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Abstract. We consider the Bayesian sequential detection problem for general observation pro-
cesses with a continuous time parameter. Primary emphasis is placed on first exit policies and
their generic optimality. A new geometric formulatior and solution to the existence and unique-
ness of the optimal first exit policy will be given as weil as an explicit constructive algorithm for
its computation. We will apply these resuits to the problem of Bayesian sequential detection for
diffusion-type cbeervations although our methods and results generalize to problems of optimal
stopping and decision for partiaily observed Markov chains where the observation processes are
of the diffusion or point process type. These results will appear elsewhere.
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PROBABILISTIC FRAMEWORK AND MAIN RESULTS
Let’s begin with a precise statement of the Bayesian formulation
for the sequential detection problem of two simple hypotheses. Lut
(8, P(8), P) be a probability triple carrying a binary-valued random
variable, H,, where & = {0, 1}, P(8) denotes the power set of 8, and
where P is a probability measure assigning mass to H, according to,
PlleO:H () =1)=x (1.5
for eome x € [0,1]. Employing an abbreviated notation we kave im-
mediately, P{H, = 0} = 1 — x. Next, let (R,,0) be a measurable
space upon which there are defined two probability measures, Py, P,
which will aerve to model the statistics of the observable events in
O described by {C; : t > 0}, a right-continuous filtration on © to
which we assume we have access and for which Oy = {$.Q,}. From
these probability triples construct the product triple (Q, F, P,) via
2=0xQ, F=P®O)®O, and with the probability measure P,
satisfying,
P{{H: =i}N0} = P{H, =i}R{0} VY0Oc0;i=01, (12)
which yields,
{0} =xP {0} +(1 - )P, {0} VOeoO. (1.3)
Wishin this set-up we assume that the random variable H, is uo:beerv-
able but that one can observe some stochastic process with filtration
{0 : t > 0} whose statistics in the events of {He=0},{H,=1}€@
are governed by the probability measures Py, P, respectively. In the
task of trying to determine which event set is responsible for what is
observed, we employ a two-part decision structure. First, a decision

to terminate the observation of the process is made according to an

(O, P,)-stopping time, say 7. Second, an inference as to the true value
of H, is made according an (O, P, )-binary-valued random variable,
say 5. Any such pair, (r,6), is called an admissible policy. Over the set
of admissible policies we define a cost function, pe(r,6), usually called
Bayes’ cost,

T
pe(1,8) 1= E, [/ ¢, ds+ C(H,,&)] (1.4)
[}
where {¢; : t > 0} is some nonnegative, O,-adapted process, and where
«ox &, ¢ > 0 we define,

& fH=1&6=0;
CH§):={0, fH=s (1.5)
e, fTH=0& 6=1.

We make the following technical a~sumptions concerning {c;: ¢ > 0},
(Al): E, j: c,ds < 00 Vt < co.
(A2): P, {f:’ e,ds = o0} =1;
The first assumption reflects the desire that there be no a priori fixed
minimum amount of time before which a policy must make a decision.
The second assumption removes from consideration those policies which
have even the slightest chance of not making a decision in a finite
amount of time.

We see that E,[C(H,,6)], called the average terminal cost, yields the
Py-average cost of an incorrect decision, while Ey for c, ds, called the
average running cosl, is interpreted as the Pe-average cost of not mak-
ing a decision until the (O, P, )-stopping time r; Bayes’ cost is the sum
of the two. We point out that it is without loss of generality that no
coat iy levied for correct decisions in 1.5.
Having gotten this far, we can now moet succinctly state that our mod-
est goal is to find an admissible policy, (7., 8. ), which minimizes 1.4 over
the set of all admissibie policies. This leads to our first definition.
Deidinition 1. An admissible policy, {(r..8.), is said to be Bayesian
optimal if,

pe(Ta,b.) = (irng) p(1,6) ¥r € [0,1], (1.6)

where the infimum is over all admissible policies. We define p(x) ==

inf(; ) pa(r.,6.) and call it Bayes’ optimal cost. o
If we use 1.5, 1.2, and 1.3 to rewrite Bayes’ cost as,

r
pe(r,8) = E,[/ e,ds+*1{H, = 1,6 =0} +¢' 1{H, = 0,6 = 1}]
Q

= xE, [/o'c,dﬁc“l{s:o}] an.

