The DELPHI System:
A System Level Tool for
Integrated Design of Real-time Signal Processors

John S. Baras*, Fariborz Ebrahimi+, Bruce Israel-,
Anthony LaVigna+:, and David MacEnany-

Electrical IEngincering and Systems Research Center
University of Maryland, College Park MD 20742

1. Introduction

We are developing an expert system to facilitate the CAD
of sophisticated and complex chips for real-time non-lincar
signal processing. The software is called DELPIIT which is an
acronym for DEsign Laboratory for Processing Ilidden Infor-
mation. The system combines an Al engine, symbolic algebra,
and multiprocessor numerical schemes. Sophisticated reason-
ing, mathematical, and computational tools are provided in
a form suitable for immediate use by systems engineers. One
of the major advantages of DELPHI is its ability to intcract
symbolically with the user. The architecture of the DELPHI
system is shown in Figure 1. The current architecture can
be classified as a shallow coupled system since the knowledge-
based system has little knowledge of numeric routines. The
numeric routines, which are treated as ‘black boxes’, are man-
aged by the system to solve the given problem and interpret
the results. The system can be used as: (a) a tool for inte-
grated system design, (b) a tool for integration of symbolic

and numeric computing, and (c) an advanced teaching aid.

The tntelligent interface block allows the user to enter
a signal and observation model symbolically. The system is
capable of discovering the nature of the given model such as
diffusion, point, or Markov chain type model. The system can
provide guidance to the user as needed. The modeling block
can automatically build a linear dynamical system model for a
Gaussian process using the Akaike-Rissanen-Hannan [1] the-
ory. Currently, we are working on building general diffusion
type (2], point process type, and hidden Markov chain type
models. The architecture is designed in such a manner that
provides the capability of calling a variety of statistics and
time series libraries for performing statistical validation tests
on the model under construction. The likelihood ratio block

can perform similar computations for point process [3] ob-

servations, mixed diffusion point process type models, and
Markov chain models. During this year we will couple the

system to a silicon compiler for actual VLSI chip layout.

INTELLIGENT
INTERFACE

SIGNAL MODII.
DEVELOPMENT
AND VALIDATION

DATA BLACKBOARD
SOURCE -

LIKELIHOOD
RATIO
COMPUTATION

SILICON
COMPHER

AN

Figure 1. DELPHI Architecture.

2. An Example From Sequential Detection

Let us consider the binary sequential hypothesis testing
problem. We are given a scalar-valued signal z, which satisfies .

the stochastic differential equation
dz,
dt

Ig =V -

= f(ze) + g(ze) me

where n, is a white noise signal. Unfortunately, we cannot
observe z, directly, instead we only observe y,, a scalar-valued
stochastic process. Under each hypothesis the observed data

is the output of a stochastic differential equation, i.e.,

d

Under H, : % = h(z,) + 7,
d

Under Hy : % = i,

* The work of this author was supported partially through NSF Grant NSFD CDR-85-00108 and partially through ONR Grant

N00014-83-K-0731.

** The work of this author was supported by an ONR Fellowship.

10 / SPIE Vol 827 Real Time Signal Processing X {1987)

B/(é////}///// sy

Figure 2. Typical plot of the ltkelzhood ratzo

where f, is another white noise signal which is indepen-
dent of n;. Notice that if f(-) and k() are linear and g() is
constant, then this becomes the standard problem solved by

the Kalman filter.

Data is observed continuously starting at an initial time
which is taken for convenience to be zero. At each time t >
0, the decision-maker can either stop and declare one of the
hypotheses to be true or can continue collecting data. The
decision-maker selects his decision based on the data collected
up to time £, so as to minimize an appropriate cost function.
To summarize, the decision maker makes two decisions, when
to stop (represented by) and once stopped, which hypothesis

is true (represented by).

More precisely, a decision policy involves the selection
of a termination time 7, and of a binary valued decision §.
If 6 = 1, we shall accept hypothesis I1;; if § = 0 we shall
accept hypothesis Hy. An admissible decision policy is any
pair u = (1,8) of RV’s where 7 and § depend only on past
observations. The collection of all admissible decision policies
will be denoted by U.

An admissible policy u = (r,6) is a threshold policy or
of threshold type if there exists constants A and B, with 0 <
A< 1< B <ooand A# B, such that

7= inf(t >0 A ¢ (A, B))

s_ L A 2B
710, A, <A

Here A, is the likelihood ratio associated with this problom

¢ 17t
At:exP(/ hcdyn - 5/ hfd)
0o 0

he = Ey(h(z) | 7).

Pictorially, this means as A, is computed for each time ¢

namely

and

it is compared to the interval (A, B). The process is stopped
the first time A, is larger than B or smaller than A (See Figure
2).

