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Abstract

Transfer function models for basic structural el-
ements with boundary control reveal certain inher-
ent properties relevant to questions of control system
realization, design, and analysis of robustness. The
transfer functions involved are not strictly proper,
may be nonminimum phase (except for the special
case of colocated actuation and sensing), and often
have large number of poles on the imaginary axis.

In this paper we consider these basic questions in
terms of modeling and control system design for ro-
bustness. We investigate the application of algebraic
methods for computing stabilizing control based on
certain exact, irrational transfer functions. We con-
sider boundary control of the wave equation and sug-
gest extension of the method to more general prob-
lems. Special attention is given to implementation
issues assoclated with a class of infinite dimensional
control laws of the type described by Baras.

1.0 Introduction

Classical methods in structural analysis exploit frequency re-
sponse modeling roughly for the purpose of extending static anal-
ysis techniques to dynamic problems. Application of several clas-
sical methods including “mechanical impedance” and “dynamic
stiffness” methods to space structure modeling is considered in
Piché {1] (see also [2] for a classical treatment). In Poelaert {3]
these methods are used to develop procedures for computation of
“exact” modal frequencies. This is desirable primarily because
of the limitations of approximation by finite element methods
for structural modeling involving a large number of significant
modal frequencies.

From the point of view of control system design and anal-
ysis it is known that transfer function analysis can be limited
because of possible loss of observability and/or controlability so
that certain critical modal responses may not be evident from

the transfer function. The modern algebraic approach to control

system design, which is based on transfer function models, ex-
ploits special algebraic constructions (like coprime factorizations)
to delineate the scope of feedback control options. The key is a
delicate interplay between the algebraic constructions offered by
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transfer function analysis and the internal representations offered
by state-space theory.

The classical frequency domain treatment of feedback control
provides a natural setting for quantifying robustness attributes
of a chosen feedback control. In this paper we study the ap-
plication of transfer function methods for computing stabilizing
control laws with boundary feedback and observation of certain
simple distributed structures. We address a robustness question
(which has also been addressed in [4]) in this classical setting and
demonstrate that although certain sensitivities are evident that
these problems occur largely when material damping is ignored
in the distributed model. We suggest that alternate methods for
controller realization are possible for certain irrational transfer
functions arising in boundary control of elastic structures. We
give illustrations suggesting that the realizations are both practi-
cal and efficient when a digital computer is available for realtime
control,

Recent developments in the algebraic theory of control sys-
tems has provided answers to fundamental engineering construc-
tions for stabilizing compensator design for rational transfer func-
tions [5,6]. Extension of this theory to irrational transfer func-
tions arising in structural control problems is a focus current
research {7,8,9. Our goal here is to investigate the application
of available theory to developing stabilizing controllers for com-
ponent level models of elastic structures. Such “low authority”
controllers can be based on rather simple models for structures
where the wave dynamics are of importance. We show that trans-
fer function methods can offer simple solutions to parasitic sen-
sitivities resulting from controller implementation dynamics.

In section 2 we consider certain inherent robustness issues
which arise in control of wave models for certain simple linear
structural elements. In section 3 we briefly review the trans-
fer function approach to output feedback for rational transfer
functions and highlight the extent of development of theory to
extend the results to irrational systems. Returning to the wave
equation we discuss the implementation of an infinite dimen-
sional controller for the system and show how certain aspects of
implementation such as computational delay can be handled in
design. Finally, we provide some comments on modeling of elas-
tic structures, controller realization and robustness. This paper
is a summary of the report [9] which also includes more detailed
examples of control for elastic (Euler-Bernoulli) beams.

2.0 Boundary Control of Wave Models

The small vibration response of a number of simple structural
elements (such as cables in tension and rcds in compression or
torsion) have dynamics which can be modeled by the wave equa-
tion with boundary control u(t) and deflection w(t, z) defined on
the one dimensional domain 0 < z < L [2};



dw(t, z) o A*wl(t, =)

(1)

at? dz?
o2 dw(t, z) o
8z lz=o0
o dw(t,z) = u(t).
oz z=L

To apply feedback control we take as a measurement the deflec-
tion rate at the same end;
dw(t, L)

ot = 2 (@

For example, consider a uniform rod of length L undergoing
torsional vibration. Let the torsional stiffness be Jr, mass den-
sity p, and radius of gyration r. Let the rod be excited by applied
torque at one end u(t) = 7. The characteristic parameter (which
determines the wave speed) is then al= piﬁ.

