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Abstract 

In this paper, we show that the LVQ learning algorithm con- 
verges to locally asymptotic stable equilibria of an ordinary 
differential equation. We show that the learning algorithm per- 
forms stochastic approximation. Convergence of the Voronoi 
vectors is guaranteed under the appropriate conditions on the 
underlying statistics of the classification problem. We also 

present a modification to the learning algorithm which we ar- 
gue results in convergence of the LVQ for a larger set of initial 
conditions. Finally, we show that LVQ is a general histogram 
classifier and that its risk converges to the Bayesian optimal risk 
as the appropriate parameters go to infinity with the number 
of past observations. 

1 Introduction 
A common problem in signal processing is the problem of sig- 
nal classification. An instance of this problem in radar signal 
processing, is the determination of the presence or absence of 
a target in the reflected signal. In adaptive control, it is man- 
ifested as the problem of determining the operating environ- 
ment in order to use the appropriate gain in a gain scheduling 
algorithm. More generally in feedback control, when a precise 
system model is not known, pattern classifiers play an increas- 
ingly important role; see for example recent applications in 
expert controllers. In all cases, a signal processor must be de- 
signed which correctly classifies a new observation based on 
past observations. 

Loosely speaking, the general problem consists in extract- 
ing the necessary information, from past observations, in order 
to build a classifier which identifies each new observation with 
the lowest possible error. As such, a classifier is nothing more 
than a partition of the observation space into disjoint regions; 
observations falling in the same region are declared to  originate 
from the same pattern. 

There are basically two approaches for solving this problem. 
The first one, referred to as the parametric approach, consists 
in using the past data to build a model and then using it in 
the classification scheme. The second approach, referred to as 
the nonparametric approach, consists in using the past data 
directly in the classification scheme. In the first approach, a 
statistical model is postulated a priori and its parameters are 
determined by minimizing a cost function which depends on 
the observation data and the assumed model. The success of 
the resulting classifier depends crucially on the nature of the 
assumed model, the characteristics of the cost function, and 
the accuracy of the parameters of the optimal model. Usually, 
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Figure 1: Plot of two pattern densities 

simplifying assumptions are made on the model and the cost 
(e.g. Gaussian model and quadratic cost) in order to  find an 
optimal solution. Hence, a compromise exists between model 
accuracy and problem solvability. 

In the second approach, a scheme is devised that uses past 
data directly in the classification scheme. New observations 
are classified by computing a suitable quantity which depends 
on the observation and comparing that quantity to  similar ones 
computed from past observations. These tests are computed 
directly, without the intermediate step of identifying a sta- 
tistical model. Among these tests are the nearest neighbor 
scheme, the kernel method, the histogram method, and the 
Learning Vector Quantization (LVQ) method. These tests do 
not assume any model form for the underlying problem. Con- 
sequently, they are not subject to  the kinds of errors associated 
with assuming an incorrect model. 

In the next sections, the LVQ algorithm is presented. Us- 
ing theorems from stochastic approximation, we prove that 
the update algorithm converges under suitable conditions. We 
discuss a modification to  the algorithm which provides conver- 
gence for a larger set of initial conditions. Finally, we prove 
that the detection error associated with LVQ converges to the 
lowest possible error as the appropriate parameters go to in- 
finity. 

2 Learning Vector Quantiaat ion 
From the theory of statistical pattern recognition, it is known 
that the optimal decision regions for a classifier can be cdcu- 
lated directly from the pattern densities. To illustrate, suppose 
there are two patterns and that each pattern density is Gaue- 
sian with zero mean. Figure 1 shows a plot of two such pattern 
densities. Here pattern 1 has a variance equal to  1, and pat- 
tern 2 has a variance equal to 4. The decision regions are easy 
to calculate if we follow the Bayes decision rule for 
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Figure 2: Plot of decision regions 
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Figure 3: Voronoi vectors and their approximate decision re- 
gion. 

minimum error and assume that each pattern is equally likely. 
These regions are displayed in Figure 2. 

