B), Px(A), VA€ £(Z(B))
is uniquely determined, and, in fact, can be recovered
via the measure reconstruction formulas

Px(A)= 3 Px(X = K)

KeAd
with
Px(X=K)= 3 (-1)¥1Qx(KUK')
K'CK
Proof:

The reconstruction formula for the functional
Px(X = K) in terms of the functional Qx is a di-
rect consequence of Lemma 1 and the fact that Qx
can be expressed in terms of Py as

Qx(K)= 3 Px(X=K)
K'CKe
=]

The unigueness part of this theorem is originally
due to Choquet [2], and it has been independently
introduced in the context of continuous-domain ran-
dom set theory by Kendall [9] and Matheron {10, 11].
Related results can also be found in Ripley [13]. How-
ever, the measure reconstruction formulas are essen-
tially only applicable within a discrete, bounded set-
ting. In the continuous case, the uniqueness result
relies heavily on Kolmogorov’s extension theorem,
which is non-constructive. See [18, 6, 7] for some other
interesting results on DRS’s.

The capacity functional plays an important role in
the study of statistical inference problems for random
sets. This is especially true for a class of random set
models known as germ-grain models, and the Boolean
model {15] in particular, whose capacity functional
has a simple, tractable form. We will see that the
capacity functional has an equally fundamental role
in the study of optimal filtering of DRS’s.

3 Formulation of the Optimal
Filtering Problem

Let X, N,Y be DRS’s on B. X models the “signal”,
whereas N models the noise. Let g : £(B) x £(B)
Z(B) be a mapping that models the degradation
(measurability is automatically satisfied here, since

the domain of ¢ is finite). The observed DRS is
Y = g(X,N). Let d : Z(B) x £(B) = Z, be a
distance metric between subsets of B. In this con-
text, the optimal filtering problem is to find a map-
ping f : L(B) — Z(B) such that the expected cost
(expected error)

E(e) £ Ed(X,X), X =f(Y)=f(g(X,N))

is minimized, over all possible choices of the map-
ping (“filter”) f. This problem is in general in-
tractable. The main difficulty is the lack of struc-
ture on the search space. The family of all mappings
f: Z(B) — I(B) is a chaotic search space! It is com-
mon practice to impose structure on the search space,
i.e. constrain f to lie in F, a suitably chosen subcol-
lection of admissible mappings (family of filters), and
optimize within this subcollection. The resulting filter
is the best among its peers, but it is not guaranteed
to be globally optimal.

We adopt the following distance metric (area of the
symmetric set difference)

d(X,X) = |(X\X) U (X\X)|
= [(X\X)] + |(X\X)]
= [(X UX\(X NX)

= (X UX)|-[(XnX)|

where | | stands for set cardinality, \ stands for set
difference, i.e. X\Y = X NY*° and ¢ stands for
complementation with respect to the base frame, B.
This distance metric is essentially the Hamming dis-
tance [12] when X, X are viewed as vectorsin {0,1}?\,
Since the component variables are binary, it can also
be interpreted as the square of the L, distance of vec-
tors in {0, I}IBI, i.e., with some abuse of notation,

dX,X) = (X - X)T(X - X)

where on the left hand side symbols are interpreted as
sets, while on the right hand side symbols are inter-
preted as column vectors in {0,1}'®!, and T stands for
transpose. In this setting, the sufficiency part of the
Orthogonality Principle (OP) [12] applies. It states
that a sufficient condition for the existenceof a f~ € F
such that

E[(X - ()7 (X - f1(V)] <

E{(X - f(Y)(X = f(¥))], ¥feF
is that

E[(X = £ () = F¥))] =0

for all f € F. However, unlike the case of vectors in
R*, where F is a vector space over the field of reals
(known as the space of square integrable estimators),
here F is not a vector space. The proof of the neces-
sity part of the OP strongly depends on F having a
vector space structure. For certain choices of F it is
easy to show that the necessity part of the OP does



not hold. At any rate, it is often easier to write down
an expression for £d(X, X), and optimize over F by
brute force.

