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Abstract

We present the sequential detection for diffusion type sig-
nals both in the fixed probability of error formulation and in
the Bayesian formulation. The optimal strategy in both cases
is a threshold policy with explicitly computable thresholds.
We provide numerical schemes for approximating the reve-
lant likelihood ratio and provide an architecture for real time

signal processing.

Introduction

In this paper we discuss an application and implemen-
tation of a nonlinear signal processor. This processor im-
plements the natural mathematical generalization of the well
known Kalman filter. Specifically, we present the problem
of sequential hypothesis testing for signals that can be mod-
eled with nonlinear dynamics; we show the optimal detector
for the Bayesian and fixed probability of error costs; and, we
show a real-time implementation of the optimal detector using
systolic arrays.

The techniques above differ from other nonlinear signal
processing in that they implement the mathematically opti-
mal detector. They do not make the standard linear-Gaussian
assumptions of Kalman filtering. However, they do assume a
given signal model. In many cases, it is possible to obtain
this signal model from the physics or apriori knowledge of the
system. In other cases, powerfu! statistical techniques must
be used to determine the signal model. (The latter case is
still an area of active research.)

Applications of these results to radar problems have been
considered and implementations are currently being pursued.
For example, if we sample the continuous time return at a
sampling period equal to the pulsed radars interpulse inter-
val, models like (1.1} and (1.2) can be used to represent the
received samples from ships or chafl-clouds (Baras {1978}).
Actually, such models have even been implemented in hard-
ware at NRL simulation facilities. One such application is

described in (Baras [1978)). This is an example of the ap-
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plicability of our result to real time target discrimination in
radar systems.

This paper is organized as follows: the basic problem
and notation is presented in Sectjon 1; both the Bayesian and
fixed probability of error problems are solved in Sections 2
and 3, repectively; the numerical techniques used to solve
both problems are presented in Section 4; and, a systolic array

implementation is presented in Section 5.

1. Basic Sequential Detection Problem
Throughout this paper, we consider the binary sequential
hypothesis testing problem. Here, we are given a scalar-valued
signal z; which satisfies the stochastjc differential equation

dI;

= = 1z) +g(z)n, (1.1)

o=V

where n, is a white noise signal. Unfortunately, we cannot
observe z, directly, instead we only observe y,, a scalar-valued
stochastic process. Under each hypothesis the observed data

is the output of a stochastic differentjal equation, i.e.,

Under H; : % = h(z,) + n;
by (12)
Under H : ditt = fi,

where #, is another white noise signal which is independent of
n¢. Notice that if f(-) and h(.) are linear and g(-} is constan:
then this becomes the standard problem solved by the Kalman
filter. 3

Data is observed continuously starting at an initial time
which is taken for convenience to be zero. At each time t >
0, the decision-maker can either stop and declare one of the
hypotheses to be true or can continue collecting data. The
decision-maker selects his decision based on the data collected
up to time ¢, 80 as to minimize an appropriate cost function.
To summarize, the decision maker makes two decisions, when
tostop {represented by r) and once s;topped, which hypothesis
is true (represented by §).
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For both the fixed probability of error and the Bayesian
formulations of this problem, we have a measurable space
(11, ), on which we are given two probability measures P,
Py, and the random process {y,, ¢ > 0}. Let E, denote the
expectation when P is used; similarly for E;. When hypoth-
esis Hy {respectively H,) is valid the statistics of the observed
process {y, t > 0} are governed by measure P, (respectively
FR).

More precisely, a decision policy involves the selectjon
of a termination time 7, and of a binary valued decision 4.
If 6 = 1, we shall accept hypothesis Hy; if 6 = 0 we shall
accept hypothesis H,. An admissible decision policy is any
pair v = (7,6) of RV's where 7 and é depend only on past
observations. The collection of all admissible decision policies
will be denoted by U,

An admissible policy u = (7,6) is a threshold policy or
of threshold type if there exists constants A and B, with 0 <
AS]SB(ocandA;éB,suchthat

r:inf(tEOfAzé(A,B)) (1'3)

(1.4)

s~ [l A >B
T 10, A, <A

Here A, is the likelihood ratio associated with this problem,

namely
t 1 t
A= exp(/ h,dy, - -/ h?ds), (1.5)
o 2 /o

and

he= Ey(h(z) | 77). (1.6)

Pictorially, this means as A¢ is computed for each time ¢
it is compared to the interval (A, B). The process is stopped
the first time A, is larger than B or smaller than A (See Figure

1).