The decision regions are computed using the individual pat- 
tern densities. However, the pattern densities are usually not 
available, instead, the only knowledge available is a set of inde- . 
pendent observations of each pattern. Given these observations 
it is possible to  construct nonparametric density estimators 
and use them to find approximate decision regions. 

LVQ is an algorithm which estimates the decision regions 
directly. Unlike some nonparametric classification schemes, it 
does not first estimate the densities and then proceed to cal- 
culate the decision regions. In LVQ, vectors representing av- 
erages of past observations are calculated. These vectors are 
called Voronoi vectors. Each vector defines a region in the ob- 
servation space and hence characterizes an associated decision 
class. 

In the classification phase, a new observation is compared 
to all of the Voronoi vectors. The closest Voronoi vector is 
found and the observation is classified according to the class 
of that closest Voronoi vector. Hence, around each Voronoi 
vector is a region, called the Voronoi cell, which defines an 
equivalence class of points all belonging to the decision class 
of that vector. An example of a two class problem in which 
some of the Voronoi vectors are of class 1 and others are of 
class 2 is shown in Figure 3. The shaded region represents the 
optimal decision boundary and the bold line represents the 
LVQ approximation to it. LVQ is similar to nearest neighbor 
classification except that only the nearest Voronoi vector is 
found instead of finding the nearest past observation. 

In the design or learning phase, a set of training data con- 
sisting of already classified past observations is used to adjust 
the locations and the decisions of the Voronoi vectors. The 
vectors are initialized by setting both the initial locations and 

the initial decisions. Once the initial locations are fixed, the 
initial decisions are found by a simple majority vote of all the 
past observations falling in each Voronoi cell. This initializa- 
tion process is discussed in detail in (LaVigna [1989]). The 
vectors are then adjusted by a gradient search type algorithm. 
Specifically, an observation is picked at  random from the past 
observations; if the decision of the closest Voronoi vector and 
the decision associated with the new observation agree, then 
the Voronoi vector is moved in the direction of the observa- 
tion, if however the decisions disagree then the Voronoi vector 
is moved away from that observation. This process is contin- 
ued for several iterations through the past observations until 
all the Voronoi vectors’ locations converge. 

The heuristic idea behind this adjustment rule is that if the 
decision of the new observation and the decision of the closest 
vector agree then the Voronoi cell is probably close to the cor- 
rect position and the Voronoi vector should be moved closer 
to that observation, conversely, if the decisions disagree then 
the Voronoi vector should move away from that observation. 
On the average, the vectors will converge to positions which 
approximate the optimal decision regions. We will make this 
more precise in the sections to follow. The amazing feature of 
this algorithm is that it only takes a small number of vectors 
to get satisfactory classification results (LaVigna 119891). 

3 Description of the Algorithm 
Now we mathematically describe the LVQ algorithm. To begin 
with, let the past observations lie in i@ and let 0 = {el , .  . . ,e,} 
be the Voronoi vectors. The observation space is partitioned 
into Voronoi cells. Each Voronoi cell has a defining vector 
0, and an associated decision class de,. The cell consists of 
all points in the observation space which are closer to that 
vector than to any other Voronoi vector. An observation x is 
classified as type de, if it falls within the Voronoi cell defined 
by 8,. Let p ( 8 ,  z) be a cost function satisfying some reasonable 
conditions (LaVigna [1989]). Voronoi cells are characterized 
mathematically by 

~ s , = { ~ ~ ~ ~ ~ ~ ( e , , ~ ) < ~ ( e ~ , ~ ) , j # i }  i = i  ,..., k. 
(1) 

By convention, we assign equidistant points to that Voronoi 
cell with the lowest index. 

