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Abstract

We consider digital binary images as realizations of a bounded discrete random set, a mathematical object
which can be defined directly on a finite lattice. In this setting, we show that it is possible to move between
two equivalent probabilistic model specifications. We formulate a restricted version of the discrete-case analog of
a Boolean random set model, obtain its probability mass function, and employ some methods of Morphological
image analysis to derive tools for its statistical inference.

1 Introduction

The Boolean random set is arguably the most important random set model to date. Its importance stems from two
principal considerations: its analytical tractability and its power in modeling many interesting phenomena. Typical
applications include but are not limited to: random clumping of dust, or powder particles, or blood cells; modeling
of geological structures, patterns in photographic emulsion , colloids in gel form, and structural inhomogeneities in
amorphous matter [20, p.68, and references therein]. Other potential applications include particle counting and size
analysis in images of cell cultures, and modeling of clutter in infrared imaging. Informally, a Boolean random set
is constructed by centering a simple random shape (set), such as a disc of random size, at each point of a Poisson
field of points in the plane, and then taking the union of the resulting sets. Random shapes centered at different
points of the Poisson field are assumed to be independent and statistically equivalent. The points of the Poisson field
associated with a Boolean random set are known as the “germs”, and the Poisson field itself is sometimes called the
germ process. The random shapes are known as the “primary grains”.

The transition from continuous domain random sets to discrete domain random sets is a troublesome one {19].
In practice, one usually deals with discrete, finite data. Therefore, we have chosen to define discrete random sets
directly on the appropriate spaces, and base subsequent developments on this axiomatic definition. This idea has been
concurrently and independently developed in [10, 9]. There exist certain differences between the two formulations,
and the results evolve in different directions. First we present a general theorem, then we consider a restricted
version of the discrete case analog of a Boolean random set model, and develop some tools for its statistical inference.
Statistical inference techniques are very scarce in random set theory. Most of the existing literature is specific to
the Boolean model, and is concerned with parameter estimation, based on some variant of the method of moments
(18,4,3,6,1,19, 7).

*Keywords: Image Analysis, Bayesian Decision Theory, Discrete Random Sets; Boolean Model, Mathematical Morphology, Skeleton
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2 Discrete random set fundamentals

Definition 1 Let B be a bounded subset of Z2. Assume that B contains the origin. Let £(Q) denote the o-algebra
on Q. Let £(B) denote the power set (i.e. the set of all subsets) of B, and let L(X(B)) denote the power set of T(B).
A Discrete Random Set (DRS), X, on B, 15 a measurable mapping of a probability space (Q,Z(Q), P) into the
measurable space (E(B), Z(Z(B))). A DRS X, on B, induces a unique probability measure, Px, on L(Z(B)).

Definition 2 The functional
Qx(K)=Px(XNK =19)
is known as the generating functional of the DRS X.

Lemma 1 (Variant of Mobius inversion for Boolean algebras) Let v be a function on E(B). Then v can be repre-

sented as
v(A) = Z u(S) “erternal decomposition”
scas

The function u is uniquely determined by v, namely

u(S) = >_(-1)I€lu(s°uC)

ccs

where © denotes complement with respect to B.

Proof:
Uniqueness: Assume that the external decomposition formula holds. Look at the right hand side of the inversion -
formula.
ST (-D)€ly(sTuC) = St Y uD)=
ccs ccs DCSNCe
S DY wpy =3 S (D)=
ccs DCS\C CCS DCS\C
S Y D)= Yo uD) Y (-D)=u(S)
DCSCCS\D DCS cCSs\D
Since 0S40
—_let = J
Z( D™= { 1 ,5=090
ccs
Existence: Assume that the inversion formula holds, and look at the right hand side of the external decomposition
formula.
Sus) =3 S (=1)ly(seuC) =
SCA® 5CAcCCS
T TS\ = Y X (D)D) =
5CA=CCS DCA°CCA°\D .
S w07 T (1)1 = u((4)7) = w(4)
DCaAs CCA\D