This choice of distance has many advantages [14],
not the least of which is that it enables the deriva-
tion of explicit optimality conditions. Even though,
technically speaking, d(X, ;\’\) can be considered as
a quadratic distance measure when we view X, X as
vectors in {0,1}®!, from a set-theoretic point of view
d(X, j(\) is clearly not a quadratic distance measure,
since it penalizes errors in a linear fashion. How-
ever, the squared area of the symmetric set differ-
ence (which is a quadratic distance measure in the
set-theoretic sense) does not yield useful optimality
conditions. This is partly due to the lack of a mean-
ingful and tractable definition for the ezpectation of
a DRS X. From an L, estimation-theoretic point of
view, a proper formal definition of the expectation of
a DRS X, would be as follows.

EX & arg minweg) £ [d(X, w2

However, there exist several flaws with this formal
definition. It can be shown that

arg minweg(E)E [d(X, LV)}z =

arg minwe}:(g) {lW|2 + QILVI ( Z PT‘(Z € X)_.

zeWe

ZPr(zEX)) —4 Z Z Prize X, yEX)}
€W zeWe yeW

If we assume that Pr(z € X) = p, Vz € B, and
Prze X,y € X) = Pr(z € X)Pr(y € X) =
p*, ¥V z,y sit. z # y, and p < 0.5, then it can be
shown that EX = 0, regardless of the specific value of
p. If p= 0.5, then any W € Z(B) will do. However,
the single most important problem is that, given a
specification of the first and second-order statistics of
X, it is not clear how to find an explicit solution to

the above minimization problem. On the other hand,
the median of a DRS X, formally defined as

MX £ arg minwesmEd(X, W)

is much easier to deal with. Although the solution to
this latter minimization problem is not (in general)
unique, it can be forced to be unique by means of a
simple regularization. Let C(z) be a Boolean propo-
sition, which, for each point z € B, is either true, or
false. Define the indicator function

, if C(z) is true at 2
, otherwise

ween 2| |

0
Let supp 1{C(z)) stand for the support set of the in-
dicator function 1(C(z)), i.e. the subset of B where

C(z) is true. Then it can be shown that

MpX £ supp 1(1 = Tx({z}) < Tx({2}))

is the unique minimum cardinality solution to the
minimization problem

mz:an):(B)Ea'(X, H/)

These considerations essentially dictate our choice of
distance metric. In terms of the degradation, we as-
sume that V is independent of X, and that the map-
ping g is given by
g(X,N)=XUN (union noise model)
or,
g X, Ny=XnNN

(intersection notse model)

More generally, we can assume that g is a mapping
from Z(B) x £(B) x £(B) to £(B)

g(X, Ny Ny = (XN UM,
(union/intersection noise model), where X, Ny, N, are

assumed to be mutually independent.

4 Optimal Mask Filters

In the case of union noise, a simple yet intuitive class
of filters is

fY)=fw¥) =YW= (XUN)NW

for some W € X(B). Similarly, in the case of inter-

section noise, we can consider the following class of
filters

=Y =Yuw=(XnN)uw

for some W € Z(B). Finally, in the case of
union/intersection noise, we can consider

)= f(Y) = (¥ nWa)UW, =
(XN M)UN)N W) U W)
for some Wi, W,, both in Z(B). We call these filters

mask filters. They can be viewed as simple opera-
tors on the lattice of all subsets of B, ie. fw(Y) =
YNW = glb(Y, W), fY(Y) =Y UW = lub(Y, W),
and fy(Y) = (Y N W,) U W, = Lub(glb(Y, Wh), Wh),
where glb, -lub stand for greatest lower bound and
least upper bound, respectively. In the fixed-window
case the mask W is fixed; in the adaptive case W
is allowed to depend on the observation. We will
consider both cases. These relatively simple filters
are appropriate when the signal and noise exhibit a
highly nonstationary behavior. In this case, tradi-
tional shift-invariant neighborhood filtering operators
fail to provide adequate filtering, and a simple but op-
timal spatially varying approach can produce better
results. We will further discuss this point later on.

