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Abstract

Experimental investigation of free-text speaker
identification method based on long-term statistics is
conducted on a widely-used long distance telephone data
base [1]. On a 26-speaker subset, an average correct
identification of 93.3% is obtained: on the complete 51-
speaker set, 67.6% correct identification is obtained.
Speaker verification experiments on the data base
provided receiver operating characteristics (RCO)
comparable to or better than the ones available in open
literature.

1. Introduction

This paper presents the results of experimental
investigations into several aspects of free-text speaker
identification and speaker authentication using a long-
distance telephone data base, described in [1].
Specifically, the following speaker identification
experiments were carried out to establish the effects of:

L. Using phonetic segments hypothesized by a speaker
independent recognizer.

2. Using broad phonetic class segments, obtained by
pooling classes from item 1. above.

3. VQ codebook size for the feature vector.

4. Using various parameters as feature vectors: log area
ratios, LPC cepstral coefficients, and reflection
coefficients.

5. Noise reduction including bandpass filtering.

Speaker verification was carried out using broad
phonetic class speaker models along with noise reduction,

2 Algorithms
2.1 Speaker Models

A speaker model consists of one or more vector
quantization (VQ) codebooks of a speech parameter vector
(for example, LPC cepstral coefficients) derived from the
training utterances of the speaker. A single codebook is
used when no phonetic hypotheses are to be exploited; all
non-speech frames are eliminated by energy thresholding,
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and the speech frames utilized to build the VQ codebook.
Multiple codebooks are used for phonetic hypothesization
experiments. The untranscribed training utterances are
segmented by a speaker-independent continuous speech
recognizer into phonetic categories. VQ codebook for
each phonetic category (or broad phonetic category) is
built from the corresponding hypothesized segments. A
phonotactic grammar was used to improve the
performance of the phonetic hypothesization. Phonetic
models used in the recognizer were derived from the Voice
Across America (V AA) data base described in [5]

2.2 Speaker Identification

For the case of non-phonetic method (single VQ
codebook speaker model), each frame of the test utterance
is classified as speech or non-speech; the features of the
speech frames are compared with the model of each of the
speakers in the population to generate the distortion for
each candidate speaker according to a pooled speaker
discrimination metric. The candidate with the least
accumulated distortion is declared as the identified
speaker. The pooled speaker discrimination metric is
derived from the training data by maximizing the F-ratio
to improve separability between speaker classes.

The alternative methods employed a speaker-
independent continuous speech recognizer, whose output
consists of hypothesized phonetic segments. The frames
of speech from a phonetic category is compared with the
candidate speaker model for that category as per the
pooled speaker discrimination metric. Thus, a distortion
for each of the observed phonetic category in the utterance
is calculated. These distortions are summed (it is
possible to do 5o in a weighted manner; but this was not
done) over all observed phonetic categories to provide the
total distortion for each candidate speaker. Again, the
candidate with the least distortion is declared as the
identified speaker.

2.3 Speaker Verification

VQ speaker models described in Section 2.1 were
used along with Euclidean distance as the metric, We
chose not to use the pooled speaker discrimination metric
because it would have provided an unfair statistical
knowledge of the impostors. In this paradigm, half the
population (by choosing alternate speakers) was used as
impostors, and the target speaker and "normalizing"
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speakers came from the other half. The total distortion
over the input test utterance is computed for the target
speaker as well as for each of the "normalizing" speaker.
If the total distortion provided by the target speaker is
lower than that of the "normalizing" speaker modelis, the
test utterance is verified as belonging to the target
speaker; otherwise the test utterance is declared as
belonging to an impostor.

3. Data Base

The data base utilized in this study is the digitized
subset of speech data collected in 10 sessions from 51
speakers, speaking on several topics (so that the speech is
natural) over a long distance telephone line. Of the 51
speakers, 26 were based in San Diego and 25 in Nutley,
N.J. The data from Nutley speakers was considerably
noisier than that from San Diego. Further, the equipment
used for recording had changed from session 6 onwards,
establishing a division of the data base into two portions
- sessions 1 through 5 (Div1), and sessions 6 through 10
(Div2). The nominal duration of the utterances in each
session was about 45 seconds; when non-speech frames
were eliminated, the average speech data was about 23
seconds. When the speaker-independent continuous
speech recognizer with the phonotactic grammar was
used, and non-phonetic categories (silence, background,
inhalation, exhalation etc.) eliminated, the average speech
data was only about 29 seconds.