As for the uniqueness part. O
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Theorem 1 Given Qx(K'), VK' € L(B), Px(A), VA € £(Z(B)) is uniquely determined, and, in fact, can be
recovered via the measure reconsiruction formulas

Px(A)= " Px(X = K)

KeA
with o, ,
Px(X=K)= Y (-1)¥IQx(kuK’)
K'CK
Proof:

The reconstruction formula for the functional Px(X = K) in terms of the functional Q@x is a direct consequence
of Lemma 1 and the fact that @x can be expressed in terms of Px as

Qx(K)= > Px(X=K')

K'CKe

a

The unigqueness part of this Theorem is originally due to Choquet [2], and it has been independently introduced
in the context of continuous-domain random set theory by Kendall [11] and Matheron (14, 15]. Related results can
also be found in Ripley [17}. However, the measure reconstruction formulas are essentially only applicable within our
formulation. In the continuous case, the uniqueness result reljes heavily on Kolmogorovs’ extension theorem, which
is non-constructive.

3 A DRS analog of the Boolean mode]

Let H be a convex! subset of B', |B'| << |Bl, which contains the origin. In the terminology of Mathematical
Morphology?, H is a convex structuring element. Let X}, denote the translate of X by the vector A, and

H*={-h|he H}

Definition 3 : The erosion, X © H?, of a bounded set X C Z2 by a structuring element H, is defined as

XeH = () X.u={:€2’ | H, C X)
‘ heHd

Definition 4 : The dilation, X @ H*, of a bounded set X C Z2 by a structuring element H, is defined as

X H = UX_h;{zEZQIHzﬂX¢0}
heH

£

Definition 5 : The opening, X o H, of a bounded set X CZ>bya structuring element H, is defined as

XoH=(XoH)oH

'In digital topology [12, 19, 9), the conver hull of a bounded set, H C Z?, is defined as the intersection of the convex hull of H in the
topology of R?, with Z2. A bounded set, H ¢ Z2,is conver ifit is identical to its convex hull.

2Refer to [19] for a thorough introduction to the principles of Mathematical Morphology. Here we merely reproduce some basic
definitions.

34/ SPIE Vol. 1769 Image Algebra and Morphological Image Processing I (1992)



1P Y7 T WRIY MeTT IR T TPRRITI Ty gy s T e TR e e
Dhikaith i PRESHINOE eSS S SR S S ey
R R SR

R e di T R L s

e we mismomy mem war T

In the discrete case the notion of size can be formalized via the operation of set dilation

(lleHoH® -®H, (r times) ,r=12,...
rH =
r=0

{0} ;
eralized Bernoulli lattice process on B, constructively defined

dinV¥ witlh probability As(z), independently of all others.

$’s on B, each given by Gi = R;H, where {R1,Ra, -}
buted according to a pmf fr(T),

in the following manner:
Let {Gl,Gz,-"} be a set
form an i.i.d. sequence of
which is compactly

Definition 6 Let ¥ be a gen
cach point z € B is containe
of nonemply, convez i.i.d. DR
Z+-valz;ed r.v.’s which is independent of ¥, and each R; is disiri
supported on {0,1,.. ., R}. Define
X= U G: @ {vi}
i=1,2,...

will be called a Discrete Radial Boolean Rando
H, fr)-DRBRS. The points {y1,¥2,
of the DRBRS X.