+=n8 [["ader s =1)],

we see that py(7,6) is linear in x and therefore Bayes’ optimal cost,
A7), being the lower envelope of a family of lines is necessarily concave.
From this definition it is also clear why we assume both c® and ¢! are
strictly positive. For if ¢! = 0 then it follows easily that p = 0, and
the trivial policy (r.,6,) with . = 0 &, = 1{c' = 0} is seen to be
Bayesian optimal.
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The minimization in 1.6 can be greatly simplified as follows. Define the
(O, Pr)-conditional probability of the ‘hypothesized’ event, {H, = 1}

as,
I = P {Hy = 1|0} (1.8)

Note that this definition implies P, {ll; = x} = 1 and that the II
process is a corlol uniformly integrable (O, P, )-predictable martin-
gale. Consider the following lemma, proven for the discrete-time case
in (Shiryayev, 1978) and as stated below in (MacEnany, 1987).

t>0.

Lemma 1 (Optimal Stopping): Define,

pelr) = B, U e da+e(n,)] . (1.9)

o

with,
e(n) := min{c°r,c'(1 - 1)}. (1.10)
Let 7 denote the class of (O;, Py)-a.s. finite stopping times. Then,

i =i 111
Inf pa(r) (nf pe(7.6). (1.11)

where the infimum ou the right is over ail admissible policies.

As a result, the search for an optimal policy can be reduced 1o a search
for an opltimal stopping time. Note that according to our definition of p
in Definition 1 we have shown, p(7) = inf,¢7 p«(7). The next step is to
transform this minimization problem into one still more manageable.
In trying to do this it becomes clear that a most important subclass of
admissible stopping times are those which are first exit times of the II
process from an interval. This is due both to their simple specification
and remarkable optimality properties.

Definition 2: The first exit time, 7,, of Il from an interval [ is a
(O, Px)-stopping time defined as,

ro=inf{t 201, ¢ I}, (1.12)
where I C [0,1], nonempty, is called the continuation interval. We
will denote by T the collection of such first exit times. The admissible
policy given by (r,, 6.(TI;,)) will be called a first exit policy; we observe
that it is an admissible policy. o

Our plan of course is to simplify the minimization over 7 by replacing it
with a minimization over 7. Prerequisite to the success of this plan are
conditions which guarantee that a first exit policy based on 7 C [0, 1]
satisfies 7, € T, i.e., which guarantee that II eventually (P,-a.s.) exits
L. To state such escape conditions in general will take us too far afield
for our present purposes and we will assume for the remainder of this
section that the first ezit times under consideration are in fact P, -
a.s. finite. We stress that without such conditions one cannot be sure
a priori that 7, € 7. For instance, although r, € 7 is clearly an
O.-stopping time for any open interval J ¢ [0,1], we have given no
guarantee that such a stopping time is P,-a.s. finite. The interested
reader can consult (Liptser and Shiryayev, 1978; MacEnany, 1987) for a
full treatment of general escape conditions. For our present purposes we
will defer stating escape conditions until the specifics of the applications
to follow.

Still, when II exits an interval, questions naturally arise as to its where-
abouts at the time of escape. The next definition provides a means to
phrase such questions. :

Definition 3: Let I be a continuation interval containing x € / and
suppose that 7, € 7. Let U = {w € Q : Mo(w) = x}. We define the
H-boundary of I as, ’

8nl:=|J{rg¢l:x= 1, ) (@)},
weﬁ

and the l-closure of I as, {I] := I|Jénl. We point out that assump-
tion x € I leads to the implication P, {Ilo € I} = 1 in view of the fact
that P, {Ily = x} = 1. From this and the supposition 1, € T it follows
that P {Il, €dnl}=1. ' o
If the sample paths of IT are continuous, we see that for any interval
I that dnI C 3I, where AI denotes the usual boundary of I, i.., its
endpoints. However this is not usually true if II has jumps. We are
now in a position to state a set of conditions which if true will imply
that, inf,er pp (1) = inf_ . px(7), which is a considerable and welcome
simplification.

Let I, C [0,1] be some nonempty interval, let r, denote a mapping, r, :
[0,1] — R, and consider the following conditions on the pair (re, LL):

) E,{r.(n,)-r.(non:_E./o'c,da VreT
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(€2
c3)

Vx € dnl.,
Vx & Ol

ro(x) = e(x)
ro(x) < e(x)

We have the following theorem.