4.1 Optimal fixed-mask filtering



4.1.1 The case of union noise

As before, let supp 1(C(z)) stand for the subset of
B where C(z) is true, and Tx(-) denote the capac-
ity functional of the DRS X. We have the following
result.

Proposition 1 Under the ezpected symmetric set
difference measure, the optimal fized intersection
mask, W, for filtering out independent union noise
is given by

W = supp 1(Tw({z}) [l - Tx({=})] < Tx({<})

The corresponding minimum expected error achieved
by such an optimal choice of W is given by

E(e’) = 3 min(Tx({2}), In({z}) [1 = Tx({z})))

z€B

The proof is rather straightforward®. It is based on
the simple observation that E|X| can be expressed as

ElX]= ) Tx({z})

2€8

It is interesting to compare the above optimality con-
dition with that of standard Wierer filtering. What
it says is that if the effective union noise “power” at
z is less than or equal to the signal “power” at z,
then filtering should retan the input value at point
z, otherwise it should reject it. This is intuitively ap-
pealing, and highly reminiscent of a form of binary
Wiener filtering. Also notice that all that is required
for the design of the optimal W is just the first-order
statistics of the signal and the noise, i.e. Tx({z}) and
Tn({z}) for all z € B. These can be efficiently and
accurately estimated from training samples of X and
N respectively.

If the first-order statistics of the signal and the noise
are spatially invariant, then, obviously, the optimal
intersection mask is either B (“all pass”), or @ (“reject
all”). This case is clearly not interesting. It is exactly
when the signal and/or the noise statistics are highly
nonstationary (meaning not even first-order station-
ary) that this filtering approach makes sense. Let
us illustrate this point by using a (rather simplistic)
artificial example. Consider figure (1). It depicts a
realization of a DRS which features a prominent pe-
riodic vertical line structure. Figure (2) depicts a de-
graded version of the same image, obtained by taking
the union of the DRS realization of figure (1) (the
“signal”) with an independent realization of another
DRS (the “nocise™). Figure (3) depicts the restored
image, obtained by intersecting the DRS realization
of figure (2), with the “optimal” intersection mask,
computed by using the optimality condition of Propo-
sition 1, and substituting estimates of the pixel hit-
ting probabilities in place of the true probabilities.
These estimates have been obtained by means of sim-
ple counting of pixel hitting events over a collection of

!Due to space constraints we skip the proofs of Propositions.

learning samples of the signal and the noise. In this
setting, shift-invariant filtering would not work well.
Also, shape-sensitive filtering would not do, because
the signal and the noise consist of replicas of the same
elementary pattern, namely a square of side 5 pixels.
A potentially big gain in quality of restoration rests
exactly with proper exploitation of the nonstationary
nature of the signal.

4.1.2 The case of intersection noise

This is the “dual” of the case of union noise. One can
simply take the complement of all the sets and oper-
ations involved, and apply the results of the previous
section. This is clear, because

d(X, X) = d(X°, (X))

and, thus, minimizing Ed(X, X) is the same as mini- ‘

mizing Ed(X¢, (X)), and
(XN N)UW) = (X UNS)NW*

Therefore, employing Proposition 1, and noting that
for singletons {z}

Tx({z}) =1-Tx({z})
we obtain the following result.

Proposition 2 Under the ezpected symmetric set
difference measure, the optimal fired “All” mask, W,
for independent intersection noise is given by

W = supp 1([1 = Tv({z}] Tx({z}) > 1 - Tx({}))

The corresponding minimum ezpected error achieved
by such an optimal choice of W is given by

E(e) = 3 min (1= Tx({z}),[1 - Tv({z})] Tx ({z}))

2€B
Observe that, once more, the result is intuitively ap-
pealing.
4.1.3 The composite problem

Finally, let us consider the case of union/intersection
noise. We have the following Proposition.