where ¥ = {y1, 92, -} Then X m Set (DRBRS) , with
parameters (As, H, fr), and will be denoted by (As, } will be called the germs,

and the DRS’s {G1,G2, 2} will be called the primary grains

int on that the result of a & operation is automatically restricted

Remark: For brevity, we assume from this po
to B. Also, ¢ stands for complement with respect to B.
We now proceed to compute the generating functional of a (As, H, fr)-DRBRS. Define

dH (2, K) = minkex|lz — klln

where :
|z — k|l = min{n 20| ({z} @ nH) N {k} # 0}

e origin. We remark that df (z, K), as defined above, is

) =0, since H contains th
lization of the digital Housdorff metric. With this notation in place,

be shown that

Observe that for z € K, df(z,K
a digital uniform step metric, which is a genera
and employing some simple geometric arguments, it can

ox(x)= |1 [0-&&D+AdﬂﬂwﬂﬁJﬂ—lﬂ

:€K@®RH*

where

Fa(m) = fr(l)
1=0

and Fgr(—1) =0, by convention.
We can now use Theorem 1 to compute Px(X = K)

Px(X=K)= Y (-1)“‘" 11 [(1 ~ 2, (2)) + A (2)Fr(d™ (2, K° UK - 1)]
K'CK 2€(KeUK')®RH" o

1 inference of the DRBRS model

plication of the last formula of the previous section
ds on Px(X = K). In order to
te. For the simple case of

in terms of @x -

4 Statistica

a brute-force ap
terested in obtaining tight boun
ehaved, and relatively easy to compu

The computational complexity associated with
is exponential in |K|. One would therefore be in
be useful, these bounds must be reasonably well b
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a DRBRS model with constant intensity, A,(z) =p = 1—g¢, Vz € B, and primary grains of fixed size (one, by
convention), the generating functional is simply given by

Qx(K) = qIK@H'I

We have the following result for this model.
Proposition 1 For all ¢ € [0,1], and all realizable® K € £(B), K #0,B

Ly(K) < Px(X = K) < Ug(K)

with
LK) = gK®H (1 — q)| (K @H™ )

and
Uy(K) = 2051 [(1+ 1+ (1 - 9]

—olKlI=1,lK SH |+ KeH"|

Both bounds are polynomials in g, they are equal to zero at the endpoints ¢ = 0,1, strictly positive for allq € 0,1),
and unimodal in (0,1). The mode of the lower bound is located at

— |Kc @ H?|
q K)= ———
Remark: The mode of the upper bound has to be determined numerically.

Proof: Upper bound:
PX(X = I{) = Z (—I)IK"Q(K"UK')$H'|
K'CK

— Z q(K"UK')@H'I - Z q(KCUK')$H'|
K'CK, |K'|=even K'CK, |K'|=odd

Observe that, by distributivity of dilation over union, and using the union bound
(K UKY@ H|=|(K°® H)U(K'® H*)| < [Ke® H*|+|K'® H®|
Furthermore, since H is assumed to contain the origin
(K UK')® H*| > |K°UK'| = |K°|+ |K'|

Therefore, since ¢ is a probability

Kc 4 KC s i ]
Px(X=K) < Z gHE K _ Z . gKeH [+HIK'@H"|
K'CK, |K'|=even K'CK, |K'|=o0dd
— gIK® K’ K°®H* ' K'eH"
= ql ! Z ql (- ql eH"| Z gK'® !
K'CK, |K'|=even K'CK, |K'|=o0dd

3Meaning that K can be written as K = L @ H, for some L € Z(B). If K can not be written this way, then it is not a realization of
the DRBRS model under consideration, and, therefore, its probability is zero.
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< qlK‘l 2 qlK'l - qlK°€BH'l Z qlK@H"l

K'CK, |K'|=even K'CK, |K'|=0dd
- qIK"l Z qlK'l _ qIKCQH'l-HK@H'{ 1
K!CK, |K'|=even K'CK, |K'|=0dd
Thus :
< ‘K‘ : < . s |K‘
prx =Ky <d®| 3 (7)) - KSR S |
ieven i:odd
Using the fundamental identity
KL Ak .
a Z(i>z'=(1+z)““, vzecC
1=0
and successively setting z = —1,1, we obtain

> (ulq) _ kit

i:0dd
Similarly, replacing z by ¢z and then setting z = —1,1, we obtain
KN ;1
) (z)q*=§[<1+q>'“'+(1—q)”"]
iceven

From which, we finally obtain the expression for the upper bound.
We will need the following Lemma.

