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Abstract

We present the sequential detection problem for diffusion
type signals in both the fixed probability of error and the Bayesian
formulations. The optimal strategy in both cases is a threshold
policy with explicitly computable thresholds. We provide numer-
ical schemes for approximating the relevant likelihood ratio and

provide an architecture for real time signal processing.

Introduction

In this paper we discuss the design and implementation of a
fundamental nonlinear signal processor. Specifically, we present
the problem of sequential hypothesis testing for signals that can
be modeled with nonlinear dynamics; we show the optimal detec-
tor for the Bayesian and fixed probability of error costs; and, we
show a real-time implementation of the optimal detector using
systolic arrays.

The techniques above differ from other nonlinear signal pro-
cessing techniques in that they implement the mathematically op-
timal detector. They do not make the standard linear-Gaussian
assumptions of Kalman filtering. However, they do assume a
given nonlinear signal model. In many cases, it is possible to ob-
tain this signal model from the physics or a priori knowledge of
the system. In other cases, statistical techniques must be used
to determine the signal model. (The latter case is still an area of
active research.)

This paper is organized as follows: the basic problem and
notation is presented in Section 1; both the Bayesian and fixed
probability of error problems are solved in Sections 2 and 3, repec-
tively; the numerical techniques used to solve both problems are
presented in Section 4; and, a systolic array implementation is

presented in Section 5.

1. Basic Sequential Detection Problem
Throughout this paper, we consider the binary sequential
hypothesis testing problem. Here, we are given a vector-valued
signal z., z; € IR"™, which satisfies the stochastic differential equa-
tion

d::t = f(Ig) dt + g(Ig) dw,

o=V

(1.1)

where w; is a vector standard Brownian motion. Unfortunately,
we cannot observe z directly, instead we only observe y;, a
vector-valued stochastic process, y¢ € IR¥. Under each hypoth-
esis the observed data is the output of a stochastic differential
equation, i.e.,
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Under H; :
Under Hy :

dy: = h(z:) dt + dv
e = A=) ‘ (1.2)
dy: = du,

where v; is another standard Brownian motion which is inde-
pertdent of w,. Notice that if f(-) and h(-) are linear and g(-)
is constant then this becomes a standard problem which can be
solved by the Kalman filter.

Data is c}Bservedl continuously starting at an initial time
which is taken for convenience to be zero. We let 7 represent the
information déllected up to time ¢t. At each time ¢, the decision-
maker can either stop and declare one of the hypotheses to be
true or can continue collecting data. We let 7 represent the ter-
mination time and § represent the decision. The decision-maker
selects his decision based on the current information ,7Y, so as
to minimize an appropriate cost function.

For both the fixed probability of error and the Bayesian for-
mulations of this problem, we have a measurable space ({2, ), on
which we are given two probability measures Py, P;, and the ran-
dom process {y;, t > 0}. When hypothesis Hy (respectively H;)
is valid the statistics of the,observed process {ys, t > 0} are gov-
erned by measure P, (resipectively P)). We let E; (respectively
Ey) denote the expectation under P, (respectively Fo).

More precisely, an admissible decision policy is any pair « =
(,6) of RV’s where 7 is a 7 stopping time and § is a {0,1}-
valued 7¥ measurable RV.

An admissible policy v = (r,68) is a threshold policy or of
threshold type if there exists constants A and B, with 0 < A <
1< B < oo and A # B, such that

r=inf(t > 0| A¢ € (4, B)) (1.3)
1, A, >B
§= {0’ A <A (1.4)
Here A,ﬂ is the likelihood ratio associated with this problem,
namely
t 1Lt
sc=exp( [ BT dy = 3 [P ds), (15)
0 2,
and
he = Ex(h(z) | 7). (1.6)

Threshold policies will be described as above and will be identified
with their threshold constants (4, B).

We prefer threshold policies because of their simple com-
putational structure. The likelihood ratio, A, is computed and
compared to the interval (A, B) at each time ¢. This process is
stopped the first time A is larger than B or smaller than A.