Related studies have been recently completed by von Flotow
[10). In [10] the idea of ‘low authority’ control for large, flexible
space structures is considered based on the characteristic wave
propagation for simple structural components. The suggested
control strategy is to provide control at the structural junctions
between components (i.e. boundary control) which acts to absorb
waves thus suppressing standing waves and limiting wave prop-
agation between individual components. The strategy is based
on that used in design of high frequency electrical networks and
amounts to providinga termination of ‘matched impedance’. Ex-
perimental results confirm the effectiveness of such simple con-
trollers based on very simple models. Potentially much more
sophisticated control laws can also be developed based on such
simple models if a clear understanding of the robustness of the
closed loop control can be given. Such practical ideas motivate
the control problems considered in this paper. Significant issues
concerning the robustness of such control problems have recently
been raised [4]. Following the examples in [7] we consider these
issues from the point of view of transfer function analysis. We
also consider the potential for novel control implementations.

Taking Laplace transforms in (1), (2) the transfer function
from the boundary control to the deflection rate,

§(s) = To(s) (),

can be simply derived for this syste

()

m and put in the form,

1 ko1 1+e?e
TD(S) = E COth(;S) = E I—_—-;‘g: (4)
with a > O a real parameter; viz., the wave speed. We have

written the irrational transfer function suggestively as a ratio
of ezponential polynomials which we view as a generalization of
rational constructions. Clearly such 2 transfer function has an
alternate realization as a delay equation; e.g.,
+ y_(t_) + u{t — rl),

o a

y(t) = y(t— )

with 1y = 2L/a. In the sequel we discuss the implication of
alternate realizations for control synthesis for some distributed
parameter systems of this type. Further discussion of the charac-
terization of wave dynamics as delay systems is given in Laguese
(11}

We consider stabilization by
law

rate feedback with the control

a(s) = #(s) - kils)

as indicated in Figure 1.

(5)
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Figure 1: Rate feedback loop for control of wave dynamics

Claim 1 The waveequation (1) with boundary control and colo-
cated observation (2) is exponentially stabilized by the rate feed-
back control law (5) for any gain k > 0.

This result is well known and a proof is given in [11]. The
result is easy to see using transfer function analysis. The closed
loop transfer function

§(s) = Te(s)#(s)
is given by

L1+ e725?)
L k(l _\_6—2%1)

T.(s) -
1+kTo(s) 1-e

T.(s) = 2Tk (8)

which is also characterized by delays. To show exponential sta-
bility we compute the spectrum of the closed loop system, The
singularities of T, consist of poles which are roots of the charac-
teristic equation

ok
2°a=0,

™

E Lk
1+a+(z—1)e

or equivalently roots of

-2k, 1+k/a
et = 8
¢ 1-k/a (®)
which has roots as
a 1+ k/a| , . nra
B ol il R e 9
nFop 1< k/al L ©)

for n'= 0,%1,%2,....
0 < k < co we see that

Since a > O then for any k such that

in| <o

and therefore Re s, < 0 for each n. Equation (9) demonstrates
that the choice of feedback gain k permits translation of the
spectrum parallel to the real axis in the complex s-plane. In
fact, for k = « the spectrum disappears. This condition corre-
sponds to the idea of impedance matching at the termination of
elastic elements of structures and is currently under experimenta1
investigation by von Flotow (10].

Recently, Datko et al {4] have demonstrated that the intro-
duction of any small delay in this control loop (due to computa-
tional or other sound physical reasons) will destabilize this sys-
tem for any gain 0 < k < oo. Although this result is somewhat
delicate to show by direct analysis of the resulting combined par-
tial differential and delay equation it is quite easy to see using

1+k/a
1-k/a



transfer function analysis. Indeed, classical analysis of this sim-
ple loop shows that the system has an ultimate,zero phase margin
as s — oco. The sensitivity can be seen directly from the root
pattern of the ideal closed loop system given by (9). The poles,
s, are periodically spaced along a vertical line so that they have
damping ratios ¢n g%;‘"— — 0 asn— co.