Theorem 1 (Verification): Suppose there exists a pair (r,, 1,) satisfy-
ing (C1-C3), and suppose II satisfies the escape conditions. Then,

p(x) = inf pu(7). (1.13)
Proof: From (C2) and (C3) we have,
Eele(,) - r.(0,)] >0 VreT. (1.14)
Define . € T via 7. := 7, and assume that r € [L]n then,
Eqle(N,) - r.(,,)) = 0. (1.15)

Moreover, the escape conditions imply r, € 7 and therefore 1.14 and
1.15 yield,

,12;_ Eyle(M,) —ru(II,)) =0 = '12; E.le(N,) ~ r.(1I,)). (1.16)
Hence using (C1) we obtain,
o) = ot pelr) = ing B [ [ vt +eftl)
= inf Ex[r.(lo) — r.(1I,) + €{1,)]
=r.(ar)+,ig;E,[e(ﬂ,)—r.(H,)] (1.17)

=r.(%),

where the second to last line follows the fact that P {llp = x} = 1.
Continuing from 1.17 we have,

P(7) = inf pe(r) = ru(x) + ,i:;\Er[e(Hr) - r.(0,)]

in{ E.fr,(Il) —r (1) + e(O,)) (1.18)
re7

inf E, [/ ¢, ds + e(ﬂ,)]
re? 1]

= ri:;ﬂ-(fl
In summary, 1.17 and 1.18 yield,
)=o) = infpe(r) = () Vel (L19)
Combining 1.19 and (C2) we observe that,
o(r) = e(r) Vr € dnl.. (1.20)
In fact, 1.20 immediately implies that,
p(x) = e(x) Vx gl (1.21)

This is true because p is concave and p(0) = p(1) =0, while e is linear
outside of I, and ¢(0) = e(1) = 0. On the other hand suppose that
x & L.then,
Te
pe(Ta) = E, [/ ¢, ds + e(l'l,_)]
o
= Exf0+ e(Tlo)] = e(x)

and this together with 1.21 yields p(x) = pe(r.) for all x ¢ I.. From
1.21 and 1.22 there follows,

(1.22)

.

p(x) = :2; pe(r) = jgg'p,(r) =e(n) Vx gl (1.23)
Combining 1.19 and 1.23 gives what we want, namely,

p(7) = inf pa(r) =:2;p,(r) vr e [0,1). (129)

o

Corollary 1: The first exit policy with continuation interval I, is
Bayesian optimal for all priors x € [0,1]. Moreover, Bayes’ optimal
risk is given by,

ro(x) ifrel,
Ax) =< ro(x)=e(r) if x€bnl. (1.25)
e(x) Hxgl
Proof: Contained in the proof of the theorem is the fact that,
An)= BLoe() = peln),  Vre(,1] (1.26)
T€



and hence the first exit policy (r.,8.) with 7. = r,_ and 6, = &,(11,.) is
optimal. The expression 1.25 is simply an explicit restatement of 1.19
and 1.23. -]
Corollary 2: The mapping r. is concave on [Lin.

Proof: This follows immediately from 1.19 and the fact that p is con-
cave. a

Thus, the theorem tells us that we need only search for an optimal exit
time from amongst candidates in 7', provided there exists a pair (r,, L)
satisfying (C1 - C3), and what’s more, if we can solve the problem
posed by (C1 - C3) then this yields the optimal (first exit) policy
and our search is over. The attentive reader will have noticed that
we made no use of the strictness of the inequality in (C3). However,
explicit usage of it is made in the next result which states that the
pair (r,,[.) is essentially unique, i.e., if there exists another pair, say
(54, J.), satisfying (C1 - C3) then,

{7‘.(1) = s.(x) Vx € {L]n; and,

L =J..

(1.27)

We point out that the possible lack of uniqueness of r, outside of I,
is irrelevant to any questions concerning Bayes’ optimal cost or the
optimal first exit policy. For our purposes, only ‘uniqueness’ according
to 1.27 is ‘zssential’. Before giving this uniqueness result, we prove the
following necessary condition on I,.

Lemma 2: Under the conditions (C1 - C3), the maximum value of
the mapping e is contained in I, ie., x, € I..

Proof: Let I, = (a.,4.) and suppose that a. > x,. Choose x € /.
and pick A € (0,1) to satisfy # = da. + (1 — A)b,. From the second
corollary to Theorem 1 we know that r, is concave on I. (a fortiori)
and therefore,

ro{m) 2 Ar,(a.) + (1= Nr.(b.) (1.28)
= Ae(a.) + (1= Ae(b,),
using conditior. (C2). Since #, & I,, ¢ is linear on I. which implies,
e(x) = Xe(a.) + (1 — Me(b.). (1.29)

Combining 1.28, 1.26 and utilizing the arbitrariness of x € I. we have,

r.(7) > e(x) vrel,. (1.30)
But according to (C3),
7o (n) < 2(x) Vr & & 1., (1.31)

which is a clear contradiction to 1.30. As a result, we must have a. <
x.. By a similar argument we derive a contradiction unless b, > ..
Hence, we insist that,

G <we < b, (1.32)

and the lemma is shown. [
Theorem 2 (Essential Uniqueness): If a pair, (r., L), exists satisfying
(C1- C3}, then it is essentially unique.