The vectors 8; are adjusted as follows. Let {(yn, dy,)}r=,l be 
the past observations set. This means that yn is observed and 
has as its pattern.class dgn. We assume that there are many 
more observations than Voronoi vectors (see (Duda & Hart 
[1973])), i.e., N is much greater than k. Once the Voronoi 
vectors are initialized, training proceeds by taking a sample 
(yn,dyn) from the past observation data set, finding the p- 
closest Voronoi vector, say OC, and then adjusting 8, as follows: 

ec(n t 1) = oc(n) - an Vo~(Bc(n),ys) (2) 

if do, = dyn and 

&(n t 1) = B,(n) t an Vop(4(n), ~ n )  (3) 

if de, # dyn. Here n is the iteration number. In words, if yn 
and Oc(n) have the same decision then O,(n) is moved closer 
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to y,, however, if they have different decisions then e,(n) is 
moved away from y,. The constants {a,} are positive and 
nonincreasing. Notice that only the Voronoi vector which is 
closest to the observation is adjusted by the algorithm. The 
other vectors remain unchanged. 

In the next section, we show convergence of the algorithm 
when the number of past observations becomes arbitrarily large 
and each observation is presented once. Using similar argu- 
ments it is possible to show convergence when the number of 
past observations is fixed and the number of presentations of 
each observation becomes arbitrarily large. In both cases, con- 
vergence is shown by finding a function h ( 0 )  in an associated 
ODE and studying its properties in order to apply the conver- 
gence theorems (Benveniste, Metivier & Priouret [1987]). 

4 Convergence to Stationary Points 
The stochastic approximation theorems of (Benveniste, Metivier 
& Priouret [1987]) show that as the number of iterations goes 
to infinity, the estimate 0, converges to  o*, an asymptotic 
stable equilibrium of the associated ODE (8). Given an itera- 
tive scheme of the form (2) and (3), one only needs to  find the 
function h ( 0 )  in order to study the convergence properties of 
that scheme. In this section, we find h ( 8 )  for the case of an 
infinite number of observations and the case of a finite number 
of observations. 

The LVQ algorithm has the general form 

ei(n + 1) = 4 ( n )  + a n  7(dyn,4,(n), Yn, o n )  Vep(ei(n), Yn) (4) 

where the function 7 determines whether there is an update 
and what its sign should be. It is given by 

or, more compactly, 

7(d~n ,  dO,(n), Yn, 0,) = -l{ynEVe,}(l{d,,=ds,} - l{d,,,#de,}) ( 6 )  

where 1~ is the indicator function of the set A.  This is a 
stochastic approximation algorithm with pn(O,z) 0 (see 
(Benveniste, Metivier & Priouret [1987])). It has the form 

On+* = 0, + Q, H(On, 2,) (7) 

where 0 is the vector with components 4; H ( 0 ,  z )  is the vector 
with components defined in the obvious manner in (4) and 
I, is the random pair consisting of the observation and the 
associated true pattern number. If the appropriate conditions 
are satisfied by a,,, H ,  and z,, then 0, approaches the solution 
of 

(8) 
d -  
dt -0(t) = h(O( t ) )  

for the appropriate choice of h(0 ) .  
Throughout this section we consider the caSe of two pat- 

tern densities; convergence is obtained via the ODE method 
discussed in (Benveniste, Metivier & Priouret [1987]). 

4.1 Convergence for an Infinite Number of 
Observations 

We assume that the Voronoi vectors are ordered so that the 
first IC0 vectors have decision class equal to pattern 1 and the 
remaining have decision class equal to pattern 2. It is shown 
that h ( 0 )  of the associated ODE takes the form 

h ( O )  = 

with q(z) = pz(z) az - pl(z) r1. To this end, let 

f i ( 0 , z )  = ~ { z E V ~ , }  vS,p(ei,z) (l{i<ko} - l{i>b}) (10) 

then we see from (9) that 

h i ( @ )  = f i ( 0 ,  2) dz* (11) 

Aassume that the training data { z , , } ~ = ~  consist of pairs 
of independent, identically distributed observations with the 
property that if z, = (yn,dvn) then for each n, yn is distributed 
according to the probability density function pz(y) when d,, = 
2 and according to  pl(y) when dyn = 1. 