One way to see the phase sensitivity is to replace the ideal
feedback gain k with the delay transfer function ke™*" for some
+ > 0, with r real. In the ideal case, 7 = 0 and (9) shows that
all poles are contained in the open left half plane. To show how
instability can result it is enough to show the following:

Claim 2 With k replaced by ke™*" in the characteristic equation
(7) for any a > 0, k > O there exists a r > 0 arbitrarily small
such that some root of {7) exists on the imaginary axis.

To see this note that (8) with the indicated replacement for
k leads to the condition

L

k ,—ar
a,_l—{»ge

=1k

e”? {10)

e—u’ )

To show that this equation has roots for some s = 1w we first
find real frequencies wy, such that

1+ ée—(rw
1—

= 1.

(11)

Ee—iru
a
By direct computation we see that (11) is satisfied for

1=

wp = (2n + 2

n=0,%1,%2,... (12)

Substituting s = iw with (12) into {10) gives

n+lk
o3

_1+i(-1)
B TE

=3

e Hant1)2E

Comparison of the argument of either side gives
L
(2n+ 1)2Z = 2(=1)" tan" (k/a).
Ta
So that the required delay is

_ (2n+1)xL
"= 2a(—1)"*titan~l{k/a)

and since 0 < tan~!(k/a) < « for any k, & > O fixed there is a
r > 0 arbitrarily small which satisfies the above relation for some
integer n = +1,+3,....

Phase margin sensitivity of this type is clearly cause for con-
cern if really evident in the physical system. We suggest that the
difficulty arises because damping has been ignored in the model.
For elastic structures in space applications we expect that mate-
rial losses will become evident at high frequencies. In the next
section we suggest that simple control implementations are pos-
sible based on lossless models. We show how concern for such
phase sensitivity can be mitigated by judicious use of dynamic
compensation.

3.0 Spectrum Reassignment by Output Feedback
One of the most fundamental and constructive methods for
control system design for finite-dimensional, lumped parameter

systems involves pole relocation by output feedback. It is well
known that if the system is both controllable and observable
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then its poles can be arbitrarily reassigned by a combination of
asymptotic state estimation followed by state feedback. Similar
constructions can be obtained without explicit identification of a
state-space realization (or model) using algebraic methods based
on manipulation of rational transfer functions [12].

In {13] Youla et al provide a complete algebraic characteriza-
tion of all stabilizing compensators with rational transfer func-
tions for a given rational plant model. This important result
is used to solve optimal control design problems by association
with a Wiener-Hopf problem. Youla et al give specific exam-
ples demonstrating that the approach based on manipulation of
transfer functions (rational matrices in the case of multiloop de-
sign) can effectively solve problems where the transfer functions
cannot be realized by conventional state space models. Such tm-
proper transfer functions arise naturally in modeling certain stan-
dard control components such as rate gyros. These models are
useful for predicting frequency response in limited bandwidths
only. Similar effects are evident in standard models for elastic
structures.

Let T,(s) be the system transfer function and assume that

with n, d, coprime polynomials in s. (This condition corre-
sponds to the assumption of observability and controlability of a
state-space realization for T,.) Consider the control structure as
shown in Figure 2;

#(s) — Hi(s)a(s) — Ho(s)¥(s),

§(s) = T.(s)i(s), (14)
which leads to the closed loop transfer function
. . Ts(s .
i(s) = T(s)7(s) = B —H) (19)

1+ Hi(s) + To(s)Ho(s)

The algebraic properties which permit a constructive ap-
proach to arbitrary pole reassignment for Te(s) follows from the
fact that the ring R[s] ® is both a principal ideal and an Euclidean
domain. By assumption of coprimeness of the factors ng,d, we
know that a solution exists to the Bezout equation

no(s)z(s) + do(s)w(s) = L. (16)
Since R(s] is an Euclidean domain the Buclidean division algo-
rithm provides a constructive approach to solving the Bezout
equation. From (15) we write

o

Te= ———————
7 dy, + Hid, + n.H,

(17)
and the pole positioning problem is to find H;, H, so that
d, + Hidy + noH, = d. (18)

where d, is a polynomial with desired roots. With appropriate
considerations for polynomial degrees we see that the Diophan-
tine problem (18) can be solved by the choice

H;
H,

w(d; — dy)
z(d. — d,).

