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Abstract

We consider the two dimensional Analytic
Bezout Equation (ABE) and investigate the
properties of a particular solution, based on
certain conditions imposed on the convolution
kernels. We propose the use of approximate
deconvolution kernels, prove compactness of
their support, and discuss various design prob-
lems pertaining to the question of convergence
of the proposed deconvolution kernels. We
point out the fact that these approximate de-
convolution kernels exhibit a strong asymme-
try in the I'T domain, and propose solutions to
this problem. Simulation results are presented
in order to demonstrate the gain in bandwidth,
the asymmetry of the FT of the overall system,
and the effectiveness of the proposed solutions
to compensate for this asymmetry.

1 Introduction

Signal deconvolution is a fundamental problem
related to a variety of scientific and engineer-
ing disciplines. The traditional problem for-
mulation can be stated as follows: we observe
the output of a Linear Time Invariant sys-
tern modelled by a convolution operator with
known kernel (or convoluter) and wish to syn-
thesize the input signal based on output ob-
servations. This is generally an ill-posed prob-
lem. An alternative approach is to use a fam-
ily of suitably chosen Linear Time Invariant
convolution operators and attempt to recon-
struct the common input signal by combining
the outputs of all available devices. The moti-
vation here stems from the fact that multiple
operators are indeed necessary for the decon-
volution problem to be well posed {1]. The spe-
cific application we have in mind is deconvolu-
tion for electro-optic imaging devices (Imaging
Detector Arrays) [1,10,6].
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Figure 1: Multiple convolutional operators op-
erating on a single input

Consider the system of figure 1. The fs are
distributions of compact support defined over
R? and L, denotes convolution with kernel f;.
The natural question that comes up is: what is
the minimum possible m and what conditions
should the f;’s satisfy so that we can uniquely
determine s(-) from the d;(-)'s? We are specifi-
cally interested in obtaining linear estimates of
the input signal based on output observations
from the bank of available devices. Mathe-
matically the problem can be formulated as
a convolution equation. We are looking for a
family of deconvolvers hi(-),i=1,---,m such
that:

fl*’ll+"'+fn1*’ln1:6 (1)

Here, § denotes the unit impulse located at the
time origin. Alternatively, we need a family of

entire analytic functions h;(-), 1 = 1,---,m
such that
flﬁl +"'+ﬁnﬁm'= 1 (2)

Here ~ denotes Fourier Transform. The
later equation is known as the Analytic Be-
zout Equation (ABLE). It is a well known fact
that the existence of a family of deconvolvers,
{h1,---, hin} that solves the Bezout Equation
is completely equivalent to a coprimeness con-
dition on the part of the f;’s.

2 Existence and construc-
tion of deconvolvers of
compact support

Let &;P denote the space of all distributions
of compact support defined over R2. Let g;z:
denole the Paley-Wiener space. The mapping
8;2, — E;z, given by f— f, where™ denotes



Fourier transform, for all f € 8;2,, is 1-1 and
onto the Paley-Wiener Space E?IR,. Therefore,
we can work with entire analytic functions and
equation (2) instead of distributions of com-
pact support and equation (1). For conve-
nience we drop the index R2.

Theorem 1 [9] There ezists a family of
functions {31,-- A,,.} in £ that solves the
Bezoul Equalion iff the famtIy of entire func-
tions {fl .. ,fm} in & is strongly coprime,

ie iff: 300, |f; (@) > e=P),Yw € C?, for
some constani c. Here, p(w) = |[mw|+lo_q(l+

|wl)-

Definition 1 Let K be a compact subsel of
R2. Define the supporting function of K
as follows:

Hy(€) 2 maz{z - €z € K} (3)

where - denotes inner producl and £ € R2.

Consider a family of 2 distributions { fi, f2}
of compact support in R?. Let H, denote the
supporting function of the convex hull of the
union of the support sets of fy, fa. It can be
shown that H; can be written as

Hi(0) = max,cj<ymaz{z -0 :x € sprif;}

for all # € R2.