Proposition 3 Under the ezpected symmetric set
difference measure, the optimal fized pair of masks,
(W, Wa), 1s given by

Wa = supp 1(Tx({z}) > maz(T1({z}), T({=})))
Wy = supp 1(Ta({z}) < min(Tx({z}), Th({2})))

whereas, the ezpected cost
achieved by such an optimal pair of masks ts

E(e7) = 3_ min(Tx({z}), h({z}), To({z}))

z€B

assoctated minimum

with



Tx({z}) (1 = Ty ({z1) (1 = Taa({2})) +
(1= Tx({z}) Tn;({z})

n({=}) =

and

Ta({z}) =
4.2 Optimal adaptive mask filtering

Tx({z}) (1 = Tw,({2})) + (1 = Tx({z}))

A drawback of the optimal filters which have been de-
rived up to this point is that they are non-adaptive;
no matter what the observation is, the filter is fixed.
One would like to improve upon these filters by al-
lowing for an adaptation of the mask using informa-
tion extracted from the given input. The trade-off
is an increase in design/implementation complexity.
For simplicity, we only consider union noise. By du-
ality, similar results can be obtained for the case of
intersection noise.

Assume that we are presented with a specific input,
K, ie. weare given that Y = XUN = K. One adap-
tation strategy is to incorporate this information into
the cost function. This is done by considering the con-
ditional expectation of d(X, 5{\), conditioned on the
given information. However, this does not lead to a
closed-form solution for the optimal filter. Instead,
we can condition on part of the available informa-
tion. If we condition on the event XU N C K, ie.
(XUN)NK® =0, then we can work out closed-form
expressions for the optimal filter and the associated
minimum error.

Proposition 4 Given that X UN C K, the optimal
intersection mask, W, for filtering out the noise com-
ponent, N, is given by the intersection of K with the
set

supp 1([1 = Tx(K° U ()] [Tu(K° U {2)) - T(K¥)]

< [Tx(K° U {z}) = Tx (K] {1 - Tn(K7)))

The corresponding mintmum cost achicved by such an
optimal choice of W is given by

1
(1 = Tx(K9))(1 = Tn(K<))

Ele") =

mein {11 = Tx(K° U {z})] [Tw(K° U {z})-

Tw(K), [Tx(K°U {2)) - Tx(KE) 1 = Tw(K))
Observe that for K¢ =0 (i.e. K = .
available about the input) the formulas above reduce

to the.ones for the non-adaptive case, as they should
(note that Tz(@) = 0, for all DRS’s Z).

B, no information

5 Conclusions

Mask filtering is a simple yet intuitive approach to
the problem of digital binary image restoration, un-
der a union/intersection degradation model. We have
discussed both optimal fixed-mask filtering, and opti-
mal adaptive mask filtering. Although adaptive mask
filtering is clearly superior when compared to fixed-
mask filtering, it essentially requires knowledge of the
capacity functionals of the signal and noise. This is
the case, for example, when both the signal, X, and
the noise, NV, can be modeled as Discrete Boolean
Random Sets {16]. On the other hand, fixed-mask fil-
tering only requires knowledge of first-order statistics
(pixel hitting probabilities), which can be easily and
accurately estimated from training data. Therefore,
it provides a simple and robust alternative, when the
signal and noise processes are not known in detail.
Generally speaking, mask filtering is suitable when
the signal and noise DRS’s are highly nonstationary,
in which case optimal filters turn out being spatially
varying, and traditional shift-invariant filters are very
hard to optimize, and out of context.

6 Appendix - Proof of Lemma

Uniqueness: Assume that the external decomposition
formula holds. Look at the right hand side of the
inversion formula.

> (~D)Fle(sTuC) = X (=)' 3 u(D) =
ccs ccs DCSnCe
S0 S wp= T 5 (D)=
ccs DCS\C CCS DCS\C
S X (1) = Tub) T (-1 =
DCSCCS\D DCS CCS\D
= u(S)
Since 520
0
Coe={ ) 52
seo={1 570
Existence: Assume that the inversion formula

holds, and look at the right hand side of the exter-
pal decomposition formula.

Z Z Z |c1 (ScuC) =
SCAS SCA®CCS
S 3 )P(\C)) =
SCAcCCS
(=1)Clo(D%) =

DCA® CCA\D

> u(D) X

DCAc CCA\D

(=) = v((4%)%) = v(4)

As for the uniqueness part. C
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