The sequential likelihood ratio, A¢, has continuous sample
paths, therefore for threshold policies, A, takes on the values A



or B (Pg~ and Pi—as). Using this fact, together with Girsanov’s

theorem, it can be shown (8] that for threshold policies

1-A

Po(5=1)= m

Some algebra gives the following result.

Let u be a threshold policy with A and B defined by

_ B _1-8
A=1— B=— (1.7)
where a + 8 < 1, then
B(d=1)=c P(s= 0) = 8. (1.8)

Hence, given desired false alarm and miss probabilities, ¢, g, it is
possible to find thresholds, (4, B), so that the resulting threshold
policy has the required probabilities.

The following can also be shown (8].

Let uw = (r,8) be any admissible policy with Ps(6 = 1) +
Pi(§ =0) < 1 and let

a:=Py(6=1) B := P1(6 =0). (1.9)

Define u* = (r°,68*) to be the threshold policy with parameters
(A*,B*) that correspond to the pair (e, ) as defined by (1.7).
Then

o[ i) = 20(e.5) (1.10)
E,(/of [hall? ds) = 2w (B, ) (L.11)

where
w(z,y) = (l—z)logl;z+zlog g (1.12)

2. TFixed Probability of Error Formulation
Given 0 < o, 8 < 1 with a+ 8 < 1, let U(a, B) be the set of

all admissible policies u such that
Py (5=0) < 4. (2.1)

The fixed probability of error formulation to the sequential

PQ(5= l) Lfa

hypothesis testing problem requires the solution of the following.

Problem (Pr): Find u* in U(a,B) such
that for all v in U(e, B),

E’,-(/ Hiz,”’ds)zE.-(/ (hods), i=0,1.  (22)
[s] Q

The term in the expectation above represents the expected
signal energy present. Usually, the observation time is miniinized,
subject to the error probability constraints (2.1). However, in this
problem you cannot always be sure that you receive “good” data

because A (z.) is itself a random process. It is clear that the longer
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you observe y the more energy signal you receive. Therefore, try-
ing to decide “faster” is related to trying to decide while receiving
the “minimum” signal energy. This intuitive idea is captured in
(2.2). _

Theorem 2. Ifu* is the threshold policy with constants (A, B7)
defined by

h_ g =128 (2.3)

-« a

A' =

then u* solves problem (Pr).

Proof: (Sketch, for details see [4] or [10]).
1. Ey(Jy l|hsl|? ds) = —2 E1 (log A7)

2. From Jensens inequality we have that

EIC% /o l[hol? ds) = —Py(6 = 1) Ex(log A7" | § = 1)~
' — P (6 =0)Ei(logA7'|§=0)
>-P(§=1)logEi(A]! | 6=1)-
~P(6=0)log E1(A7"|§=0)

3. After some algebra,

1__ﬂ+ﬂlog B

a -«

B3 [ Wl 40) 2 (1= )l

17 e
=E(3 lisl|* ds)
0
4. A similar technique works for the case with Fo.

3. Bayesian Formulation

For the Bayesian formulation, let H be an {0,1}-valued RV
indicating the true hypothesis. By ¢ we denote the a priori prob-
ability that hypothesis Hi is true. We consider a probability
measure P on ({1, 7) such that

P(H:l):(p P(H:O):l—(p, (3.1)
and such that for every A€ 7
P(A) = pP1(A) + (1 - p) Po(4), (3-2)

where P, and P, are the measures defined in Section 1.

We shall assume, two costs are incurred. The first cost is
for observation and is accrued according to k f; ||&,]|? ds, where
k > 0 and {ilg, t > 0} is defined by (1.6). The second cost is
associated with the final decision & and is given by

¢, when H=1 and § =0;
C(H,6) = {cg, when H=0and é§ = 1; (3.3)
0, otherwise,
where ¢; > 0 and ¢z > 0.