Definition 2 A family of 2 distributions
{f1, f2} of compact support in R? is well
behaved if there exist positive conslanis
A,B,N,K,C and a supporting function Hy,
such that 0 < Ho < H\y, such that the common
zero sel, Z, of the functions {fl,fz} is almosl
real i.e. Yw € Z : |Imw| < Clog(2 + |w|), and
the number of zeros in Z included in an open
ball of radius r grows like r4, n(Z,7) = O(r*),
and denoting

~ A - 1/2
Fe) & [ELfEE] @)
the following inequality holds

Bd(z, Z)K eH-(Im2)

A+ TDN ®)

7)1 =

where d(z, Z) is the minimumof 1 and the Eu-
clidean distance of the point z from the set Z.
It can be shown that under these conditions
the set Z is discrete, i.e. the points { € Z are
isolated.

Definition 3 A well-behaved family {f, f2}

is very well behaved if there exist constants
M,Cy > O such that V(€ Z we have that:

(0112 |de t[af’ Okl 2 Ci(1 + 1™ (6)

This last condition guarantees that the
points in Z ( the set of common zeros of the
family {1, f2}) are well separated, i.e. there
exist constants M',Cy > 0 such that for any
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¢ € Z there exists r = r({) such that

C»
) 2 =
(1+1¢h
and such that the open ball B,({) contains no
other points in Z.

Theorem 2 [5, p.57] Let {fi, f2, fa} be a
strongly coprime family of compactly supported
distributions over R%. Suppose that the sub-
Sfamily {fy, f2} is very well behaved. Suppose
fa is the “best” kernel in the sense that it has
the smallest support of all three. Let Hg, Hy be
as in definition 2 for the subfamily {f, fa).
Let sprt f denote the support set of the disiri-
bution f, and for all 0 € R? define

Hy(0) = maz ¢jcamaz{z-0 :x € sprif;}

and suppose Ha < 2H,. Furthermore suppose
A7, > 0 such that v,|0] < 41H,(0) — 2H;(0) -
H4(0) (these conditions conlrol the support of
fa vs. the support of fi, f2). Then for any
u € CX®(R?) compactly supported and of suf-
ficiently narrow support, sprt v C{ze R"
|z| < 7o }, U(z) can be wrillen as

- ()
t(z) = -——E—A—-D(Z,C) (M
L0

(C1,¢2), both in C?,

where z = (21, 23), (=

and
91(2,0) 9i(z,0) 4}z, 0)
D(z,¢) = | g3(2,4) g3(2.0) gi(2.0)
Ni(z)  fo2)  fa(2)
(8)
i a filz1,G2) = filGy, G2)
gl(ZxC) - 2 — Cl (9)
i A filzr, 22) = filz, )
95(2,¢) = pPr— (10)

Here, J(() = det(M(z))|.=¢, where the Jaco-
bian matriz M(z) is defined as

M(z) & [ o o ] (11)

),

9 8
Bzg B2g

and

Z={zeC*: fi(z) = fa(x) =0}  (12)

The significance of Theorem 2 can be demon-
strated by a simple manipulation of equa-

tion (7).
D(Z) C) =

[9(2,0)g3(2,¢) - 3(2,¢)g3(2, Q)] fu(z)
+ [63(2, Q)93 (2,€¢) — 93(2,O)g3(2, )] Fa(2)
+[04(2:0)93(2,¢) — 93(2, Qg3 (2,)] Fa(2) =

61(2,O) fi(2) + $2(2, O fa(2) + 83(2,¢) fa(2)
(13)



Thus equation (7) can be rewritten as

i(2) = M()fi(2) + () fa(2) + ha(2) Ja(2)
(14)

>
-
—_—
N
~—
|

2(5237;4)!%(—6451(%0

ha(z)

Tiez T #®0  (15)

hs(z) 2 ECGZTE%(T)%(Z’O

And since u(z) is of sufficiently small sup-
port (we can certainly shrink the sup-
port of u below r,) then (z) = 1 and
{h1(2), ha(z), ha(z)} give an approximate solu-
tion to the ABE. Next we will show that there
exist unique distributions of compact support,
{R1(t), ha(2), ha(t)}, with corresponding FT
{h1(2), ha(z), ha(z)}. Let us consider h(z).
The development for the other two follows
along the same lines. It suffices to show that
every term of the sum over € Z is the Fourier
transform of a distribution of compact sup-
port and obtain an upper bound on its support
which is independent of (. This is crucial. Fix
¢ and consider the following function {which
is analytic in z)

) 1022 Vedlz.O) — 3z OVo2(z
J(C)ﬁs(() [91( ,Qga(z,¢) — g1 ( 1$)ga( »(Cl);)

For ¢ fixed, the first factor is just a scal-
ing constant. By [65, Lemma 1 p.54]
¢i(z,¢) is the Fourier transform of a dis-
tribution of compact support. Furthermore
ch sprt FT-'{gi(2,0)} C ch sprt fi. Here
ch denotes convex hull of a set. Therefore, ev-
ery term of the sum over ¢ € Z is the Fourier
transform of a distribution of compact sup-
port, whose support is bounded independently
of ¢. Hence the compactness of support of the
proposed deconvolution kernels follows.