Lemma 2 (Descarte’s rule of signs [16, pp- 36-43]) Let p(z) be a polynomial of a real variable, with real coefficients.
p(z) = @0 + 01T +a23:2 +- 4 apz”

Let C denote the number of changes of sign of the sequence of its coefficients (for each m> 1, if am-10m < 0, then
(Ctm—1,%m) constitute a change of sign). Let Z be the number of positive real zeros of p(z) (a zero of multiplicity k

is counted as k zeros). Then:
C-220

and C — Z is an even number.
Using once more the identity
|K| KN
Z(i)z’ =(1+z)'Kl, vzel
i=0

it can be seen that Ug(K) can be written as

1Kl 1k L e )
Ug(K) = Z ( i )qlK I+i _ glK|-1glK°®H |+IK®H"]

ieven

Since all the coefficients of this polynomial are strictly positive, except for the coefficient of the highest degree which
is strictly negative, by employing Descarte’s rule of signs, we conclude that U,(K) has at most one z€ro in (0, 00)-
But U;(K) =0, and, therefore, this is the unique zero in (0,00). Hence, U (K)>0,VYq€ (0,1).
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Figure 1: The concept of the feasible region.

Next, consider the derivative of the upper bound, with respect to gq. After some algebraic manipulation, it can
be written as

| K|
< |K| . i — e s s c E 1_ <
U (K) = %I 1K+ Y [(")('KC'“)}" _ oKLk @ B+ |K @ H* || K OH 1+KOH |- IK

i=2, iieven

4
dq

Again, since all the coefficients of this polynomial are strictly positive, except for the coefficient of the highest degree
which is strictly negative, by employing Descarte’s rule of signs, we conclude that %Uq([{) has at most one zero in

(0,00). But
4
dq
d
dq

U (K) =0

¢=0

and
diqu(K) = KoKt L g (2lKI=2 _ oKt ke g Y+ |[K @ HY|] < 0, VK #0
g=1

Therefore, by continuity, we conclude that %Uq(K) has at least one zero in (0, 1), which must also be unique. Hence,
since its derivative has only one zero crossing in (0, 1), U, (K) must be unimodalin (0, 1).

Lower bound: It can be easily seen that one possible germ configuration which can give rise to the observation,
K, is given by the set of points (K°@® H*)°. In particular, let L denote the germ point process (which is itself a DRS).
Then X can be written as X = L& H. By simple geometric arguments (X*@ H*)°® H = X, and L C (X & H*)",
ie. X¢@® H® C L°. Hence :
Px(X = K) 2 ¢! ®HI(1 - g)(**8 7

The lower bound is strictly positive for all ¢ € (0, 1) (by inspection). One can easily show that it is unimodal. The
mode location is obtained by simple differentiation of the logarithm of the lower bound. O

Remark: Bounds of this type can be used to obtain the feasible region of the true Maximum Likelihood (ML)
estimate of g, given the observation K. Since these bounds are typically very high degree polynomials, their (unique)
modes are very sharp, leading to very accurate localization of the true ML estimate of ¢q. Specifically, since the
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Figure 2: Realization of a Boolean model of constant intensity and fixed primary grain.

bounds are unimodal polynomials, the true maximum likelihood estimate of ¢ must be within the closed interval of
g-values delimited by the two g-values at which the upper bound is equal to the peak of the lower bound. This
situation is illustrated in figure 1. This technique can also be used for binary hypothesis testing between two values
of q. If these two values are sufficiently far apart, the bounds will indicate that the corresponding likelihoods are
in disjoint regions, in which case a decision procedure based on these bounds is as good as one based on the exact

likelihood, but tremendously faster.
The mode, §(K), of the lower bound, L,(K), underestimates g, le. g(X)isa biased estimator of g on the basis