In (2] we showed that under either the fixed probaltility
of error formulation or under Bayesian formulation. The op-
tional policy is a threshold policy. The theory of {2 has been
incorporated in DELPHI. Let us consider the Bayes case only.

We shall assume, two costs are incurred. The first cost is
for observation and is accrued according to kfo h ‘ds, where
k> 0and {h, t > 0} is defined above. The second cost is

associated with the final decision 6 and is give:. by

c2, when If == 0 and é = I;
0, otherwise,

c1, when M = 1and é =0
(H,8) {

where ¢; > 0 and ¢; > 0.

We are interested in minimizing the average cost. I
(7.6) is any admissible policy, then the corresponding average

expected cost is
J(u) = E(k/ hids + C(H, &)).
]

The optimal policy is characterized by the thresholds 0 <

A" <1< B <oowith A* / B*, are given by the relations

1 - . N
Al < ,,,‘P)(“) B (’ “’) Y
P 1 a o S\ b

where a* and b° are the unique solutions of the transcenden:a!
equations

2t e = k(V(a7) W(b7))
call=b") = cra’= (6" a’)(er kW'(a%))« k(W(b') - W(a')).

with
Y(z) = (1 - 21)log i x

satisfying 0 < a* < b* < 1

From the theory of nonlincar filtering, it can be shown
that the computation of &, can be accomplishied by solving
a linear stochastic partial differential equation, known as the
Zakai equation. A numerical approximation technique is used
to solve this equation. This technique has been incorporated
in the likelihood ratio block which currently has the following
capabilities: (an M indicates a Macsyma computation, an F

indicates a Fortran computation).
MI: Input f,g,h in symbolic form. Generate the multi-
dimensional Zakai equation.

M2: Compute

all stochastic differential equations. Automatically

automatically discretizations of

generate Fortran code.

SPIE Vol 827 Real Time Signal Processing X (1987)/ 11

F3: Solve numerically pathwise the resulting stochastic

difference equations and store the y paths.

M4: Generate discretization schemes for the Zakai equa-
tion and automatically generate the associated For-

tran code.

F5: Automatically integrate numerically the discretized

Zakai equation.
F6: Display graphically the solution.
M7: Compute symbollically discretizations of the likeli-

hood ratio and automatically generate appropriate
FORTRAN simulation code.

F8: Evaluate numerically the likelihood ratio.

The following additions to the likelihood ratio block are
planned: apriori bounds for performance of detectors and es-
timators, additional numerical schemes for the Zakai equation
(eq., multi-grid algorithms), and automatic performance eval-

uation of sequential detectors.

Below is a sample run of the system. The problem is to
determine whether the received signal is a lognormal signal
plus white noise, Hy, or white noise alone, Hy. This problem

can be represented mathematically as:

dz
111: :1?:—224-"4
d
d_ltJ = ezp(z) + 1y
d
1{02 E%:flt

In figure 3a, we have graphed the likelihood ratio when the
input is lognormal. The likelihood ratio eventually is greater
than B and the correct signal is detected. Likewise, in figure
3b, we have graphed the likelihood ratio when the input is
only white noise. This time the likelihood ratio falls below A

and white noise is detected.

3. Hardware and Software Environment

The DELPHI system has been implemented on a TIT™
Explorer LX System. It consists of a powerful Al develop-
ment environment based on the 717 Lisp machine and the
LX system which is a MC68020-based coprocessor board run-
ning UNIXTM System V. TITM Explorer system is the sys-
tem of choice for this application since it integrates the sym-

bolic computing capabilities of the Al engine with the number

12 7 SFIE voi 827 Real Time Signal Processiny X {1987}

0.0

Figure 3a. Likelihood ratio when input is lognormal

Figure 3b. Likelthood ratio when input is white notse

crunching capabilities of the LX system. The two processors
are connected to the local NUBUS and communicate through
remote procedure calls. The lisp processor has access to 8 MB
memory as well as 2 MB of shared memory available on the

LX system.

DELPHI is an object-oriented system written entirely in
Lisp language with object-oriented facilities of Flavors. DEL-
PHI accesses the numeric routines, written in either Fortran
or C languages on the LX system, through remote procedure
calls. DELPHI is composed of two types of objects, data
stream objects and function objects. Data streams are se-
quences of numbers, representing data, along with associated
attributes of the data object. Functions can process the data
streams to either generate new data streams, to add new at-

tributes to the data streams being processed, or a combination

of both. For example, a function to multiply a data stream
by a constant is one that would generate a new data stream,
while a function such as RANGE might only add MAX and

MIN attributes to an existing data stream.

