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ABSTRACT

Using some approximation formulas for stochastic Wiener function space
integrals, it is possible to approximate the conditional densities
which arise in the nonlinear filtering.of diffusion processes to within
O(n—z), with n>1 arbitrary, by n-fold ordinary integrals. The latter
have the simple form of a "rectangular rule"”, but their accuracy is an
order of magnitude better. The n-fold integral can be further decom-
posed into a recursion involving n one dimensional integrals. The
sequence is recursive in the increments of the observation process in
the filtering problem. It is not, however, recursive in time. The

one dimensional integrals are naturally treated by an m-step Gaussian
quadrature which has an error proportiomal to am!/[2®(2m)!]. (The
proportionality constant can be estimated and optimized.) The computa-
tion of these individual integrals can be reduced further by exploiting
certain inherent symmetries of the problem, and by doing some prelim-
inary, "off-line'" computing. The end result is a highly accurate,
computationally efficient numerical algorithm for evaluating condi-
tional densities for a substantial class of nonlinear filtering
problems. By accepting slight reductions' in accuracy, one can obtain
an algorithm (apparently) fast enough, when efficiently coded, for

"on-line,"' recursive filtering in real time.



1. THE PROBLEM

Consider the stochastic dynamical system

dx(t) = f(x(t))dt + g(x(t))dv(t) (1.1a)
dy(t) = h(x(t))dt + dw(t) (1.1b)
x(0) = X~ po(x), 0<t<T

wtitten in the It; calculus. Here f,g,h are smooth functions mapping

R into R; v(t), w(t) are independent, R-valued standard Wiener processes
mutually independent of the initial condition X which has a smooth,
bounded demnsity po(x). We call x the signal and y the observation
process. The filtering problem is to determine an estimate of x(t)
given observatigns y(s), O<s<t, or, more precisely, the o-algebra Yt
generated by {y(s), 0<s<t}. For the estimate one usually takes the
conditional mean ;(t) = E[x(t)IYt] since this produces the minimum

mean square error.

To compute x(t), it suffices to know p(t,x[Yt), the conditional density
of x(t) given Yt’ if it exists. This satisfies a complex, nonlinear
stochastic partial differential equation which is difficult to amnalyze

or to treat numerically [1] [2]. Alternately, one can write

plt,x|Y.) = u(t,x)/ [/ ult,z)dz] (1.2)

where the unnormalized conditional density u satisfies

u(t,x) = [% Bxx(gzu) - 3x(fu) - %hzu]dt + h(x)udy(t) (1.3)

u(0,x) = py(x), 0<t<T

: . )
(written in the Stratonovich calculus ) a linear stochastic PDE

discovered by M. Zakai [3] (and independently by R. Mortensen and T.

Duncan - see the remarks in [3]). The solution to this equation may
be written in terms of a function space integral. Specifically,
t t
W(,x) = E_lexplfTh(x(s))dy (s) -3/ 0% (x(s))dsTpg (x(£))] (1.4)
0 0

where EX{-} is expectation over the paths of (1.1) starting at x(0)=x.
That is, (1.4) is formally the solution of (1.3) as a short calculation
using the Stratonovich calculus shows. (Existence and uniqueness of
solutions to (1.3) are discussed in [4], among other papers.)

Our objective here is the evaluation of the function space integral

(1.4) by quadrature type approximatiouns.



The first step of the approximation is carried out by regarding (a
transformed version of) (1.4) as a "stochastic Wiener integral” and
applying the formulas in [5]. This leads to an approximation of the
function space integral by an n-fold ordinary integral with an error
O(n_z). The second step of the approximation is reduction of the n-fold

integral to a recursive sequence of one dimensional integrals which

may be evaluated by Gaussian quadrature.

To describe the formulas in [5], we will use the following setup: Let

Co([O,t]) be the space of R-valued, continuous functions x(s) on [0,t]

with x(0)=0 and let W be Wiener measure on CO. If F:CO+R is a smooth
functional, the Wiener integral
I =/ F(x)dWw(x) (1.5)
o
is defined as the sequential limit [6]
I = 1lim S S dal...danF(zsx)
max|t.—t. |-0 R R
j -1
1<j<n
o (1.6)
2
n expl[-(a.~a. ,)7°/2(t,-t,
n pl-(as-ay 4 5710
-2
=1 [2m(t.-t, n
hj ( (J J_l)]
where O<tl<t2<...<tn = t and zSx is a polynomial function on [0,t]
passing through x at s=0 and aj at tj’ j=1,2,...,n.