Next it is shown that Hi(On,zn) = hi(0,) + &(n) where 
&(n) is a noise sequence. Let E, denote the expectation with 
respect to  the randop variable z, where we have dropped the 
subscript n for ease of notation and let El (resp. E,) denote 
the expectation with respect to  pl(y) (resp. pz(y)). To begin 
the analysis, 

Ez[Hi(@,z)I = E1 [Hi(@, (Y, 1))1*1+ EZ [Hi(@, ( ~ , 2 ) ) 1  TZ 

= E1 [7(Ldei,Y,@) VeiP(Qi,Y)1*1 
+Ez [?(a, dei, Y,  0)  V ~ i p ( 4 , y ) l  *Z 

= 

= hi(@). 
-El [fi(@, Y)] *I + EZ [fi(@,Y)I TZ 

From the results above it is possible to show that &(n) is a 
zero mean process with finite variance. 

We assume that p(6, z) satisfies the following three proper- 
ties: 

(a) p(0, z) is a twice continuously differentiable function of B 
and z and for every fixed x E iJ?! i t  is a convex function 
of e. 

(b) For any fixed z, if O(k) + CO as k -+ CO, then p(B(k) ,z )  + 
CO. 

(c) For every compact Q c e, there exist constants C1 and 
q1 such that for all 6 E Q 

IVep(B,z)l < G ( 1 +  IzI"). (12) 
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An example of a function which satisfies the properties above 

We further assume that the sequence an satisfies Can = 
00 and Ea: < 00 for some X 2 1. We now state the two 
convergence theorems alluded to. 

is p(e, S) = liei - ~ 1 1 ~ .  

Theorem 1 Let {z,} be the sequence of independent, identi- 
cally distributed random vectors given above. Suppose {an} and 
p(0,x) satisfy the properties above. Assume that the pattern 
densities p l ( z )  and pz(z )  are continuous and h ( 0 )  is locally 
Lipschitz. 

I f  @.(t) remains in a compact subset of SRd for all t E [0, TI, 
then for  every 6 > 0 and all Xo = x 

lim P,,,{ sup 10, - 8,(t,)l > 6) = 0 (13) 
njm(T) 

where 0, satisfies (7) and &(t) satisfies (8) with h ( 0 )  defined 
in (9). Here t,  = 

Theorem 2 In  addition to the conditions of Theorem 1, as- 
sume @* is a locally asymptotically stable equilibrium of (8) 
with domain of attraction D'. Let Q be a compact subset of 
D'. If 0, E Q for infinitely many n then 

ai. 

lim 0, = O* a s .  
n-+m (14) 

Proof of Theorem 1: 

& Priouret [1987,Chapter 41) are satisfied then apply their re- 
sults. The observations z, are independent, identically dis- 
tributed and are independent of the values of 0 and {zi};<,, 
therefore {On,z,} forms a trivial Markov chain. If we let 
I Ie(z ,  B)  denote its transition probability then 

We need only verify that [H.l]-[H'.5] in (Benveniste, Metivier 

Hence hypothesis [H.2] is satisfied. 
Note that 

IHi(0,z)l = IVsiP(oi,z)l. (17) 
Therefore, in view of ( c )  above [H.3] is satisfied, 

therefore if we let v ( 0 ,  z )  = H ( 0 ,  z )  then 

i) h ( 0 )  = IISVS, and therefore [H.4 ii] is satisfied; 

ii) Iv;e(z)l = (Hi (0 , z ) l  = IV,,p(O;,z)l, and therefore [H.4 iii] 

The transition probability function is independent of 0 

is satisfied using property (c ) .  