Our experiments were conducted for both the 26-
speaker (San Diego) subset and the total 51-speaker set.
Training and test material were mostly restricted to Div1
or Div2; very limited experiments were performed where
the training data was from Divl, and test data was from
Div2, or vice versa.

4 Experiments and Results
4.1  Phonetic Segmentation

Previous published research [2] [3] [4] and informal
discussions with various speech researchers in this area
provided a mixed review of the value of automatic
phonetic segmentation. This observation, along with the
belief that the act of converting free, unknown text to
known, but unfixed text (performed with acoustic
consistency) should help, motivated us to investigate this
aspect.

Allowing 49 phonetic categories, with a 10-element
VQ codebook for each category (20 LPC cepstral
coefficients), as the speaker model, an average correct
speaker identification of 89.4% was obtained for the 26-
speaker (San Diego) set; over all the 51 speakers, it was
63.2%. By collapsing the phonetic categories into il
broad classes, and retraining the 10-element VQ codebook
for each of the 1! classes, the improved average
recognition of 93.3% was obtained for the 26-speaker set;

average recognition of 67.6% resulted for the 51-speaker
data. When no phonetic marking was used with a 110-
element VQ codebook, the results were nearly identical to
that of broad phonetic class method, and better than that
of detailed phonetic marking (49-category).

Session No. No. of speakers correctly identified
Training | Test | A B C
1,2,3 4 25 25 24
1,2,3 5 24 24 24
6,7, 8 9 24 24 23
6,7, 8 10 24 24 22
Avenige 93.3% 93.3% 89.4%

A : Non-phonetic
B : Broad Phonetic (11 classes)
C : Detailed Phonetic (49 phones)

Table 1A (26-speaker San Diego data, noise reduced)

Session No. No. of speakers correctly identified
Training | Test | A B C
1,2,3 4 36 36 34
1,2,3 5 31 34 31
6,7, 8 9 37 37 34
6,7, 8 10 33 31 30
Average 67.2% 67.6% 63.2%

A : Non-phonetic
B : Broad Phonetic (11 classes)
C : Detailed Phonetic (49 phones)

Table 1B (51-speaker complete data, noise reduced)

100% T
80% 1
60%
40% 4
¥ b. 26 speaker, broad phonetic class (11 classes)
. 26 speaker, phonetic marking (49 phones)
y d. 51 speaker, no phonetic marking
20% Sp! p
e. 51 speaker, broad phonetic class (11 classes)
f. 51 speaker, phonetic marking {49 phones)
-t
1
45 sec.

Fig 1 Correct Speaker Identification Rate as a
function of input speech durations (including non-speech)
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These above results were based on data where noise
suppression was used (see Section 4.4). Detailed results
are presented in Table 1. Figure 1 presents performance as
a function of average utterance duration (see earlier
comments on "speech only" duration in section 2).

4.2 VQ Codebook Size

With non-phonetic models, the codebook size was
varied between 5 and 110. The performances were
virtually identical for codebook sizes of 25, 55 or 110.
With a codebook of size 10, it was noticeably worse.

4.3 Features

The effect of using various speech parameters for
speaker identification was studied with the detailed
phonetic model approach. LPC cepstral coefficients of
dimension 20 yielded 89.4%, 10-th order log area ratio
coefficients 86.5% and 10-th order reflection coefficients,
83.7% for the 26 San Diego speaker experiments. For the
total 5l-speaker experiment, the corresponding
performances were 63.2%, 61.3%, and 59.3%
respectively. All other results presented in this article
were obtained with LPC cepstral coefficients.