(19)
(20)

R ([s] denotes the ring of polynomials in s with real coefficients while R(s)
is the associated field of rational functions.



Figure 2: Configuration for output feedback control

With a particular solution in hand for (18), the realization
question can be addressed separately. The above analysis is
based on algebraic manipulation over the ring of polynqmials
R[s]. The required compensator transfer functions involve ideal
differentiation (improper transfer functions.) Observer-based (a-
symptotic state estimation followed by state feedback) design
replaces these transfer functions with realizable H;, H, € R(s)
which are proper transfer functions (i.e. bounded at s = o). In
general we can take

w(d, — do)p H = z(d, — do)p
k) o
(2 ©

Hi =

where @ € Rls| is chosen so that H;, H, are stable and realiz-
able. Realization can be achieved if certain degree requirements
can be met on the polynomials z{d. — do)p and w(de — do)
(¢f. Kailath {12, pp. 306-310] for a complete discussion of the
algebraic construction.) Roughly put, the degree requirements
can be met by reduction of Hi, H, using Euclidean (polynamial)
division when the degree of  equals the degree of do.

In this paper, we demonstrate by example that realization
can also be addressed more directly in certain cases. For ir-
rational transfer functions, the algebraic reduction process de-
scribed above is not always possible. For linear systems with
well defined Laplace transforms the algebraic properties can be
extended in various ways to form an enlarged ring of systems
(see [5,14] for examples). Such rings do not typically form an
Euclidean domain; i.e., Euclidean division does not “converge”
in the sense of degree reduction. However, it may still be possi-
ble to realize H,, H; appearing in (19), (20) directly using a fast,
digital computer. An example is given in the next section.

Explicit solutions for the Bezout equation can be obtained
for a more general class of irrational functions; viz., Ty = no/do
when n,, d, are entire (i.e., analytic everywhere in the finite com-
plex plane) without Fuclidean division. Berenstein and Struppa
[15] give an explicit solution to the Bezout equation when the
functions n,(s),ds(s) € E(R), the ring of Laplace transforms of
generalized functions (distributions) of compact support in R.
The theory indicates that requirements for coprimeness of poly-
nomials is somewhat more delicate for this class of functions.
Similar conditions for strong coprimeness are given by Baras(7,8]
based on the Carleson Corona theorem. We summarize the the-
ory from the discussion in Berenstein and Struppa {15].
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We say the function p(s) satisfies Paley-Wiener estimates if
for some ¢,a, N > 0 and for all s € C

(o)) < e(1 -+ Jsf) Ve o,

If n,,d, satisfy such estimates then a necessary and sufficient
condition for a solution to the Bezout equation (16) to exist is
that

ino(5)] + [do(8)] 2 €(1 + [s)He~ 2R (21)

for some €, L, B > 0. This is the case for example if n,, d, are ez-
ponential polynomials of the form T ci(s)e?r* with cx(s) € Rlsl,
8, € C, the summation is over 2 finite number of terms, and
roots of n, do are “sufficiently separated”. We refer to condition
(21) as strong coprimeness. The explicit (and rather messy) for-
mulae for a particular solution to the Bezout equation are given
in [15].

Algebraic methods for solving the Bezout equation are pos-
sible for some irrational functions by introducing multivariate
polynomials and solving by elimination theory (cf. Bose [161).
The major problem with such methods is since such functions
form a ring which is not necessarily a Euclidean domain that
the required degree growth of the polynomial terms at each step
can lead to computational explosion which renders the approach
impractical for all but the simplest problems.

Spectrum Relocation by Delay Control Realization for
Wave Models

Transfer function methods can suggest alternate control real-
izations which can offer advantages. We return to the boundary
control of the wave equation to illustrate the ideas. To the extent
that computational delays for realtime control are predictable it
is possible to compute dynamic feedback compensation which
can provide arbitrary spectrum relocation. By special choice of
closed loop spectrum it is possible to realize the controller by a
simple digital machine. Constraints on realization are discussed.