Therefore, [H.l]-[H'.5] are satisfied, which proves Theorem 1. 

The proof of Theorem 2 is similar that of Theorem 1. 
m 

4.2 Remarks on Convergence 

The convergence results above require that the initial condi- 
tions are close to  the stable points of (8)s i.e., within the domain 
of attraction of a stable equilibrium, in order for the algorithm 
to converge. Next a modification to the LVQ algorithm is pre- 
sented which increases the number of stable equilibrium for 
equation (8) and hence increases the chances of convergence. 

-& e 1 2 "  = : 3 e A A A *  0- A e2 - 
Figure 4: 
Voronoi vectors. 

A possible distcibution of observations and two 

In the remainder of this section a simple example is presented 
which emphasizes a defect of LVQ and suggests an appropriate 
modification to the algorithm. 

Let 0 represent an observation from pattern 2 and let A 
represent an observation from pattern 1. We assume that the 
observations are scalar and that p(b',x) is the Euclidean dis- 
tance function. Figure 4 shows a possible distribution of ob- 
servations. Suppose there are two Voronoi vectors 01 and 82 
with decisions 1 and 2, respectively, initialized as shown in Fig- 
ure 4. At each update of the LVQ algorithm, a point is picked 
at random from the observation set and the Voronoi vector cor- 
responding to the Voronoi cell within which the point falls is 
modified. We see that during this update, &(n) is pushed to- 
wards CO and Ol(n) is pushed towards -CO, hence the Voronoi 
vectors do not converge. . 

vectors do not agree with the majority vote of the observations 
falling in their Voronoi cells. As a result, the Voronoi vectors 
are pushed away from the origin. This phenomena occurs even 
though the observation data is bounded. The point here is 
that if the decision associated with a Voronoi vector does not 
agree with the majority vote of the observations contained in 
its Voronoi cell then it is possible for the vector to diverge. A 
simple solution to this problem is to correct the decisions of all 
the Voronoi vectors after every adjustment so that their deci- 
sions correspond to the majority vote. This is pursued further 
in the next section. 

This divergence happens because the decisions of the Voronoi 

5 The Modified LVQ Algorithm 
Recall that during the update procedure in (4), the Voronoi 
cells are changed by changing the location of one Voronoi vec- 
tor. After an update, the majority vote of the observations 
in each new Voronoi cell may not agree with the decision pre- 
viously assigned to that cell. In addition, after the majority 
vote correction, the number of pattern 1 Voronoi vectors can 
change. In order to analyze this procedure mathematically, we 
insist that the correction be done at each iteration'. Let 

l N  
1 if E l{y,E~e,> l{dy,=1) > 

C,",I 1 { ~ , E V e , > 1 ~ d ~ J = 2 )  
(18) 3=1 

2 otherwise. 

!A(@; N )  = 

Then g, represents the decision of the majority vote of the 
observations falling in v0,. The update equation for 8, becomes 

Ql(n+l) = Qi(n)+an7(dyn ,g t (0n;  N ) ,  Yn ,  on) ~ g , ( ~ ) ~ ( o i ( n ) ,  y n ) .  
(19) 

- This equation has the same form as (4) with the function 
H ( O , z )  defined from (19) replacing H ( O , z ) .  

'In practice, the frequency of re-calculation would be determined by 
the problem and would probably not be done at every step. 
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We can show that as, the number of observations becomes 
large that the function in the ODE related to (19) converges 
with probability one to h(O) given by 

with q(z) = p 2 ( z ) ~ ~ - p ~ ( z ) l r ~ .  If the sizeof each Voronoi cell is 
small then by the mean value theorem hi(@) is approximately 
equal to 

Ai(@) = -/ V~,p(Oi ,z )  lq(x)ldx. (21) 
vet 

The right-hand side of the last equation is minus the (ith com- 
ponent of) gradient of the cost function 

Therefore, from Lyapunov stability it follows that all of the 
equilibria are stable. 