4.4 Noise Reduction and Filtering

Preliminary listening and spectrographic analyses of
the data base clearly showed the noisy nature of the data,
especially that of the Nutley speakers. Spectral
subtraction [6] method of noise suppression, along with
bandpass filtering (300 - 3300 Hz), was used to
preprocess the data base. Experimental results indicate
that noise suppression increased the speaker identification
rate by an additional 10%-for both non-phopetic and
phonetic methods. What is surprising is that the
performance with the relatively cleaner San Diego data
(26-speaker set) also showed the improvement. The
effects of noise suppression are brought out in the
performance results shown in Table 2.

Session No. No. of speakers correctly identified
Training | Test | A’ A B’ B
1,2,3 4 25 22 24 20
1,2,3 5 24 20 24 18
6,7, 8 9 24 23 23 24
6,7, 8 10 |24 22 22 21
Average 93.3% 183.7% |89.4% |79.8%

A : Non-phonetic
B : Detailed Phonetic
A’ and B’ are Noise suppressed versions of A and B

Table 2A (26-speaker San Diego data)

Session No. No. of speakers correctly identified
Training | Test | A’ A B’ B
1,2,3 4 36 31 34 28
1,2,3 5 31 25 31 29
6,7, 8 9 37 33 34 30
6,7, 8 10 ]33 29 30 27
Average 672% |57.8% 163.2% |55.9%

A : Non-phonetic
B : Detailed Phonetic
A’ and B’ are Noise suppressed versions of A and B

Table 2B (51-speaker complete data)
4.5  Speaker Verification

A set of preliminary speaker verification experiment
was carried out on the data base. The following three sets
of data were considered: (i) 26-speaker San Diego
speakers, (ii) 25-speaker Nutley speakers, and (iii) 51-
speaker total population. Speaker models were based on
broad phonetic classes, and Euclidean distance was used as
the metric. The speaker models were derived from
sessions 1, 2 and 3 for Divl data experiments, and from
sessions 6, 7 and 8 for Div2 data experiments. Test data
came from sessions 4 and 5 for Divl experiments and 9
and 10 for Div2 experiments. Figure 2 presents the
receiver operating characteristics (ROC) for the three data
sets for the case of training on sessions 1-3 and testing
on session 4. Figure 3 presents the ROCs with results
averaged over all the sessions.

Pd 15
0.95 3
0.93
0.85 3
0.8 3
0.75 3
0.7 3
0.65 é s : San Diego (26 speakers)
0.6 3 n : Nutley (25 speakers)
~ 3 ¢ : All 51 speakers
0.55 3
0'5 llilllllllll ll'[lIIIIIIIIIIIIIIIIIIIIIIIIIIII LLILAS
0 010203 0405 06 07 08 09 1
Pt
Fig. 2 Speaker Verification Performance :
Session 4
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Fig. 3 Speaker Verification Performance :
Average of sessions 4,5, 9, and 10
5 Discussions

Our experiments indicate that detailed phonetic
hypothesization for building speaker models and
identification did not provide improvement over non-
pbonetic model approach. We believe that this result is
probably due to inadequate training data, and possibly due
to some poor phonetic segmentation. A thorough
experiment with expert-marked speech data will indeed be
very revealing; such data is usually limited (resulting in
poor training of speaker models) and hard to obtain.
However, if orthographic transcription of the data is
available, we could perform supervised recognition [7] to
obtain a reasonably good phonetic marking to enable us
to determine the value of this approach. A suitable
candidate would be the Switchboard data base [8], where
the orthographic transcriptions along with word-level
segmentation (guided by a pronunciation dictionary) are
available.

Broad phonetic class speaker models performed as
well as pon-phonetic models with equivalent size
codebook, and much better than phonetic models. Broad
phonetic models also provide computational advantage in
the distortion computation portion because of the smaller
size codebooks (11 10-element codebooks vs. 110-
element codebook); but the computational burden of
speaker independent recognition will have to be taken
into account in the overall computational requirements.

Noise suppression proved to be very valuable indeed.
The average correct identification increased by 10%. We
were surprised that it improved the results for even the
relatively clean data from San Diego speakers.

Preliminary speaker verification experiments
provided very encouraging results compared to other
published results [9]. By incorporating a speaker

discrimination scheme specific to the verification
paradigm, we hope to improve our performance.
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