We are interested in minimizing the expected cost. If v =

(,6) is any admissible policy, then the corresponding expected

cost is .
J(u) = E( K /0 ha? ds + C(H, 8))- (3.4)

The Bayesian approach to sequential detection seeks to find

the solution to the following problem.



Problem (Pg): Givenp € (0,1}, find u" such
that,

J{u') = ‘irexf;‘ J(u). (3.5)

It can be shown that to any admissible policy u there corre-
sponds a threshold policy which has no greater cost, J(u), there-
fore, the infimum in (3.5) need only be computed over threshold
policies. In fact, it can be shown that the infimum is obtained

and the following theorem results.

Theorem 3. There exists an admissible threshold policy u* that
solves problem (Pg). The optimal thresholds0 < A® <1< B <
oo with A® # B*, are given by the relations

=)= - ()

where a* and b* are the unique solutions of the transcendental

equations
¢z + ¢y = k(' (a”) — ¥'(b7))

c2{l-b6") =cra” + (6" - a*)(e1 - k¥'(a)) + k(T(b") - ¥(a")),

with

U(z) = (1 -2z)log T f

satisfying 0 < a* < b* < 1.

Here again the thresholds are unique functions of the cost
parameters. For a detailed proof we refer to [4] or [10].

The results for the hypothesis testing problem when Hg con-
tains a signal, in addition to noise, require a little modification.
Here, {z!, t > 0} and {z}, t > 0} represent different signal
vector-valued processes. Under each hypothesis the observed

data, y¢, is the output of a stochastic differential equation,
Under Hy @ dye = h'(z}) dt + dv,

(3.6)
Under Hg : dye = h%(z?) dt + dv,

The solutions to the Bayesian and fixed probability of error
formulations are still valid with A; defined by

A= ol [ (b1 =R dn - [ URIP - 1R 29, 2)

4. Numerical Solution

In this section we will discuss the numerical method used to
approximate A;. It can be shown that A, = f]R u(z,t) dz where
u(z,t) is the solution to the Zakai equation. Our strategy will
be to find an approximation to u(z,t) which results in a good
approximation to A..

From the theory of nonlinear filtering, it is known [5] that
under the appropriate conditions on f, g, and &, the unnormalized
density of z given the observations y satisfies the linear stochastic
partial differential equation, known as the Zakai equation, given
below

du(z,t) = L u(z,t) dt + u(z,t) h(z)T dy. (4.1)
u(z,0) = po(z). (4.2)
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When z is scalar

147, d \
Szl ua ) - S UG @] (43)

= a(z) u,,‘(z:, t) + b(z) uz{z, t) + c(z)u(z,t)
= A"u(z, t) + ¢(z)u(z, t) {4.4)

L*u(z,t) =

and

o(2) = 36°(2)
b(z) = 9(z) ¢'(z) - f(2) (4.5)
() = (=) ¢"(2) + (¢'(@)* +9(2) ¢'(2) = /'(2)

with -po(z) the initial density of z.

In general it is not possnble to explicitly solve (4.1). There-
fore, we will approx1mate its solution using finite difference meth-
ods. Since (4.1) is a linear parabolic equation we use an im-
plicit discretization for z-derivatives, in order to maintain stabil-
ity. The general vector valued x case is treated in {10]. Here we
discuss the scalar valued x case, due to space limitations. The
solution is approximated on the internal D = (a,}).

Let Az > 0 and define zx = a+k Az and n such that z, < b.
Consider the collection of points {zx}] in D. Let At > 0 and
define tx = k At.

The value of u(z,t) at the grid point {zi,tk) is represented

k

by vk. We replace the z-derivatives in A° with implicit finite

difference approximations. To this end,

20 k+1 +vk+1
a(z) vzz(z,t) ~

SN
a(z:) ( (A:r:)

RN '
b(zs) (—%—'—) if 8(z:) > 0

U’k+1 vk+1
b(x{) (T) if b(z,—) <0

— ok

At

b(z) uz(z,t) ~

ue(z, t) ~ U‘FH
(4.6)

Let V* represent the vector of mesh points at time k At.
Then the above approximations result in a matrix An which ap-

proximates A®. The approximation takes the form

(I-AtA)VF = V* + other terms.