of the observation, X. This can be seen as follows.
E|X‘® H?|

£ = =g

Let L denote the germ point process. Then X¢@ H* C L°. Thus

¢ @ H| < |17
and
E|X°®H'| < E|L°]
S
° E|L¢| _ qlB]
FAC0 < g = 981 =

A simple estimator of ¢ on the basis of X is

S0 = 12 - ;c(X)

where CC(X) is the number of connected components of X. Obviously, this estimator overestimates ¢, because the
number of germs (points) of any particular realization of L is always greater than or equal to the number of connected _
components of the corresponding realization of X = L @ H. We also remark that the ML estimator of ¢ on the
basis of X is not guaranteed to be unbiased. In practice, for “typical” observations, all these estimates are “close” to
each other. As an example, figure 2 depicts a realization of a DRBRS of constant intensity and fixed primary grain.
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For this example, ¢ = 0.999, and the computed estimates are § = 0.998, 7 = 0.99918, whereas the feasible region is
[0.9978,0.9992]. -

Similar bounds can be worked out for a DRBRS X of constant intensity, A,(z) =p = 1—g<< 1, Vz € B, and
primary grains of random size. It can be shown that

Qx(K) = gFIRRH'|

where the expectation is taken with respect to the pmf fg of the radii. Using this approximation, which is asymptot-
ically good as g goes to 1, and Theorem 1, one can obtain the same upper bound, but this time on the approzimate
(instead of the actual) probability. In this case, H in the expression for the upper bound is replaced by RH, where R
is the maximum possible radius. A unimodal lower bound can be obtained by employing the Morphological Skeleton
Transform.

4.1 Morphological Skeletonization as a method of obtaining a consistent realization
of the underlying marked point process

Let us consider the following simple vs. simple hypothesis testing problem

Ho: X ~ (N H, fO)\.DRBRS
vs. Hi: X ~ (A B, £A)-DRBRS

In principle , given any observation K € I(B), the probability of this observation under each one of the two
hypotheses can be computed using Theorem 1, and the Bayesian rule of choice can be implemented. In practice,
the computational cost associated with this brute-force method limits its applicability. We therefore pursue an
alternative approach. The key idea is the following. Suppose that instead of the DRBRS realization, K, we were
given the realizations of the germ point process {y1,y2,--} and the associated radii {R;, R, ---} that produced
K. Let these data be represented by an ordered list of collections of sites {L1, -+, LN}, corresponding to radii
{r1, -+, 7N} respectively, where R>r; >rp > ---> rN >0, € Z,, N<R. The log-likelihood ratio is

Pri{(Li,m), -, (Ln, ™)} 1-20@)) | & () | & AN ()
log = log | — =221 + N |Li]log + log =—=2
Pro{(Lu,ri), -+, (L, 7)) zealguzv o \1=237@) 2' o\ 5 ?E A0 (z)

=1

Therefore, we can easily classify the observation, according to Bayesian decision theory. However, the recovery of
these data from the observation K is an ill-posed problem.

Simply put, the Morphological Skeleton* [13, 8] of a binary shape, K, with respect to a structuring element, A,
is the locus of the centers of all mazimal inscribable replicas of H in K. A replica of H is a scaled and sifted version
of H. A replica of H is mazimalin K iff it cannot be properly contained in any other replica of H which can be
inscribed in K. The Morphological Skeleton Function (MSF) of K with respect to H is the function whose support
is the Morphological Skeleton of K with respect to H, and its value at each skeleton point is equal to the radius of
the corresponding maximal inscribable replica of H. The Morphological Skeleton is explicitly given by

N N ’
SK(K) = | Sa(K) = | (K ©nH*) — (K ©nH*) 0 H]

n=0 n=0

*Many other related notions of a skeleton exist. However, the given definition is sufficient for our purposes.
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Figure 3: Realization of a DRBRS and its skeleton

where
N =maz{n| K&nH*" #0}

The set Sn(K) is the locus of centers of maximal inscribable replicas of size n, and it is called the nt? skeleton subset
of K. Given all the skeleton subsets, the MSF is uniquely determined.