Proof: Suppose there exists another pair which satisfies (C1 - C3).
say (8.,Ju). Let I = (a.,b,), and J. = (c.,d.); we will derive 1.36.
From the previous lemma we know thai I, N J. # ¢. Hence, if a. #c.
then either ¢, € (a.,b,) or a. € (¢,,d.). Both possibilities lead to a
contradiction. For instance, if ¢, € {a.,b,) then according to Corollary
1 and condition (C3) there holds,

a(ca) = re(c.) < efcs). (1.33)
But Corollary 1 appiied to s, impiies,
ple) = su(c.) = e(ea). (1.34)

A similar contradiction is obtained if a, € (c.,d.) and hence, a, = c,.
By an analogous argument, b, # d. is untenable and therefore . = J.
which is half of essential uniqueness. Now with this in mind, applying
Corollary 1 again yields,

(1.35)

re(x) =p(r) =s.(x) Vreliln,

which is the other half. o

SEQUENTIAL DETECTION FOR DIFFUSIONS

Given the probabilistic set-up of the previous section, a particular
sequential detection application begins by specifying the nature of
10¢ 1t > 0}, the family of o-algebras generated by the observations. In
“his application section we assume that we observe a diffusion process,
¢, whose statistica conditional upon the events {#, = 0}, {H, = 1}
are governed by the probability measures P, and P, respectively. In
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particular, for each w = (8,w,) € Q, the observation process is given
for all ¢ > 0 by,

Wi(ws),

ifoe{H, =0}
Yelw) = {fo‘ A (wo)ds + Wi(w,), if0€{H,

13,

where W is a standard Wiener process, and where A is an F-
progressive process satisfying, .

{2.1)

It

4
E;/ JAsJds <00 Vi< oo;i=0,1. (2.2)
0

Typically, A represents a memoryless, nonlinear transformation of some
unobserved state process driven by white noise. As indicated above, we
define O := o{Y, : 0 < s <t} for all t > 0. As is usual in the Bayesian
formulation of a detection problem, we assume a priort knowledge of
the probabilities that the detector is processing noise alone or signal
plus noise. Therefore, in keeping with the previous section we assume
that P{H, = 1} = x for some = € [0,1]. We choose the running cost
for this problem as,

T r
/c.ds:c/ Afd.s, VreT;c>0. (2.3)
[) [}

Since the I process is central to our investigation, our next task is to
compute a martingale representation for it. From 2.1 it is clear that

Py & Py, 30 let
dp ]

Adw) = B [mlo‘ (24)

denote the likelikood ratio for the problem. In the Appendix we show
that,
TA;

b + 7A,’
and so, applying the 1té formula,

t _ t 2 1—H,
H.—no=/ n,(lA n,)dA'_/ n,(Az )J[A,A]“ (2.6)
0 G ]

I, (2.5)

where the co-quadratic variation process [X, Y] is given directly by

¢ ]
{X,Y],zx,y,-/ X,_dY,—/ Y,_dX, t>0 @7
b o0

for any two real semirnartingales (Wong and Hajek, 1985). The likeli-
hood ratio for this problem is well known (Wong and Hajek, 1985) and
is given by,

t 1
A,:exp{/ A.dY.—%/ fifda} >0, (2.8)
o 0

and satisfies,

t
A= 1+/ AA, dY, t>0, (2.9)
[

where, A, = E, [A:|O¢]. In the proposition in the Appendix we show,

Ee[HAIOl=MA t>0, (2.10)
from which it follows that there exists a P,-standard Wiener martin-

gale, say W, such that Y has the stochastic differential,

dY, = I A, dt + dW,. (2.11)
Combining 2.6, 2.9, and 2.11 yields,
. ] 3
M ~Mg = / 0,(1-1,)A,dv, -/ o(1-1,)A%s
«JO o
t
= / 0,01 - I,)A,dW,  vt>0, (2.12)
(1]

Because W is a continuous martingale it is clear from 2.11 that 8nl C
01, for I C (0,1) any nonempty, open proper subinterval. However, it
may very well be that the [I-boundary of I is empty unless we know
that II almost surely escapes I in finite time. If the following escape
conditions are met then II is guaranteed to exit such an interval in
finite-time,

(B1): P{f Alds=o0}=1i=0,1;