A t
Giminig,,

T t
Figure 1. Typical plot of the likelihood ratio

A threshold policy will be described as above and will be
identified with the threshold constants (A, B).

The sequential likelihood ratio, A, has continuous sample
paths, therefore for threshold policies, A, takes on the values
A or B. Together with Girsanov's theorem this implies that
the false alarm and miss probabilities of a threshold policy
are explicit functions of A and B (Shiryayev {1977)).

This result has several technical consequences, which
we will state without proof. The proofs are contained in
(Shiryayev [1977]).

(1) Let u be a threshold policy with A and B defined by

Y _1-5

A_l-a B = 5 (1.7)
where a + 8 < 1, then

Py(é=1)=a P(6=0)=8 (1.8)

(2) Let u = (r,6) be any policy in U with Py(§ = 1) +
P(6=0) < 1andlet

B:=P(6=0). (19

Define u* = {r*,6%) to be the threshold policy with
parameters (A", B*) that correspond to the pair
(a,B) as defined in (1.7). Then

Eo(/o' h ds) = 2uw(a, 5) (1.10)

El(/O' h2ds) = 2u(8, ) (1.11)

where

1-2

w(z,y) := (1-z)log + zlog T:—t_y (1.12)

2. Fixed Probability of Error Formulation

Given 0 < a,f < 1 with a+f <1, let U(a,3) be the set
of all admissible policies u such that

Py(d=1)<a P(6=0)< 4. (2.1)

The fixed probability of error formulation to the sequen-
tial hypothesis testing problem requires the solution of the
following.

Problem (Pr): Find u* in U(a,B)
such that for all u in U(a,s),

E.(/ itfda)gE.-(/ hids), i=o0,1. (2.2)
o} 0
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The term in the expectation above represents the ex-
pected energy present. Usually, the observation time is minj-
mized, subject to the error probability constraints (2.1). How-
ever, it is clear that the longer you observe y the more energy
signal you reccive. Therefore, trying to decide “faster” is
related to trying to decide while receiving the “minimum”
energy. This intuitive idea js captured in (2.2).

Theorem 2. If u* js the threshold policy with constants
(A*, B*) defined by
g -1-8

A=

1-a’ a

, (2.3)

then u” solves problem (Pr ).

The proof of this theorem follows from (2) above and

some tedious inequalities.

3. Baycsian Formulation

For the Bayesian formulation, let H be an {0, 1}-valued
RV indicating the trye hypothesis. By ¢ we denote the a
priori probability that hypothesis H, is true, i.e.,

For every 4 € 7, we have

P(A) = pP, (4)+(1- ©)Po(A), (3.2)
where Py and P are the measures defined in Section 1.

We shall assume, two costs are incurred. The first cost is
for observation and is accrued according to kfot h2ds, where
k>0and {hy, t > 0} is defined by {1.6). The second cost is
associated with the final decision § and is given by

1, whenH:land&:O;
C(H,6) = {cz, when H = 0 and é=1, (3.3)
0, otherwise,

where ¢; > O and ¢; > 0.
We are interested in minimizing the average cost. If u =
(7,6) is any admissible policy, then the corresponding average

expected cost is
J(u) = E( k/ h2ds + C(H, 8)). - (3.4)
4]

The Bayesian approach to sequential detection seeks to
find the solution to the following problem.
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Problem (Pg): Given w € (0,1), find u*
such that,

J(u) = :2{‘ J(u). (3.5)

It can be shown that for any admissible policy u there
exists a corresponding threshold policy which has no greater
cost, therefore, the infimum in (3.5) need only be computed
over threshold policies. In fact, it can be shown that the
infimum is obtained and the following theorem results.