Consider the wave model (1) with transfer function To(s)
given by (4). We consider dynamic feedback compensation of
the form (13) (see Figure 3). First, note that by writing To{s)
in the form (4) we recognize the delay nature of the characteris-
tic response. This suggests a method by which we can explicitly
solve the Bezout equation. Moreover, the resulting dynamic con-
troller can be easily realized by a delay system.

Now assume that a computational delay for realtime imple-
mentation is anticipated of r time units. We lump the delay
with the wave model and replace the transfer function with the
following: -

L
T(s) = ‘0 LS = 2:’ _ nols) (22)
a -3 do(s)

where we identify the coprime factors as,

e—l‘f

(1+e728°) (23)

ne(s)
dy(s) -3¢, (24)

1l
—
!
o

For this simple system a particular solution to the Bezout equar
tion (16) can be obtained immediately as

1 <
z(s) = %e", w(s) = 7 (25)

The solution of the Bezout equation is in this case facilitated

by the understanding that the underlying delay nature of the



response in T, is evident for example by a transformation e¥5? —
7 which permits solution of the nominal case with r = 0 by
Euclidean division over the ring R{z].

Keeping in mind the delay sensitivity problem encountered in
constant gain feedback case of Section 2, we consider the problem
of achieving a prescribed degree of exponential stability in the
presence of the known computational delay. To facilitate simple
realization it is then sufficient to seek feedback compengators
H,(s), Hi{s) so that the closed loop characteristic equation has
the form,

de(s) = 1 + e~%0+P) (26)

which has roots .
Sp = —ﬂ-—i(2n+1)g (27)
for n = 0,%1,£2,... Obviously more general compensator con-

structions are possible (in principal) but the resulting class of
delay-realizable controllers is of immediate interest both for sim-
plicity of computation and simplicity of implementation.

The desired dynamic compensators can be computed as in
(19), (20),

H"(s) = %(8—6(’+5)+e—2§:)
Ho(s) = e"%(e—6(s+ﬂ)+e_2%,).

It is a simple exercise to show that the control law can then be
immediately implemented as a digital realization of the difference
equation;

e %8
wt) = o)~ Sl -8) - Sule- 3(!9)

—i;-e—“’y(t ~{6~-1) - %y(t - (% - 7). (28)

This is implementable for r < min(2&, §).

The parameter 7 is a design parameter limited only by the
availability of fast, digital computer to implement the control
law. The above criterion sets an upper bound on the delay pro-
portional to characteristic length L and inversely proportional to
wave speed a.

In applications it may be desired to achieve more general
pole patterns than available from (26). However, delay realiza-
tion of the type illustrated above offers a simple implementation
of an effective infinite-dimension controller with a standard digi-
tal computer. The idea of delay realization offers a paradigm for
controller design which can address additional engineering design
considerations such as frequency shaping, optimal quadratic cost
and considerations for disturbance rejection and command fol-
lowing. More comprehensive examples are given in [9} including
a complete optimal control problem using the algebraic construc-
tions described in [13].

Transformation of the process transfer function (as in (22))
via €280 5 permits algebraic computation over a ring of delay
realizations (R[z]) [5]. In general, for such delay realizations
the possible pole patterns (roots of d.(z)) will be contained in a
vertical strip in the s-plane; i.e., with s, the roots of d.(s} = 0
then

ﬂ2 < Re sp < ﬁl

for some real 3;, 8, < 0. For each root of d.(z) in the z-plane—
%ay zp—the roots of d.(s) = 0, viz. sk, are given as roots of

«
elTox z; =0

or equivalently as
sp = In|zg| + {0k + 2n7) n

and z; = |z;|e®*. Clearly each root in the z-plane unfolds along
vertical lines in the s-plane.