(E2): P{fyA?ds=00}=0i=0,1; ¥t < co.
We do not prove their validity here but instead refer the reader to
(MacEnany 1987). Escape condition (E1) has the intuitively satisfying
interpretation as a distinguishability criterion, i.e., the drift estimate,
A, cannot ‘hug’ zero fotever if we are to distinguish it from zero in finite
time. If we adopt an ‘energy’ viewpoint, the conditions taken together
insist that our system have infinite energy in infinite time and finite



energy in finite time, respectively. Note that the cost {ee : 1t 20}
satisfies (A1) and (AZ2) if the conditions (E1) and (E2) are met. If we
suppose that the escape conditions are met, and take | = (a,b), with
0 <a<p <1, then dnl = 8I = {a,b}. Thus, all first exil times
based on such continuation intervals will belong to 7, i.e., all firat exit
policies of this type will eventually terminate (Pe-a.8.). Next, consider
the following problem,

(P1): P (l-a2(r)=—c  Vre(0,1);
(P) (P2): r,(x) = e(x) x € {a.b};
(P3): r (7) < e(r) x & {a,t},

with r, : [0,1] — IR twice continuously differentiable. A solution to I
therefore consists of two things: an interval I = (a,5) and a function r,
with the above properties. The relationship of (P2) to (C2) and (£3)
to (C3) is clear. As for the relationship of (P1) to-(£1), note that
the Ité formula applied to the function r, and the II process yields
(Ps-as.),

t l ]
(L) =y (Tlo) = / P (IL,) I, + 5/0 ()AL, (213)
()
where the quadratic variation of II is given by (see 2.12),

[, mj, =/o‘ (ma-m)A) aw.m,

s (2.14)
=/ N2(1 - 1,)2 A2 ds.
[}
As a result we can express the second integral in 2.13 as
! '"n din,mj, = Iln’l m,)%r(1,) A2 d
7 ",( ,)dI, I, = ) (1-1,) ",( s)A; ds
° o (2.15)

t t
=—c/ Afds:—/ c, ds,
[} [}

using the form of the running cost as chosen in 2.3. Hence 2.13 becomes

t t
P ~r(o) = [y~ [eas. (216)
0 [}
From this last expression we will show that,
Eelr,(T,) - r ()] = —E,/ cds  Vre”T, (217)
(]

which is precisely (C1). Hence, if we can find J and r, to solve problem
(PP) then we will have solved the problem posed by {C1 - C3) with
ro =r,, and L. = I. To show that 2.17 holds, begin by defining the
localizing stopping times

T inf{t20: M ¢ (2, =Ly, (2.18)
and the bounding sequence
Bn= sup [F(m)) Va2l (2.19)
1gegat

Note that v, < Y41, Yo — o0, and in addition Tn < 400 Py-as.,
because II is assumed to satisfy the escape conditions. Also note that
By, is finite for all n > 1 because r, € C*(0,1) implies r, is locally
bounded on (0,1). Since our aim is to show that the first integral on
the right hand side of 2.16 is a (O, P, )-local martingale. To this end
choose any r € T and compute,

TAYS
E, /o [ (L)) 411, 1), < B, Ex(H, ),y (2.20)
where (II,IT) is the predictable compensator of I12, In view of the
fact that II is a corlol uniformly integrable (Os, Py )-martingale with
E,II%, finite, it follows directly from the properties of isometric inte-
grals [Wong] that (II, II) is also the (O, Pr)-predictable compensator
of (I, I). Hence,

TATs
Ey (L, Mray, = E, [0, Mray, = By FHZM. - 2Er/ I,d1,]
]
S l,
(2.21)
because fo' II,d 1, is clearly an (O, Py)-martingale. From this we ob-
tain,

£, /om PP s S v} ML), S Ba <400 Yn 21, (222)

and therefore f; i (0L,)1{s < y,} 41, is an (O, Py ymartingale, Le.,
Jo 7/(0,)d1, is an (O,, P, }local martingale. So from 2.16,

PTA
[}

Yn TAYn
EelrWras.) = rillo)] = B [ v(I,)d, - B, /o ¢ ds

rAT.
= —E./ c,ds ¥Yn>1.
(1]
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Now, since v, — oo, then r A Tn = 7 (Py-a8.) because r € 7. (Also?
since I is a uniformly integrable martingale this implies I, -1,
and thence r, (1T z,,) — r,(I,), from the (assumed) continuity of .
In view of (P2) and (P3) we see that r, is bounded, (r, < e(x,)) and
80 the Bounded Convergence Theorem gives,

Eefri(Mraya)] = Eulr,(10,)). (2.24)

TAYN TAYa41 T
Furthermore, 0 € [ e,ds< [ ¢, ds — fesds (Pras) o

] 0
that the Monotone Convergence Theorem yields,

PAYa r
E, / c,ds — E, / c, ds. (2.25)
(i 0
From 2.23, 2.24, and 2.25 we get therefore
T
Ee[r,(1;) - r (Ho)] = —-E,/ ¢, ds. (2.26)
o