Theorem 3. There exists a threshold policy v* in T that
solves problem (Ps). The optimal thresholds 0 < A- <1<
B* < oo with A* # B*®, are given by the relations

(%) e ()

where a® and b* are the unique solutions of the transcendental
equations

€2+ a1 =k(V'(e") - ¥'(57))

€2(1-8") = c1a"+ (5"~ a") (e, ~ k(@) < k(W (5) - W(a*)),

with
z
¥(z) = (1 - 2z)log 3

satisfying 0 < a* < b* < 1.

The theorem above tells us how to construct the optimal
sequential detector.

The results for the bypothesis testing problem when H,
contains a signal in addition to poise require a little modifi-
cation. Here, {2}, ¢ > 0} and {22, ¢t > 0} represent different
signal processes. Under each hypothesis the observed data,
¥t, is the output of a stochastic differential equation,

Under H,: - ﬂzhl(z,’)ﬁ-ﬁ,
d"‘ (3.6)
Under Hy : % = h*(z?) + &,

The solutions to the Bayesian and fixed probability of

error formulations are still valid with A, defined by

sl [ (b - i ay, - ) [ -zme. 5

W me . e ™ T TR



4. Numerical Solution

In this section we will discuss the numerical method used
to approximate A;. It can be shown that A = flR u(z,t)dz
where u(z,t) is the solution to the Zakaj equation. Our strat-
egy will be to find a good approximation to u(z,t) and then

use it to approximate A,.

From the theory of nonlinear filtering, it is known
(Liptser & Shiryayev [1977}) that the unnormalized density of
z given the observations y satisfies the Jinear stochastic par-
tial differential equation, known as the Zakaj equation, given

below for the scalar case

TR “uz,t) + u(z,t) h(z) ar (4.1
u(z,0) = po(z) (4.2)
L'a(nt) = 5 2 107 (@) (e t)) - 2 [1(x) u(=,0)] (43)

where po(z) is the initial density of z.

In general, it is not possible to solve (4.1). Therefore, we
will use finite difference methods to approximate its solution.
Furthermore, since (4.1) is a parabolic equation we use an

implicit discretization for z-derivatives.

Using the chain rule on (4.1) we get,

Lu(z,t) = a(z) uza(z,t) + b(z) us(z,t) + e(z)u(z,t)

4.4
= A'u(z,t) + c(z)u(z,t) -

(2)¢'(2) - f() (4.5)

The solution is approximated on the internal D = (a,8).

Let Az > 0 and define Ze = a+ kAz and n such that
z, < b. Consider the collection of points {zk}g in D. Let
Az +0asn — oo such that z, —+ basn — co. Let At >0
and define t, = k At.

Let v:‘ represent the value of u(z,t) at the grid point

(Zg,t;‘). We replace the z-derivatives in A* with implicit finite

difference approximations. To this end,

k+1 k+1 k+1
v - 2v +v
a(z;) (_‘L‘\L_\i

d(z) uz:(zv t) ~ (AI)2

b(z) u,(z, t) ~

k+1 k+1
v - v
b(z.) (;“—Az : ) if b(z,) > 0

Ulz+1 _ vlz+1
b(z) [ = Ar -] ifb(z) <o

k+1 &
ue(z,1) ~ = At :

(4.6)
Let V¥ represent the vector of mesh points at time k At
Then the above approximations result in a matrix A, which

approximates A*. The approximation takes the form
(I~ AtA VAL — vE 4 Gher terms.

Note that a(z;) is always positive and the special way of
choosing the first derivative approximation guarantees that
the matrix A, is diagonally dominant and of the form

An= : (4.7)

+ -

Therefore (I - At Ap) is strictly diagonally dominant. In fact
it is also inverse positive, i.e., every element of the inverse is
positive. (Schroder (1978, Corollary 1.6b, p221 1)

The final step is to approximate the solution of (4.1) as-
suming A* = 0. This leads to the matrix

Dh - diag(ch(:.)Ay.+(c(z.)—§h(:.)’)At) (48)

with Avk = yei1yar — vi ar
The overall approximation is

(I - atA,) V1 = p, vk, (4.9)

This approximation can be shown to be uniformly convergent
(Kushner [1977); LaVigna [1986]; Pardoux & Talay [1983)).
A nice property of the above approximation is that it is
positive perserving. Regardless of the relationship of At and
Az, the solution V* js always positive. This is important
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y) [sample] yy,, [—
hold

Threshold H,
Detector H,

Figure 2. Overall layout for sequential detector

since we are approximating a probability density which we
know can never be negative.