Except for a few simple cases, it is impossible to evaluate Wiener
integrals explicitly. Approximation formulas suitable for numerical
computations are, therefore, of considerable interest in applications.
In [7] A.J Chorin presented some formulas of this type. His results
were based on the use of parabolas to interpolate the Wiener paths

and on expansions of the nonlinear functiomal F in a Taylor series
with the quadrature formula adjusted to optimize the approximation of

the first two terms. Chorin's formulas were of the form
2 2
—n/2 . LS B u _2
= ; . -+
S F(x)dWw(x) m - Fn(ul,...,un)e du, .. dun O0(n )

1
C R (1.7)

where Fn had the simple form of a rectangle rule in specific cases.

~

The function space integral in (1.4) involves a random (Tto) process
{y(s),0<s<t}, and the formulas of Chorin do not apply to it. In [5]

these formulas were adapted and extended to cover this case. The result



Lemma, Let {w(s), 0<s<t} be an R-valued standard Wiener process on

(9,%#,P) and let {f(s), g(s), O<s<t} be R-valued random processes non-

anticipative with respect to w which have continuous paths almost surely

and second moments uniformly bounded in se[0,t]. Let

dy(s) = £(s)ds + g(s)dw(s)

(1.8)
y(0) = 0, O<s<t.
Suppose V:R*R has derivatives up to order 4 with
FEFL/ Ry (o)) | 2ds = 0a™h (1.9)
t

for all te[0,T] and any continuous z:[0,T]+R. Then for any te[0,T]

I = Sexp[/ V(x(s))dy(s)]dW(x)
c - 0
/2 n unt
-n v
= (2m) I {exp[;— V(xi_1 + 7§E)Ayi_l]} (1.10)
R i=1
exp[—l(u2+ +u2)]du du + e
7 (gt 0 - -duy 0
where
X, = t(ul+...+ui)/n, i=1,2,...,n
(1.11)
ti = lt/na Ayi_l = Y(tl)_Y(ti_l)
The approximation error is
]/ - .
(Eei)z -0k - (1.12)

where E is expectation with respect to the distribution of {y(s),0=s7].

Remarks 1. The "ordinary" integral which appears in (l1.4) admits a

similar approximation with At = n"l replacing Ayi—l in (1.10). The
error, which is deterministic, is also O(n_z).
2. The remarkable feature of formula (1.10), as noted in [71,

is that it is no more complicated in structure nor does it require more
computing effort than the standard "rectangle rule" [8] which has
accuracy O(n_l).

3. The evaluation of the n-fold integral in (1.10) may be
reduced to a sequence of one dimensional integrals which are recursive
in the increments Ayi_l. This has some important implications in the
filtering problem.

4. The simple form of (1.10), the error estimate, and the

recursive evaluation depend on the fact that the underlving mecasure



process, it is necessary to make a change of coordinates or a change

of measure (i.e., a Girsanov transformation) in (1.1) to take advantage

of this structure.

2. COORDINATE TRANSFORMATIONS

If the coefficients in (l.la) are sufficiently smooth, we can change
coordinates (pathwise) so that the resulting diffusion is a Wiener
process. When the coefficients are not smooth or when x(t) is a multi-
variable process, this procedure may not work, and a change of measure,
i.e., a Girsanov transformation, may be required to implement our compu-

tational algorithms.

Suppose

(A1) g(x)igo>0 for some g, and all xeR
fwdx/g(x) = deX/g(X) = + o«
0 —

(A2) py(x) = explugy(x)]

(a3) fect(R), gec’(R)

Consider the change of coordinates in (1.1)

2(6) = olx(e)] = /<%
~ 0
Using Ito's formula

dx/g(x) (2.1)

az(t) = (£/g - 58") (37 lz(6)]Dde + dv ()
. (2.2)
dy(£) = he ‘lz(e)])de + dw(e)
The associated Zakai equation. is
1 1 -1
du(t,z) = {7azzu + [ig' - f/g](¢ (z))d u
1 ., ' 1,2 -1
+lg(ze'" - (£/g) )= zh71(s "(2))ulde (2.3)
+ h(2 T (2))udye)
(written in the Stratonovich calculus). We caﬁ eliminate the first
order term in (2.3) by using the exponential transformation
v(t,z) = u(t,z) exp[-¥(z2)]
(2.4)
b(z) = FE(E/g - 28) (5T G0 dx
0
The equation for v(t,z) is
tv(t,z) = [%azzv(c,z> _ v(z)v(t,z)]de + H(z)vdy(t) (2.5)



where

V(z) = %(h2+(f/g-%g") *+g(£/g-%8") ' 1(s 1 (2))

(2.6)

H(z) = (s (2z))

Since the Laplacean in (2.5) is "isolated," the fundamental solution

of (2.5) involves Wiener measure, and we can apply the formulas of [5]

to evaluate it. This is done in the next sectiomn.

