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Abstract

Usable free-text speaker identification and voice veri-
fication systems must exhibit robustness under vary-
ing operational conditions. We study the degree
of robustness provided by various signal processing
techniques [1] [2] [3] by experimenting on a widely
used long distance telephone data base [4] [5] [6].
This data base consists of data recorded at two dif-
ferent sites, with data from one site much poorer in
quality than the other; further, the recording equip-
ment had been inadvertently changed for the later
half of the sessions resulting in a significantly changed
environment. Qur study identifies the combination
of techniques that provide consistent and significant
improvements; our results surpass other published re-
sults [4] [5] [6] on the same task. Specifically, in the
task of identifying 16 speakers, with training data
from the recording prior to equipment change and
testing on data from a set after the change (the most
challenging condition), we obtain a correct identifi-
cation rate of 87.5% with an average rank of 1.12;
[4] obtains the hitherto best result of 75% correct
identification with an average rank of 1.56; without
any robustness processing, the rate was only 12%.
Detailed results on exhaustive experimentation are
presented along with appropriate discussions.

1 Introduction

This paper presents the results of experimental in-
vestigations of several environmental robustness algo-
rithms on the free-text speaker identification and ver-
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ification tasks. The following algorithms (with slight
modification to fit the speaker identification context)
were studied and extensive experiments were per-
formed on the “King” database [4] [5] [6]:

1. ISDCN (Interpolated SNR Dependent Cepstral
Normalization) [1].

. Bandpass liftering [2].
RASTA-PLP [3].

RASTA [3].

Bandpass liftering and RASTA.

ISDCN provided only marginal improvement in
performance, and involved a high degree of compu-
tational complexity. RASTA-PLP, as described in
[3], did not yield any gain in our experimentation.
However, by using a modified version of RASTA-
PLP, called RASTA (operating in the cepstral do-
main instead of the perceptual spectral domain as in
[3]), provided significant performance improvements.
Combining bandpass liftering with RASTA resulted
in the best overall performance. Experimental re-
sults on ISDCN and RASTA-PLP are not presented
in this paper for the sake of brevity.

2  Algorithm

The front-end of our system consists of extracting 20
cepstral coefficients from a 14-th order LPC analysis
(20 ms frame period, 30 ms window) on speech data
sampled at 8KHz. Experiments were performed on
cepstral coefficients without (baseline) and with ro-
bustness processing, results tabulated and comnpared.
A simple energy threshold was used to discard non-
speech. A 30-element codebook was trained for each
speaker as the speaker model.



e Speaker identification: Test utterances were
compared frame by frame with each speaker
model; best codeword match was selected for
each model, and then distortions were accumu-
lated to make the final decision.

e Open set speaker verification: Use half of the
speakers in the database as registered targets,
and the other half as impostors. Test utterances
were compared with all the registered target
models, and the accumulated distortions were
tallied to compute the rank of the claimed iden-
tity. If the rank is better than a certain threshold
- accept, otherwise - reject. The thresholds were
adjusted over a range to generate the ROC plot
(detection vs. false alarm).

Because the higher order cepstral coefficients have
less discriminating power and the lower order coef-
ficients are more susceptible to environmental varia-
tion, we use a window function to de-emphasize both
higher and lower order coefficients, called bandpass
liftering [2].

w(k) =1+ hsin(mk/L)

where h = L/2, k = 1,2,...,L and w(k) = 0 for
other k, with L = 20.

Alternatively, we can filter the cepstral vector,
with the following filter:

ag+arz7t +azz™3 + agz7?

H(z)= (1= byz=1)z1

with the coefficients chosen to approximate a band-
pass frequency response. This bandpass operation is
supposed to filter out slowly varying components of
the cepstral coefficients in order to normalize envi-
ronmental variations, called RASTA filtering [3].

Further, bandpass liftered cepstral coefficients can
be processed by the RASTA filter as well.

3 Data Base

The data base utilized in this study is the narrow-
band portion of “King”, collected in 10 sessions from
51 male speakers, 26 from San Diego and 25 from
Nutley. The speakers were asked to talk about sev-
eral topics, so that the speech is natural and spon-
taneous. The data were collected over long distance
telephone line, and the data for 25 Nutley speakers

were much noisier than that of 26 San Diego speak-
ers. The speech material from each session is ap-
proximately 45 seconds long; the data were digitized
at 8 kHz and 12-bit resolution. Sessions 1 to 5 and
sessions 6 to 10 were collected under different envi-
ronments. This division of data, “the great divide”,
results in serious degradation of performance as ob-
served in [4] when training on one set and testing on
the other. Also the Nutley data are much noisier than
San Diego data. We performed our experinients in
three contexts: San Diego alone (26 speakers), Nut-
ley alone (25 speakers), and all 51 speakers combined.
Further, the experiments were carried out across “the
great divide” for the most challenging test condition.