Several remarks are appropriate with respect to such pole
patterns occurring naturally in structural element modeling. Us-
ing delay realizations of the type described above we see that the
fundamental property that the damping ratio approaches zero
for arbitrarily high frequency poles will be retained in achievable
closed loop transfer functions. Thus the ultimate, phase mar-
gin sensitivity is still evident. Such pole patterns are predicted
by the theory of hyperbolic PDE’s. However, recent experimen-
tal work on beams by Russell [17] indicates that these systems
are not purely hyperbolic. In fact, material losses (which intro-
duce parabolic models) take over at high frequencies. Clearly
such models are useful for finite bandwidth analysis only! Our
viewpoint is that considering the simplicity of the resulting con-
trol law realizations that such models may still be quite useful
for control synthesis if we understand the bandwidth limitations
(perhaps by physical experiments) of the model or by a more
complete understanding of the physics of material damping as
pursued in the research of Russell {17].

It is also significant to mention work of Cooke [18] on deter-
mining more general realizations for hyperbolic PDE’s. In 18] a
method is presented for reduction of initial-boundary value prob-
lems for hyperbolic PDE’s to differential-difference equations.
Again, various useful alternate realizations for control synthesis
result.

4.0 Perspectives on Modeling and
Controller Realization

Classical frequency domain analysis of robustness of feed-
back focuses on the determination of stability margins. The
phenomenon observed in boundary control of the wave equa-
tion is clearly a problem of phase margin. Determination of sta-
bility margins by classical frequency domain methods based on
Nyquist tests islcomplicated for these models in practice because
frequency response data must be available over the entire imagi-
nary axis including the point s = co and because no damping is
included in the structural wave model. Despite these limitations,
the utility of these models for control design and identification
of simple controller realization is significant.

Models for Flexible Structures: Bandwidth Consjdera-
tions

The models discussed in this paper for standard flexible com-
ponents such as rods and beams yield to some interesting insights
using transfer function analysis. The simple models used in this
paper each lead to concern over the ability to design robust con-

_trol for physical applications based on such models. Both models
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include no inherent damping. More importantly these models
have infinite bandwidth in a sense important for analysis of feed-
back stability and robustness. It is easy to see that the wave
equation model with boundary control and observation has in-
finite bandwidth by rewriting the transfer function (4) in the
form

- To(s) 2

—2&,°
a

1 14e280 1
= - ==t
a |- e 23 a 1-e

— _1

x’

Clearly lim,—o To(s)



One way to describe this property is in terms of the relative
degree of the transfer function which we define as the number of
zeros of To(s) at s = co. The relative degree can be interpreted
as having both positive and negative values by considering the
Laurent series expansion of T,(s) about the point s = go. If
T,(s) has a pole of degree n at s = o then the relative degree is
taken to be —n.

Classical frequency domain analysis such as finite bandwidth
Nyquist tests and root locus analysis is based on the assumption
that the closed loop pole locations depend continuously on the
scalar gain k [19, pp. 49-51]. It is easy to show that for transfer
functions with relative degree less than one (such as the example
discussed above) that the closed loop poles may vary in a discon-
tinuous fashion with k. In the case considered in Section 2, the
return difference

do(s) + kny(s)

do(s)
has relative degree zero for almost all finite k. However, as shown
in (9), the case k = 1/« leads to relative degree —oco.

The infinite bandwidth property is evident in transfer func-
tion analysis of standard models for structural components (in-
cluding the Bernoulli-Euler beam) and has been observed by
other researchers in the course of analysis of modeling and con-
trol of flexible space structures [20]. As pointed out by Wie and
Bryson [20] such models typically arise in analysis of time-scaled
or singularly perturbed models where certain fast parasitics have
been replaced by an instantaneous approximation to their steady
state response. Although such models are convenient and can
lead to simplified control architectures even for large, but finite
dimensional problems, it is well known that analysis appropriate
for determination of robustness depends on the nature of ignored
parasitics.

One way in which such distributed models can be developed
is as the result of asymptotic analysis of large repetitive rigid
structures. An example of such an approach is given by Blanken-
ship [21] using the method of “homogenization”. The importance
of such analysis for design of robust closed loop control is that
the parasitics {which involve the local element interactions) can
be taken into account in the robustness analysis. Such analyses
are currently underway at SEI and will be reported elsewhere.