Since r € 7 is arbitrary, 2.17 follows as promised and the connection
between (C1) and (P1) is established. As a result, we restate for em-
phasis that if (P) can be solved then we wiil have found a pair (r., D)
which satisfies (C1 - C3). Stated another way, if (r,, I) exists satisfy-
ing (P), then (r,, 1) = (r., 1) with equivalence in the sense of essential
uniqueneag. We now proceed to solve (). First, fix any a,b € R sat-
isfying 0 < a < %, < b < 1 and define I := (a,8). We do this because
it follows necessarily from Lernma 2 that 0<a, < <b, <1. Next,
consider the following ODE,

1
5:’(1 -l = - V¥re(o,1);

ri(a) = e(a); (2.27)

i (8) = e(8).
By elementary ODE theory we see that a unique solution exists; call it
r,(x) = r(x;0,b) with r, € C?(0,1). Letting et () == cr, e (x) =
¢!(1 - x), and recalling the definition of the mapping e we have,

e(x) = min{e*(x),e(x)}. (2.28)
Define the auxiliary function, g(x) := (%) - e(x), and observe
9(r) = max{r,(x) et (m),r, (M) —e(x)). (229

From 2.27 it is clear that r” <G and sor, is (strictly) concave. Hence,
9 is the maximum of two concave functions, say g* with g% = r — c*,
and therefore is generically not itself concave (see Fig. 1). Denote by
G,G*, and G~ the hypographs of g, g*, and 9~, and let K = Co(G),
the convex hull of G. Now if K\G = ¢, then since G = G+ UG~ either
K\G* = ¢, or K\G~ = ¢ or both. From a straightforward case by
case analysis this

‘ \ -

99
Fig. 1

implies ¢! = 0, which contradicts our assumption that %, ¢t > 0.
Therefore K\G # ¢ and choosing z = (7o, 9(x.)) € S(K\G), we con-
struct the hyperplane at z supported by K. Since 1 € 9K, theie exist
A €(0,1),z. € 8G*, and y. € 9G~ such that z = Az, +(1- A
Let £ : [0, 1] — R denote the line whose graph is this hyperplane 7at=
Fig. 2). We have
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Zo = (e, 2:(a4)), o = (Be,2e(5.)) for some a,,d, with 0 < a < a. <
%o < by < 1 80 that g(a,) = Z.(a.) and g(b,) = ¢.(b,). We note that,

LD 2gx)=r(r)-c(x) VYrel0l] (2:30)
and if we define, r.(x) := r,(x) — £,(x}, then obviously,
r.(x) < e(x) vr€[0,1). (2.31)
Moreover,
ro(a.) = r,(a.) — L(al)
= e(a.) +(r,(a.) - e(a.)) ~ &u(a.) (2.32)
= ¢(a.) + g(a.) — £o(a.) = e(a.),
and similarly,
ro(ba) = e(be). (2.33)

Thus, 2.32 and 2.33 combine to give (P2). Moreover, in view of the
strict concavity of r, it follows from the definition of r. that these are
the only two points for which the inequality in 2.31 is not strict, ie.,

r.(x) < e(x) Vx ¢ {a.,b.}, (2.34)
which gives (P3). Finally, we point out that,
r(x) =r/(x) - /()= ~c=-0=—c, (2.35)

which is (P1). Thus, r, as defined above and L. := (a,,b.) solve
() and therefore solves the problem posed by (C1 -C38). Thus, the
Verification Theorem applied to our problem yields the following.
Theorem 3: Assume (E£1) and (E2) hold. In the problem of sequential
detection based on observations of the process (see 2.1),

]
Y,:H./ Ads+ W, 120, (2.38)
[
with average running cost (see 2.3),
T ad n
E./ cyds = E,/ cAlds VreT,  (237)
(] [}

and average decision cost E,[C(H,,5)] (see 2.5), there exist a.,b,
unique, with 0 < @, < %, < b, < 1, such that the first exit policy,
(7e,6,), with continuation interval I, = (a.,.) is Bayesian optimal.
Proof: The exist and uniq of a.,b. satisfying 0 < a. <
%e < b, < 1 has been demonstrated in the preceding discussion, as is
the Bayesian optimality of the first exit policy (r.,6,) given by

r,=inf(t20:I; ¢ L.}; (2.38)
1 ifl,, 2
b= (2.39)
0 ifll,, <~,.
We point out that one can also write,
1 if O, >b,; .
5, = (2.40)
0 ifld, <a.,
since x, € I,. o