4 Experiments and Results

4.1 Speaker Identification

Table 1 shows the results within “the great divide”,
table 2 shows the results across
As the robustness processing techniques were added,
the performance improved significantly.

“the great divide”.

o Within the great-divide: train on sessions 1, 2,
3, test on sessions 4, 5; train on sessions 6, 7. 8.
test on sessions 9, 10.

Baseline
San Diego | Nutley All
ID-rate 81.73% 35% | 58.82%
Average-rank 2.01923 5.58 | 3.87745
Table 1A: Baseline
Bandpass Liftering
San Diego | Nutley All
ID-rate 85.58% 47% | 66.67%
Average-rank | - 1.68269 4.11 2.88725
Table 1B: Bandpass liftering
RASTA
San Diego | Nutley All
[D-rate 91.35% 50% | T1.08%
Average-rank 1.10577 3.51 2.29902

Table 1C: RASTA



Bandpass Liftering & RASTA
San Diego | Nutley All
ID-rate 94.23% 61% | 77.94%
Average-rank | 1.07692 2.72 | 1.89706

Table 1D: Bandpass liftering & RASTA

o Across the great-divide: train on sessions 1, 2,
3, test on sessions 9, 10; train on sessions 6, 7,
8, test on sessions 4, 5.

Baseline
San Diego | Nutley All
ID-rate 7.69% 36% 19.61%
Average-rank 10.0385 6.49 11.4608
Table 2A: Baseline
Bandpass Liftering
San Diego | Nutley All
ID-rate 36.54% 46% | 36.76%
Average-rank | 4.86538 4.86 | 6.37745
Table 2B: Bandpass liftering
RASTA
San Diego | Nutley All
ID-rate 42.31% 53% | 43.63%
Average-rank | 4.56731 3.35 | 6.23039
Table 2C: RASTA
Bandpass Liftering & RASTA
San Diego | Nutley All
ID-rate 77.88% 65% | 58.82%
Average-rank | 1.86538 2.24 | 3.48529

Table 2D: Bandpass liftering & RASTA

Table 3 shows the comparison of our results with
(4], for 16 San Diego speakers, trained on sessions 1,
2, and 3, tested on sessions 9 and 10.

(4] | BPL & RASTA
ID-rate 75% 87.5%
Average-rank | 1.56 1.12

Table 3: Comparison between [4] and BPL & RASTA

4.2 Open Set Speaker Verification

Fig 1, 2, and 3 show the ROC plots for San Diego,
Nutley and all 51 speakers experiments respectively.

There are four curves in each figure:
e b: baseline, within the great divide.

e n: normalized (bandpass liftering & RASTA).
within the great divide.

o bx: baseline, across the great divide.

e nx: normalized (bandpass liftering & RASTA)
across the great divide.

5 Discussions and Conclusions

Tables 1 and 2 clearly show the independent con-
tributions of bandpass liftering and RASTA to per-
formance improvement. Bandpass liftering deempha-
sizes the highly variant and noisy cepstral coefficients
and is a static correction. RASTA smoothes all of
the cepstral coefficients by a bandpass filtering op-
eration thereby attempting to remove the effects of
the channel and the transducer. In this sense, the
spoken material is “self-normalized,” providing ro-
bustness. Thus, by combining the static (bandpass
liftering) and dynamic (RASTA) techniques, we ob-
tain the benefits of both techniques. Note that im-
provements are dramatic when the testing is across
the great-divide. An interesting observation is that
we get these improvements without using any spe-
cific noise-removal technique, such as spectral sub-
traction used in [6]. We have verified the consistency
of the results of this paper on an independent data
base, called the continuous speech recognition (CSR)
data base. CSR consists of simultaneous recording
of speech material from subjects using two different
types of microphones. Hence CSR provides an ex-
cellent means of not only establishing consistency of
our results, but also to develop insight into why these
techniques work. This is accomplished by examining
scattergrams of the various cepstral coeflicients for
recording with the two different microphones with
and without robustness processing. As shown in Fig.
4, the cepstral coeflicients of mic-1 vs. mic-2 are
more aligned with z = y after RASTA filtering. All
of the above discussions hold for speaker verification
as well.

We have identified, by systematic investigation, a
combination of techniques that provide a very robust
performance. However, additional work is needed to
improve the performance across the great divide to



be

at the level of performance within the great di-

vide. Also, additional investigations planned with
experimentation on a highly challenging corpus, the
Switchboard {7], will shed further light.
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Fig 1: San Diego (26 speakers)
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Fig 2: Nutley (25 speakers)
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Fig 3: All (51 speakers)
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Fig 4A: Scattergram of mic-1 vs. mic-2
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Fig 4B: Scattergram of mic-1 vs. mic-2