It has to be emphasized that there are two
levels of approximation here. First, we gener-
ally choose u to be different from 6 for reasons
that are going to be discussed in section 3.
This results in a family of deconvolvers that
approximate the exact deconvolvers. Second,
we further approximate these deconvolvers by
truncating the corresponding sums. Let us call
the deconvolvers of the first level of approx-
imation the infended ones, and the decon-
volvers of the second level of approximation
the realizable ones. These realizable decon-
volvers are going to be compactly supported
by virtue of the fact that every term of the
sums over { € Z in equation (15) is the FT of
a distribution of compact support whose sup-
port can be bounded independently of (.

The compactness of support of these real-
izable deconvolution kernels is their most de-
sirable feature when compared to Wiener de-
convolvers. The reason is that they can be
implemented ezactly with finite delay (here
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exactly refers to the fact that there is no need
to truncate their duration; sampling and fi-
nite word length arithmetic can be controlled
to meet the design goals [13]). Wiener de-
convolvers have been shown to be optimal in
the presence of noise, under certain reasonably
plausible assumptions (namely that the noise
is additive, with one sample function of a Wide
Sense Stationary, zero mean random process
added to the output of each convolver (sensor),
and noise random processes corresponding to
different sensors are independent of each other,
while all noise random processes are indepen-
dent of the input signal) {1,6]. Numerically,
the proposed deconvolvers are very close to
the Wiener Deconvolvers in the Fourier trans-
form domain, except for a certain degree of
rounding up of very sharp peaks present in the
Wiener deconvolvers (we attribute this to the
fact that the proposed deconvolvers are ana-
lytic, and, therefore, cannot follow very sharp
peaks exactly). Hence the behaviour of the
proposed deconvolvers in the presence of noise
is expected to be very close to optimal.

Another important issue is the robustness
of the proposed deconvolution scheme under
small perturbations of the convolution kernels
(continuity of the overall operator with respect
to the actual analog approximations of the
f!s) and/or the actual digital approximations
of the deconvolvers. This issue has been dis-
cussed in [6]. The findings suggest that the
proposed scheme is fairly robust under such
approximations.

In the section that follows we consider a spe-
cific two-dimensional example. The analysis
for the general case (of having arbitrary very
well behaved kernels that constitute part of
a strongly coprime family) follows along the
same lines, although some computational is-
sues can become more complicated.

3 Two-Dimensional
Example
Let xx denote the characteristic function of

the compact set K C R™ and consider the
following family of convolution kernels:

Altit) = XCyvavax-vavaltnta)
f(tit2) = X_yvavaxi-vivalist2)
falti,ta) = X=nxi-1,1)(E522)

(17)

with Fourier transforms given by

fl(ZhZZ) = A sin(\/izl)sin(\/gzg)

2123

oz, ;) = Z:‘“Sin(\/izl)sin(\/iz-l)
ﬁ!(zl,zz) = z;‘zjsin(zl)sin(zg)

(18)
Then it is easy to verify that {f1, fa, fa} satisfy
all conditions of theorem 2. The Fourier trans-
forms of the resulting deconvolvers are given
by the infinite sums



ﬁi(zx,zz) = E w0) C.-(z,()

S TORC) =) —G)
(19)

with

Cl(Z»C) é

B ) [faten, =) - A6 )] (20)

~Fa(e1,22) [, ) = Fa(G1, G2)]

Cy(z,¢) 2

Ji(z1, 22) [f;(zx,Cz) - ﬁ%((h(z)] (21)

~Fi(e1,0) [13(61,G2) = Fater, 22)]

I = IR
f1(21,C2) f2(21, 22) — f1(21, 22) f2(21,€2)

(22)
Definition 4 The function F(-,) is sym-

metric iff

.7‘-(21,22) = f(—21,22), V21,22 € c2
and
F(z1,22) = F(z1,—22), V21,22 € C.

Definition 5 The function F(.,.) s
rotation-invariant ( T —ri ) iff

T(Zl,ZQ) = .7'-(22,21), V21,22 € Cz.