The MSF provides one realization of the germ points (the support set of the MSF), along with their associated
radii (the values of the MSF), which can give rise to K. Therefore, we can obtain a lower bound on Px(X = K) by
simply computing the probability of this realization of the germ points and their associated radii. We propose the use
of the log-likelihood ratio test applied to these data as a decision rule for the simple hypothesis testing problem under
consideration®. If the grains of K are disconnected (in the chessboard-block sense) and contained in B, then the true
(unique) realization of the underlying marked point process is actually recovered, and the proposed decision rule 1is
exact Maximum Likelihood. The overall procedure can be efficiently implemented (in polynomial time), thanks to
the existence of fast Morphological Skeletonization algorithms [13]. Figure 3 depicts a realization of a DRBRS and its
skeleton. Simulation results have been very encouraging, even when the primary grains overlap substantially. These
simulations suggest that, for the purposes of hypothesis testing between two DRBRS models of different intensities,
the size of the skeleton is an important statistic, in the sense of possessing high discriminatory power. This prompted
us to investigate whether it is possible to make Maximum Likelihood decisions between DRBRS models of different
intensities (but otherwise identical), based solely on the size of the skeleton. As it turns out this is not entirely true.
In fact, the important statistic is the size of a superset of the skeleton. This is the subject of the following theorem.

Theorem 2 Consider the simple vs. simple hypothesis testing problem:

Ho: X ~ (po, H, fr)-DRBRS
vs. Hi: X ~ (p1, H, fr)-DRBRS

where po,p1 ore constants, both in (0,1), pr > po, and fr(r) (the common size distribution) is zero oulside
{E,---,R}, where R > 0. Define
s [(X¢®RHY)

7(X) 5]

5This idea has been concurrently and independently developed in [10], as a means of performing shape/size analysis and synthesis of
a different class of DRS models.
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Let K be the observation, and let Po(X = K), Pi(X = K) denote the probability of the observation under the null
and alternative hypothesis, respectively. If
a log(1 — p1) — log(1 — po)

log(po(1 = p1)) — log(p1(1 = po))

7(K) < l(po, p1)

then Po(X = K) > P;(X = K).

Proof:

Let L be a realization of the germ points which can give rise to the observation, XK. The probability of this
realization under pg is Pro(L) = pLLl(l — po)lBI=IEl | whereas under p; it is Pry(L) = pIILI(l —p1)!BI=HEL 1t is easy to

see that L
Pro(L) > Pri(L) <= ||

— <!
IB| < (po, p1)

But, any L which can give rise to K necessarily satisfies
LC(K°® RH*)"

thus

L

,'Eil < 7(K) < (po, pr), by assumption
Therefore, Pro(L) > Pr(L), uniformly over all L which can give rise to K. Hence, since the two models have the
same primary grain and size distribution, we conclude that Py(X = K) > P (X=K). O

This theorem may find application in the automated screening of cell samples, where the alternative hypothesis
corresponds to an abnormally high average number of cells per unit area. Then, most of the observed samples can be
classified with minimal effort, whereas the few samples which do not meet the criterion of theorem 2 can be examined
in greater detail, by either a machine, or a human expert.

5. Conclusions

In this paper, we have taken the approach of modeling discrete and binary image data as realizations of a
bounded Discrete Randem Set. We have argued for the merits of such an approach, most notably the ability to
recover the associated probability measure given knowledge of the generating functional, by means of a Mobius-type
transformation. Based on this result, we have developed a discrete analog of the Boolean random set, and provided
various tools for its statistical inference. Although, in reality, binary image data are sampled versions of an underlying
physical process, which lives in a continuum, the data per se can only assume a finite number of realizations. This is
the case in many applications, in which there exist physical barriers that limit the available resolution. Although a
Discrete Random Set approach may ignore the “fine letter” of the underlying physical structure, it provides a useful,
and, most importantly, tractable idealization, which, as demonstrated, can lead to practical inference procedures.
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