Data streams and functions, are instances of flavors that
can be created by ‘make-instance’ facility. These flavors have
various ‘slots’ that contain the information about that object
and how to control its usage. Three slots are common to both
function and data stream objects. The name slot specifies the
name of the object; the doc slot contains documentation that
describes the object which appears on the who-line when the
mouse is placed over the object; The menus slot contains a list
of the menu paths that the object is accessible through. This
option allows for an object to be accessible through multiple
menu paths. Each pathis a sequence of atoms, where an atom
is the name of the menu that would be chosen to go down that

branch.

In addition to the above slots, a data stream has three
other important slots. The 1nfo slot contains the actual data
in the data stream which is a list of numbers. The indirectslot
is used for situations where data is not obtained interactively
through the interactor window. The data might be stored in
a file on an alien host system on a network, or may even need
to be received from a data acquisition device. In this situa-
tion, this slot would contain a lisp function that knows how
to go out and get the data that the data stream represents.
In this case, the mnfo slot would be used to hold special infor-
mation for that function (file name. host name, etc.) which
indirect would be invoked with. The qualities slot represents
the information known about this data stream. 1t represents
a ‘frame’ stored as a list of pairs, each pair being an attribute
and a value. For example, the information can represent the
constraints on the data stream in order to determine if the
given data stream is a valid input parameter for a specific

function.

In order to process data streams effectively, a function
object requires specifications for the inputs, the body of the
function which specifies what will be done with inputs, and
outptts which specifies what to do with the results. These
characteristics of functions are specified by inputs, body, and
outputs slots respectively. The snputs slot specifies required
input parameters. This can be specified either as a list of
parameter definitions or as an input body. If it is a list of the

parameters, DELPHI will handle all interactions and choices

necessary for the user to make. If more complex facilities are
necessary, then this slot may contain an arbitrary lisp func-
tion that handles all inputs provided by the user. A macro,
input-lambda, is available for defining such functions. The
body slot contains a lisp function which has as many argu-
ments as were returned from the inputs definition. This func-
tion will be called with the arguments from inputs, and can
return multiple values, each representing a different inference
or computation. This function does not create or affect data
stream structures in any way, it just performs calculations.
The outputs slot specifies what to do with the results returned
by the body. The macro output-leimbda is used to define this,
with two variable lists to be bound to the inputs and outputs
respectively, and then the body of the output-lambda will be

executed to determine what to do with the lists.

The DELPHI user interface module is composed of four
windows, a command menu, a textual display window, a
graph window, and a lisp interactor window. The command
menu is used for examining data streams and functions, exe-
cuting the various functions, creating new data streams, and
changing various options controlling the behavior of the sys-
tem. Data can be examined in cither textual format, graph-
ically, or both. If a data stream is displayed textually, all of
its attributes will be displayed in the text display window,
along with all the numeric values of the data. The user has
the option of viewing the data graphically in the graph win-
dow. Another option allows the user to compare multiple
data streams, by graphing each of the data streams at the
same time in the graph window. If Run Fuiction option is
selected, a menu containing all available functions will pop
up which may be executed. This menu is hierarchical, so a
function may appear either directlv or within sub-menus of
this menu. Once the desired function is selected by the user,
a new window will pop up which displays the required param-
cters needed for execution, along with the respective default
values. The user has the choice of accepting the default values
or changing them. Another available facility from the com-
mand menu is the change options button, which allows various
options that customize the behaviour of DELPHI system to

be set or changed.

4. Future Directions

We are planning to use a blackboard architecture [4]

based on a deep coupling approach which utilizes extensive

SPIE Vol. 827 Real Time Signal Processing X (1987) / 13

knowledge of each numeric routine. Each routine’s inputs and

outputs, purpose, limitations, constraints, and side-effects

may be explicitly represented which can be used by the

knowiedge-based system during the problem-solving phase.

This approach has the advantage of providing much better

maintainability and extendability of DELPHI. However, the

cost is the overhead involved in its initial development phase.

5. References

n

B

E.J. Hannon, W. T. Dunsmuir and M. Deistler, “Estima-
tion of Vector ARMAX Models”, J. Multivanche Anal.,
1981,

J.S. Baras and A. LaVigna, “Architectures for Real-Time

Sequential Detection”, this proceedings.

D. C. Macknany and J. S. Baras, “Bayesian Sequential
Detection for Point Processes”, to appear in Proc. of
26th [EEE Conference on Decision and Control, Dec.

1987,

H. Penny VII, “Blackboard Systems: The Blackboard
Model of Problem Solving and the Evaluation of Black-
foard Architectures”™, The Al Magazine, Summer 1085,

no. 36-53.

14 7 SPIE Vol 827 Real Time Signal Processing X {1987}