One obvious source of parasitic dynamics which can affect the
bandwidth of the process (i.e. the relative degree) comes from
the actuators and sensors. Inclusion of actuator and/or sensor
dynamics may lead to a process transfer function with relative
degree > 1. A simple example serves to illustrate that such anal-
ysis requires some knowledge of the bandwidth of the structural
response. Let the actuator/sensor dynamic be modeled as a sim-
ple bandwidth limitation so that the process transfer function T,
can be replaced as

L+ kT,(s) =

coth(%s)
alrs +1)°

The resulting characteristic equation is

To(s) =

k
(1-e2)(re+ 1)+ ~(1 te ey =0

We are concerned with the possibility of imaginary roots of this
equation. Set s = iw in the above and recognize that since
[(1+ e"23%)| < 2 it is easy to see that the roots approach the
solutions of

(1- e'zéiw)riw =0

as w — 00; i.e., the open loop poles which in this case are un-
damped. Thus as expected the high frequency poles are unaf-
fected by bandlimited control action. Although this is a realis.
tic assumption we need to include a realistic model for inherent
structural damping in order to determine the effective robustness
and stability properties of the control system. Models for mate-
rial damping which lead to bandlimited response of the structural
system are not currently available.

Controller Design and Damping Models

It is now clear from the work of Gibson [22] and others
that stabilization of distributed systems by approximation of an
ideal, infinite dimensional controller for the distributed parame-
ter system is possible only under certain conditions when com.-
pact boundary feedback is used. In particular, Gibson has shown
that the open loop system must have some inherent damping
such that the semigroup operator is uniformly exponentially sta-
ble. For the models we have considered such damping can be
obtained from small “viscous” type damping leading to transfer
function being analytic for Re s > 0.

The frequency response analysis considered in this paper sug-
gests that for the design of robust control systems for elastic
structures that considerations for material damping may also be
required. Consider a simple viscoelastic model for a uniform rod
under torsional stress. A standard model for material damping
results by assuming the stress is a linear function of strain and
strain rate, and (1) is therefore replaced by

uw(t,z) o dtw(t, z) + S.83w(t, I)‘
at? dz? et

The transfer function (4) becomes

1 1+e_2‘[§’\(’)
To(s) = ; 1 - e‘zé’\(’)

where AT = A straightforward calculation indicates that

2
cxz’+fa *
T,(s) has poles p, and zeros z, which satisfy
™

2=0
)

Tn
P+ () Pt o’ (

r 2n+1

T, 2n+1 _
TN+ (G (P =0

If follows that for any real ¢ > 0 (no matter how small) and any
specified ‘damping ratio’, ¢* that there exists an integer n* such
that 5—“%%": > ¢* for all n > n*. Using frequency domain analysis
it is then easy to show that the delay sensitivity in Claim 2 will
not hold and a finite, positive lower bound (depending on ¢)on
the delay r necessary to cause instability can be determined.

zh+5(

Controller Realization and Implementation

We have suggested that delay-realizationis an approach which
appears to offer alternatives for wave dynamics where dispersion
and dissipation can be neglected. For certain standard limfar
beam models (such as Euler-Bernoulli model) wave dynamics \r.x-
clude dispersion even when dissipation is ignored. Such parabqlfc
models are not amenable to delay realization. In [91 we provide
an example computation of an ideal infinite dimensional com-
pensator for the Euler-Bernoulli beam with boundary control
and observation. The ideal controller is computed as the lim-
iting case of a series of truncated product expansions for the
meromorphic transfer function models.



We suggest a general approach to controller realization is to
use fast, special purpose digital processing computer architec-
tures. Standard techniques from digital signal processing per-
mit the construction of realizable, finite impulse response filters
which can “match” the required frequency response withip cer-
tain required bandwidths depending on sampling time. Compu-
tational delay determines a lower bound on sampling time. As
shown in this paper compensation can be designed which includes
provisions for this delay. A variety of new VLSI companents
are now available called Digital Signal Processors (DSP) (23].
These devices can realize fast computations such as FFT. With
proper considerations for sampling and interpolation, a desired
controller can be realized by frequency sampled filters (based
on efficient constructions such as FFT) which “match” the ideal
controller frequency response c(tw) to within a prescribed toler-
ance. These ideas are currently under investigation at SEI and
University of Maryland, Systems Research Center.
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