Under the hypothesis that the drift process A is a constant, this theo-
rem has been shown by Shiryayev (1978). However, the demonstration
of the existence and uniqueness of a, and b, in (Shiryayev, 1978) cor-
responding to the convexity argument given herein uses complicated
analytic methods. In general, there are no closed form solutions for a,
and b, in terms of ¢, c?, and ¢* for this problem, and one must resort
to numerical approximation (see below). There is however one special

case when closed form solutions are possible, namely when ¢, c°, and I
are related by, ¢® = ¢! = (3—}+2log3)-c, for which a. and b, have the
simple symmetric solutions, a, = }, b = }. Otherwise approximation
is necessary, and numerical methods such as the Newton-Raphson tech-
nique cap be used to find the roots of the two dimensional nonlinear
system of equations,

r(a) = e(a);

r,(8) = e(b).
However, the convexity analysis given above suggests the following sim-
ple algorithm to compute a,,b, and thence r,. Choose any ag,bp, 0 <
ap < %, < by < 1 and solve for rp satisfying the ODE 2.27 with
Io = (a0,by). This is easy to do since one can check that r(x;a.b)
defined via,

(2.41)

xT—a

b—a’

b—nx

— (2.42)

+[e(d) - d(b)]

r(x;a,b) := d(x) + [¢(a) — d(a)]
with,

x

1-x'

indeed solves 2.27 for any 0 < a < b < 1 and so we define r, (%) :=

#(x; ag, bo) for all x € (0,1). Next definego=r,, —¢ and consider the

d(x) 1= ¢(1 - 2x)log

(2.43)

following recursion, gn = gn-1 — {n n=12..., where,
by~ 7% *—da,
ln(’) = gn-l(an)bﬂ “an + gn-l(bn)bn . (244)
The iterates a,, b, need only satisfy,
@p € An = {7 < %, 1 ga(x) > 0}
by € By = {7 > 7s 1 ga(x) > 0}. (2.45)

1t is simple to check that 4n D Any1,Ba O Bnyy forall n € N
snd so the algorithm always converges. In fact, if a,,bn are chosen in
a reasonable manner (e.g., near the true osculation points) then the
convergence of {a,} to a. and {b,} to b, is quite fast. Our experience
indicates about four decimal places of accuracy is achieved in no more
than three steps. For completeness we point out that Bayes’ optimal
cost, p, is given by,

re(r) w€l.
p(x) = (2.46,
e(x) 7¢L
where I, := (a.,b.), ro(x) = r, = r(x;a.,b,) with r as in 2.42

'”\

™~

Fig. 3
In Fig. 3 we depict the optimal configuration. Siace r, € C3(0,1), it
is clesr from the figure (or equivalently, from (P2) and (P3)) that the
derivatives of r, at a, and b, match the derivalives of ¢ at these two

points, i.e.,
{ ri(a.) = ¢'(a.);
r,(be) = €'(b.).

These are the so-called “smooth pasting” conditions (Shiryayev, 1678}
related to the Stephan problem associated with the sequential detec-
tion problem of a homogeneous diffusion with average running cost
E,[é7],¢ > 0. Our formulation includes this case which one can see by
choosing

(247

Ai=A#0 vt>0, (2.48)
i.e., by supposing that Y is a homogeneous diffusion with a constant,
nongero drift coefficient given by A. In this case (El) and (E2) are
trivially satisfied and the average runningtost is given by,

r T
Ex / cods = Ey / cAlds = Ey[cA'r] = Eu[ér]  VreT, (249)
(] 0

if we define & = cA? > 0. Thus, the “smooth pasting” conditions follow
necessarily from the conditions (C1 - C3). This is significant because
the Stephan problems as usually derived in problems of optimal stop-
ping typically have nonunique solutions and one must search for addi-
tional conditions which the optimal solution satisfies and which suffi-
ciently constrain the Stephan problem to force its solution to be unique.
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Moreover, we have used our approach in solving an optimal stopping
problem arising in the sequential detection of conditionally Poisson
counting processes (Baras and MacEnany, 1987) where “smooth past-
ing” does not hold. The same conditions (C1 - C3) however work just
as well for that problem as for the one here. In closing this section we
observe that it is no surprise that we obtain the same “smooth pasting”
conditions, and indeed the same Bayes’ cost, for the apparently more
general problem (2.1), as for the homogeneous diffusion case. This is a
result of our choice of running cost which as we have pointed out ‘col-
lapses down’ to the usual cost found in the homogeneous case. Math-
ematically, this cost simply transforms the homogeneous problem by a
random change of time scale. Heuristically, this cost penalizes the de-
tector according to a sample path dependent ‘elapsed energy’ criterion
rather than a uniform ‘elapsed time’ criterion. In a real-world appli-
cation one can argue on physical grounds that this choice of running
cost is often more reasonable in that it refiects the statistician’s modest
desire to expect better performance from the detector (faster decisions
on average) in ‘favorable’ problems (large drifts to detect), and to al-
low worse performance (slower decisions on average) in ‘hard’ problems
(drifts which ‘hug’ zero). Apparently, such a statistician believes that
“not all filtrations are created equal”®, to put it colloquially. This cost
was first used by Shiryayev in the Wald problem of sequential detection
in (Liptser and Shiryayev, 1978). (We point out that one can ptove the
optimality of first exit policies for the Wald case directly from the re-
sults contained herein by using the method due to Le Cam (Lehmann,
1958)). The same cost was also used for the Bayesian formulation in
(LaVigna, 1986). However, both of these papers employ arguments
which work in only the diffusion case whereas as our approach works
in both the diffusion and jump process cases. We note in passing that
the (binary) sequential detection problem is in fact a filtering problem
for a partially observed (two-state) Markov Chain, Hyy, with initial
distribution (in our notation),