6 Decision Error 

In this section we discuss the error associated with the mod- 
ified LVQ algorithm. Here two results are shown. The first 
is the simple comparison between LVQ and the nearest neigh- 
bor algorithm. The second result shows that if the number 
of Voronoi vectors is allowed to go to  infinity a t  an appropri- 
ate rate as the number of observations goes to infinity, then 
it is possible to construct a convergent estimator of the Bayes 
risk. That is, the error associated with LVQ can be made to 
approach the optimal error. As before, we concentrate on the 
binary pattern case for ease of notation. The multiple pattern 
case can be handled with the modifications discussed above. 

6.1 Nearest Neighbor 

If a Voronoi vector is assigned to each observation then the 
LVQ algorithm reduces to the nearest neighbor algorithm. For 
that algorithm, it was shown (Cover & Hart [1967]) that its 
Bayes minimum probability of error is less than twice that of 
the optimal classifier. More specifically, let r* be the Bayes 
optimal risk and let r be the nearest neighbor risk. It was 
shown that 

r* 5 r 5 %*(I - r*)  5 2r*. (23) 

Hence in the case of no iteration, the Bayes’ risk associated 
with LVQ is given from the nearest neighbor algorithm. 

6.2 Other Choices for Number of Voronoi 
Vectors 

We saw above that if the number of Voronoi vectors equals the 
number of observations then LVQ coincides with the nearest 
neighbor algorithm. Let kN represent the number of Voronoi 
vectors for an observation sample size of N .  We are interested 
in determining the probability of error for LVQ when kN satis- 
fies (1) lim kN = 00 and (2) lim(kN/N) = 0. In this case, there 
are more observations than vectors and hence the Voronoi vec- 
tors represent averages of the observations. 

Letting the number of Voronoi vectors go to  infinity with 
the number of observations presents a problem of interpreta- 
tion for the LVQ algorithm. To see what we mean, suppose 
that kN = L f l j ,  then every time N is a perfect square, k is 
incremented by one. When k is incremented the iteration (7) 
stops, a new Voronoi vector is added, and the decisions associ- 
ated with all of the Voronoi vectors are recalculated. Unfortu- 
nately, it is not clear how to choose the location of the added 
Voronoi vector. Furthermore, if the number of Voronoi vectors 
is large and if the Voronoi vectors are initialized according to  
a uniform partition of the observation space, then the LVQ 
algorithm does not move the vectors far from their initial val- 
ues. As a result, the error associated with initial conditions 
starts to dominate the overall classification error. In view of 
these facts, we now consider the effects of the initial conditions 
on the classification error and examine the algorithm without 
learning iterations for large kN. 

Let ON = {€‘I,. . . , 8kN} and assume that the Voronoi vec- 
tors are initialized so that 

1 
V0l(Vsi) = cl(-), kN 

Here we assume that the pattern densities have compact sup- 
port. Let y E hi and suppose that 

( 2 5 )  
l N  

i (y;N)  = -E% 
N j=1 

Then an argument using the weak law of large numbers shows 
that C(y; N )  converges in probability to q(y). Therefore the 
decision associated with 6’; converges in probability to  the op- 
timal decision, i.e., if q(6’;) 2 0 then 6’; is assigned decision 
class 2 and otherwise 8; is assigned decision class 1. 

7 Discussion 
In this paper, it was shown that the adaptation rule of LVQ is 
a stochastic approximation algorithm and under appropriate 
conditions on the adaptation parameter, the pattern densities, 
and the initial conditions, that the Voronoi vectors converge 
to the stable equilibria of an associated ODE. We presented 
a modification to the Kohonen algorithm and argued that it 
results in convergence for a wider class of initial conditions. 
Finally, we showed that LVQ is a general histogram classifier 
and that its risk converges to  the optimal risk as the appro- 
priate parameters went to infinity with the number of past 
observations. 
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