[NE]

Notice that fl, fg, ﬁ; are all Z-ri. Neverthe-
less the Ci’s are not; for example C1(21, 22) #
Ci(22, z1). Hence, in general, every finite ap-
proximation to H1 will not be Z-ri. In the lim-
iting case we expect this bias to die out be-
cause of cancellations. Similar remarks hold
for hg, hz. This fact will prove annoying for
applications.

4 Windowing and Averag-
ing

Our goal is the pointwise evaluation of the FT
of the intended deconvolution kernels over a
suitably chosen finite grid. Clearly this in-
volves the pointwise (in z) computation of an
infinite sum. Therefore, we will have to trun-
cate this sum at some point. Ilere, we must
strike a balance between computational feasi-
bility and noise averaging on one hand, and
quality of deconvolution on the other. In prin-
ciple u(t) can by anything as long as it is
sufficiently differentiable and compactly sup-
ported. Noise considerations dictate a smooth
choice of u(t) which in turn implies a fast de-
cay of @i(z) at infinity. The choice of u strongly
affects the convergence of the realizable decon-
volvers to the intended deconvolvers (because
the smoother u is, the faster the decay of @ at
infinity, and, therefore, the faster the conver-
gence). Therefore u should be chosen (among
other things) to be smooth enough to guaran-
tee sufficiently fast convergence and good noise
rejection of the overall design. If these issues
were of 1o concern then we would like u(t) to
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be as close to §(t) as possible, or, equivalently,
i(2) to be as close to unity as possible, in or-
der to achieve as good reconstruction of the
original signal as possible. Thus we have to
accommodate conflicting interests. It is not
clear what is a proper choice for #. Various
different candidate functions were considered,
and simulations were carried out in order to
bring out the differences in performance be-
tween them in achieving the stated require-
ments. These simulations indicated that the
following family of functions is a good compro-
mise, especially because it seemed to maximize
the convergence rate.

2 sin(42z) N
a(z)=(Hﬂ‘%ﬂz,i) D) (29)
i=1 '

where N is a small positive integer and €y, €2
are small positive reals. The function p,(z) is
defined as follows:

— 1, |Z:'|S",i=1,2
pr(2) = { 0, elsewhere 29

The first factor is a two dimensional sinc-like
function. The parameter r (forced cutoff in
rads/sec) is to be chosen sufficiently large to
include all main features of the first factor (the
main lobe and the principal sidelobes at least)
, while keeping the size of the computation rea-
sonable. This family of functions has several
nice properties that allow for trade-off between
the design goals stated above. Simulation re-
sults are given at the end of this section . For
the case ¢ = €3 = € the transfer function of
the overall system (convolvers followed by re-
alizable deconvolvers, where the sums run over
the 3200 zeros that are closest to the origin)
exhibits a high degree of energy concentra-
tion along a ribbon-like neighborhood of the
z9 axis, while amplitudes everywhere else are
attenuated by at least an order of magnitude.
This spurious asymmetry has a profound effect
on the transfer function of the overall system,
even at frequencies in the vincinity of the ori-
gin. There exists no a priori reason for the
appearance of such a bias (for the particular
example is symmetric and §-ri) but rather the
cause can be traced back to a somewhat arbi-
trary choice between two distinct possibilities
in writing down interpolation formulas. Before
we discuss this very important point let us give
a partial “a posteriori” solution: if the trans-
forms of the convolvers are symmetric and Z-
rotation invariant then a simple solution is the
following.

Let 71;‘,,(21,22), i = 1,2,3 denote the ob-
tained approximations of the Fourier trans-
forms of the intended deconvolution kernels,
where n denotes the cardinality of the subset
of Z over which we sum. Next fori = 1,2,3
define R

ﬁf:n(zl,z'g) S hin(z2,21) (25)

and



h E o ’};L ,
h:,n(zl,ZQ)é ""(Zl’z'); l,n(zl 22) (26)

By definition ’f;,?'n(-,-) is ¥ rotation invari-
ant. Let Z;, i = 1,2,3 denote the Fourier
transforms of the intended deconvolution ker-
nels. Then by theorem 2, for i = 1,2,3, we
have B

E,-,,, —+ h;, asn — 00 (27)

Thus, by symmetry and % rotation invari-
ance of the solution:

ﬁfzn——»ﬁf‘sﬁg, as n — 00 (28)
Hence the same is true for their average, i.e.
the family {ﬁ,’-‘"; i = 1,2, 3} constitutes a con-
verging solution. Simulation results for this
averaged solution are given at the end of this
section.
We now turn to the general case where the

Fourier transforms of the convolvers are not
symmetric and % - rotation invariant. In this

case it is not necessarily true that E,L =h; and
the remedy above fails. In fact we expect the
intended solutions to be asymmetric and/or
biased. Nevertheless we have to account for
spurious responses introduced by the need to
come up with a finite computation because
otherwise the results will be severely distorted.
We now investigate the cause of these prob-
lems and proceed to propose a definitive solu-
tion. Consider the first column of the determi-
nant involved in the interpolation formula (7)
of Theorem 2. The idea is to write [5]

Rz, 22) = (G, ¢) =
(zl _Cl) 9}(210 + (22 - C?) g%(Z,C)
(29)

Quite clearly this can also be achieved via

filz1,22) — Fi(€1,62) =
(21 = Q1) - 91(2,¢) + (22 = C2) - 33(2,C)
(30)
Where §i(z,¢) and gi(z,¢) are defined as
follows

o2 Blenm =S

21 -G

a fl((,, 23) — fl(Ch@) (32)

22— (2

3:(2,0)

There is no a priori reason for choosing any
particular pair of analytic functions; either will
do. Nevertheless some choice has to be made.
In the limit this choice makes no difference,
but for finite n, since either expansion pair of
analytic functions is biased, the overall system
response is biased towards one of the two fre-
quency variables. Therefore we can define

i 91(z,0) 32,0 §(=C)
D(z,¢) = | 93(2,¢) 35(x¢) 53(2.()
fi(2)  f2)  fa(2)

(33

with 2, 52, 33, 33 defined as follows

Fo(21,22) = PGy, 22)

10 = P— (34)
B ) = 26 3) = Fo(1,C2) 5)
22 —(2
77(2,¢) = ﬁi(n, 23) — fS(Cl, 23) (36)
21~ G
7(z.0) = Ja(G1 22) = f5(61,€2) -

23 = (a

So we need to use equation (7) to obtain
two sets of solutions: one using the original
D, and one using D in place of D. Again
since both solutions converge to the intended
deconvolvers as n — oo the same is true for
their average. Furthermore, the bias is can-
celed out and does not appear in the overall
system spectrum. Simulation results are pre-
sented in the sequence of figures that follows.
The sums are taken over the 3200 zeros which
are located closest to the origin. A frequency
step of 0.1718 rads/sec and a frequency resolu-
tion of 256 x 256 points is adopted throughout
the whole sequence of simulations. The magni-
tude of the Fourier transform of the third con-
volution kernel (best one) is depicted in figure
2. The bandwidth of this kernel is the avail-
able bandwidth before any attempt is made
to deconvolve the common input signal. It is
given here for comparison purposes. The mag-
nitude of the Fourier transform of the overall
system (i.e. bank of convolvers followed by
bank of realizable deconvolvers, whose outputs
are summed up to produce the overall system
output) using the #(z) given by equation (23)
with parameters ¢ = ¢ = ¢ = 0.1, N = 3
is depicted in figure 3. Pigure 4 depicts
the magnitude of the Fourier transform of the
overall system using the #(z) given by equa-
tion (23) with parameters ¢, = 0.1, ¢, =
0.5, N = 3. Finally, figure 5 depicts the mag-
nitude of the Fourier transform of the overall
system'using frequency averaging of the result-
ing deconvolution kernels which were used in
the configuration whose FT is depicted in fig-
ure 4.

4 Conclusions

We have employed recent results of analysis
in several complex variables to come up with
a set of compactly supporied approximate de-
convolution kernels for the reconstruction of a
two dimensional signal based on mutltiple lin-
early degraded versions of the signal with a
family of kernels that satisfy suitable techni-
cal conditions. We have discussed the ques-
tion of convergence of the proposed deconvo-
lution kernels, as it relates to various other



design considerations. A spurious asymmetry
in the response of the overall system has been
pointed out, and means to compensate for it
have been given.

Figure 2: Magnitude of FT of convolver 3
(best one)

EZO.I, N=3

Figure 4: Magnitude of FT of overall system,
€ =01, e2=05, N=3

Figure 5: Magnitude of FT of overall system,
e =01, e2=0.5, N = 3, averaged
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