Schemes similar to (4.9) have been discussed in (Kush-
ner [1977]; Pardoux & Talay [1983]). Furthermore, numerical
studies have been performed in (Yavin [1985]) using these
methods which have produced satisfactory results for approx-

imations to il,.

Using V* defined in {4.9) it is easy to construct a con-
vergent approximation to the likelihood ratio. Let {z;}2 be

the collection of points defined above and let

ifz, <z<ziy,y

kAt <t < (k+1)At

un(z,t) = vf

and define

b n
AT :/ un(z,t)dz = Zv," Az

1=0

then AP is a convergent approximation to A,
t

5. Architectures for Signal Processor

The finite difference scheme used to approximate the so-
lution of (4.1) involves solving the linear equation

(I - AtA,) V! = D vE (5.1)

for each time t = kAt. Here D, is a data dependent diag-
onal matrix. Our goal is to give a multiprocessor design to
efficiently solve (3.1). This means that:

(1) the time necessary to compute VE+1 given V¥,

A, and y;, should be below a problem dependent
threshold; and

(2) the control structure should be simple and regular.

We have chosen the systolic array architecture of (Kung
& Leiserson [1980]) because it can satisfying these goals.

We are interested in systolic processors which perform
linear algebra operations. The basic component of these ar-
rays is the inner product processor (IPP). At each clock pulse
the IPP takes the inputs z, y and @ and computes ax+y (the
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inner product step). This value is output on the y-output
line, and the z and a values pass through to their respective
output lines untouched.

The number of processors in a systolic array performing
matrix-vector multiplication depends only on the bandwidth
of the matrix and not on its dimension. This makes a systolic
design ideal for implementing finite difference approximations,
where the number of mesh points is not known a priori but
where the maximum bandwidth is determined by the specific
scheme.

To solve (5.1), we use Gaussian elimination without piv-
oting. This method, which is stable since (I - AtA,) is
strictly diagonally dominant, results in matrices L and U such
that

LU =(I1- At A,) (5-2)

where U is an upper triangular matrix and L is a unit lower
triangular matrix.

The matrices L and U will be bi-diagonal since Gaussian
elimiration without pivoting is used. As is standard with
Gaussian elimination, once the factors L and U are found,
(5-1) is solved by finding z such that .

Lz=D,V* (5.3)
and then by solving

Uvktl _ (5.4)
to get VE+1,

Let L be the lower triangular matrix resulting from the
factorization of a band matrix. We are interested in solving
Lz = b for the vector z. This is solved by a simple back
substitution algorithm. It is well known that this can be
accomplished by systolic arrays (Kung & Leiserson [1980)).

Since (I — At A,) is independent of k so are L and v
so that this factorization only has to be done at the time of
filter design. Therefore, the filter must compute the solution
to (5.1) quicker than the problem dependent threshold and
does 50 via (5.3) and (5.4).

It is now possible to give the layout for the sequential
detector. Figure 2 shows the overall layout.



Discussion

Work is currently under way on a board level design im-
plementing the above systolic algorithm. This board will use
current digital signal processing chips and will be installed
in an IBM PC. With current technology, this board will be
capable of receiving and processing data at a rate of 20 kHz.

This architecture solves a long standing problem for
scalar state and observation models. It can be extended to

.vector observations of a scalar state. However, the extension
to observations of vector states is very hard. We have shown
that a systolic architecture works as well for states of dimen-
sion 2. For higher state dimensions, a different architecture
is needed. Further information is contained in { Baras & Hol-
ley [1987]) where multigrid methods are used and a proposed

multi-level architecture results.
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