Pe{Hepg=1}=7=1-P{H. 0 =0}, {2.50)
which is degenerate in that both states are absorbing, i.e., the chain
makes no transitions. With this understanding, Theorem 1 can be
extended to include the more general situation. We have applied such
an extension to the disruption problem (MacEnany, 1987), in which
7 =0 and the underlying Markov Chain makes a single transition, and
have obtained the optimal solution. Again, there was no need to search
for additional conditions as would be necessary in the strict Stephan
problem approach (Shiryayev, 1978).

CONCLUSION

We present a verification-type theorem for the Bayesian sequen-
tial detection problem which asserts that if there exists an interval and
a function satisfying the three conditions of the theorem, then this
interval defines the optimal first exit policy and the function defines
the Bayes’ optimal cost. We apply this result to the Bayesian sequen-
tial detection problem for a generalized diffusion and show how the
three conditions lead directly to a boundary-value problem of Stephaa-
type which has a unique solution pair. The proof of the existence and
uniqueness of this solution is based on geometric notions of convex sets
thereby avoiding complicated analytical arguments. We also provide
an algorithm derived from these notions which converges quickly to the
optimal solution. We indicate that our methods extend to jump-type
processes and problems of disruption in which the analytical approach
is excessively complex or hopeless. These applications will appear else-
where. :
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APPENDIX

Using the notation of the first section, let P§, P{, P{ denote the
respective O-restrictions of the measures P, P;, P, and observe that
P} < P! and hence,

Ao} = [
o
where Z—Ei- denotes the R,ad;Jn-Nikodym derivative. We have the fol-

lowing lemma.

Lemma. Forallt >0, O, = r;;i—, except on (¢-sets of P,-measure
zero.
Proof: Let O € O and compute,

/ i dPy = / El[Hel0)dP, = / HydP, = P.{H, = 1}n0}
[o] o o

L

d
i Al
dP:aP' YO € O, ( )

dP{ .
= 2P,{0) =/o7rm dP., (42)
using A.l. Since O € Oy is arbitrary we are done. a

We use this to prove the following.
Proposition. Let ¥ be some O-measurable random variable. Then for
allt >0,

Er[Htﬂot] =1, El[ﬂot]y

except on Oy-sets of Py-measure zero.
Procf: Let O € O, and compute,

/E,[H,-y]O,]dP,:/ HyvdP,
o o

= / 1d.P,
On{H.=1}

= / yxdPy
(2]

=/ E\[y|O)x apP,
o

dp!
= /D B\lOde 2k dP.

= / Ei[7|01, dP,,
o

using the lemma. Again, the arbitrariness of O € O gives us the resuit.
-]

We conclude this appendix by connecting the I process to the likeli-
hood ratio process A given by,

— dF} _ dP
A= " Eo [dPo [O: 20, (4.4)
assuming of course that P} < F,.
Theorem. Suppose Py € Py. Then for all ¢ > 0,
- TA'
= 1—x+7A,’
except on O;-sets of P,-measure zero.
Proof: From the lemma,
dP}
o= th; Vt'Z 0, (A5)

except on Oy-sets of Py-measure zero. We observe that Pf < P¢. Us-
ing the Radon-Nikodym theorem successively one obtains the following
sequence of steps,

d +
. L B (49)
BEEL B CEroT T Ay .
_ *A¢
T 1-x+rxA,
which is the result. a
From A.§ it is clear that,
=f0 ifx=0;
m={] fr=1 (an
If x € (0,1) therefore, we can invert A.5 and obtain,
1= o,
A= p” (-ITII—‘) vt > 0. (A.8)

In view of this relationship it is clear that first exit policies based oa II ci
A are equivalent in terma of optimality criteria, only their continuation
intervals differ.
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