_ Note that a(z;) is always positive and the special way of choosing

the first derivative approximation guarantees that the matrix An
is diagonally dominant and of the form
-+

Ap= . (4.7)



Therefore (I ~ At A,) is strictly diagonally dominant. In fact, it
is also inverse positive, i.e., every element of the inverse is positive
[7].

The final step is to approximate the solution of (4.1) assum-
ing A* = 0. This leads to the matrix

D, = diag(ch(za)Avn+(=(3")_%h(")2)A‘) (4.8)

with Aye = yx+1)at — Yk Ar-
The overall approximation is

(I - AtA)VE =D VE (4.9)

This approximation can be shown to be convergent ([3], [4], and
6]

A nice property of the above approximation is that it is posi-
tive preserving. Regardless of the relationship of At and Az, the
solution V¥ is always positive. This is important since we are
approximating a probability density which we know can never be
negative.

Schemes similar to (4.9) have been discussed in ([3], (6]).
Furthermore, numerical studies have been performed in [9] us-
ing these methods which have produced satisfactory results for

approximations to Re.

Using V* defined in (4.9) it is easy to construct a convergent
approximation to the likelihood ratio. Let {zk} be the collection
of points defined above and let
z; Lz < Zi41

kAt <t < (k+1)At

un(z,t) = vf  if

and define s "
A;":/ u,.(z,t)dz:vaAz
a =0

then AP is a convergent approximation to A:.

5. Architectures for Signal Processor

The finite difference scheme used to approximate the solution

of (4.1) involves solving the linear equation
(I - AtA,)V* =D, V%, (5.1)

for each time t = kAt. Here Dj is a data dependent diagonal
matrix. We have chosen the systolic array architecture of {2] to
implement this scheme.

The number of processors in a systolic array solving the sys-
tem in (5.1) depends only on the bandwidth of the matrix and
not on its dimension. This makes a systolic design ideal for im-
plementing finite difference approximations, where the number
of mesh points is not known a priori but where the maximum
bandwidth is determined by the specific scheme.

To solve (5.1), we use Gaussian elimination without pivot-
ing. This method, which is stable since (I — At An) is strictly

diagonally dominant, results in matrices L and U such that

LU = (I - At A,) (5.2)
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where U is an upper triangular matrix and L is a unit lower

triangular matrix.

The matrices L and U will be bi-diagonal since no pivoting is
used. As is standard with Gaussian elimination, once the factors
L and U are found, (5.1) is solved by back substitution.

It is well known that back substitution can be accomplished
by systolic arrays [2]. The algorithm takes 2n + 2 time units to
operate. Here n is the dimension of the matrix. Hence we are able

to solve (5.1) in 5n+4 time units. The extra n units result froma
necessary buffering of the data between the two back substitution
operations.

Notice that the matrix, (I — At A,), is independent of the
received data, y;, therefore, the LU factorization only has to be
done at the time of filter design.

The overall layout for the sequential detector is given in Fig-

ure 1. Both solve operations are performed by a systolic array.

Discussion

Work is currently under way on a board level design imple-
menting the above systolic algorithm. This board will use current
digital signal processing chips and will be installed in an IBM PC.
With current technology, this board will be capable of receiving
and processing data at a rate of 20 kHz.

This architecture solves a long standing problem for scalar
state and observation models. It can be extended to vector obser-
va.tions{ of a scalar state. However, the extension to observations
of vector states is very hard. We have shown that a systolic archi-
tecture works as well for states of dimension 2. For higher state
dimensions, a different architecture is needed. Further informa-
tion is contained in {1}, where multigrid methods are used and a

proposed multi-level architecture resuits.
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