Instead of changing coordinates in (1.1) we could have changed the
coordinates in the Zakai equation (1.3) and then used an exponential
transformation to eliminate the drift term. This would also lead to an
equation like (2.5), but involving different functions y(z), v(z).
While this procedure is perfectly Qalid in the context of numerical
studies, the resulting equation caﬁnot, in general, be associated with
a nonlinear filtering problem like (1.1), and we shall not pursue it

further.

In situations where f and g are not smooth, i.e., (A3) does not hold,
then we must consider some more general type of weak transformation to
accomplish the reduction of the Zakai equation. Also, when x(t) is an
Rd—valued process with d>2, it will be necessary to have the integrand
in (2.4) be a gradient. That is, with g(x) dxd and non-singular
g—l(X)f(X) - %g’(x) will have to be a gradient for the exponential

transformation (2.4

) to have a meaning.

3. APPROXIMATE EVALUATION OF THE CONDITIONAL DENSITY

Using the Feynman-Kac formula or the Kallianpur-Striebel formula as it

is called in filtering theory, we can write the solution to (2.5) as

t
v(t,z) = E_{exp[/ H(2(s))dy(s) - 5/ H*(2(s))ds]
0 0
. (3.1)
exp[-/"V(z(s))ds+u,(z(c)) ]}
0
where EZ is expectation over Brownian paths starting at z(0) = z.
Applying the formulas of Chorin and the Lemma, we can write
_ -2
V(t,Z) - In(tyz) + O(ﬂ ) (3.2)
where
I (t,z) = (21()_n/2f K (t ) d
L (B R (t,z,r,v)dr (3.3a)

Rn



Z_ = (yO’yl""!yn_l)) yi = Y(ti+l) - Y(ti)
(3.3b)
r = (ro, rl""’rn—l)’ ti = it/n, 1 = 0,1,...,n-1 -
n-1 0
K (t,z,r,y) = exp{f [H(z+<a (t),r>)y,
n - = . i — i
' i=0
- %Hz(z+<az(t),£>)t/n
- V(z+<af(t),r>)t/n] (3.3¢)
-1 n
+(ug-v) (¢ (z+<a _,(E),1r>))
- %<£,£>}
where for 1 = 0,1,...,n-1
B () = (e/YZn, t//n,....el/a, 0,...,0) er"
4 4 %
N
Oth entry (i—l)St entry (n—l)St entry (3.4)

and <a,r> is the Euclidean inner product. The error in (3.2) is inter-
preted as in the Lemma (even though it has a deterministic component
which is O(n_z)). Efficient evaluation of the n-fold integral (3.3a)

is our main objective here.

3.1 A Recursive Evaluation of In(t,z)

Let
w, =z + <a2(t), r>, i = 0,1,...,n-1 (3.5)
_ T
w o= [wo, Wl""’wn—l] )
and note dwo = (t//fﬁ)dro, dwi = (t//H)dwi, i=1,...,n-1. So
I (t,z) = (E-—)n/2 ﬁzf K (t,z,w,v)dw - (3.6)
n 2T n n = =
t n
R
where
~ n-t 1.2
K (t,z,w,y) = exp{z [H(w;)y, = 3H (w;)t/n
i=0
-1
- Viw)e/n] + (ug-v) (9 (w__1)) (3.7)
1 n 2 2 2
- 7 't—2‘[2(wo—2) + (wl—wo) + ... + (Wn_l_wn_z) ]}
If we now define
2
g(t,w,y) =H(wW)y - lH_(w)t/n - V(w)t/n (3.8)

2

and the sequence of integrals



(-]

_ 1 n_ 2 2
Il(t,z,wl) = cn(t){mexp[— 7 t2[2(w0 z) +(w1—w0) ]+g(t,w0,y0)}dwo
‘ (3.9)1
= ® ln ., 2 :
Ik(t,z,wk) = cn(t){mexp{ t2(wk wk—l) +g(t,wk_1,yk_l)}
(3.9)k
Ik—l(t’z’wk—l)dwk—l’ k = 2,3, ,a-1,
then
® -1
I_(t,2) = cn(t){wexp (ng=¥) (o " (w__1)) + gltsw 15y )}
-In_l(t,z,wn_l)dwn_l (3.9)n
where c_(t) = M2y (e /3Ty .
Remarks 1. The integrals Il’ 12,...,1n 1 are independent of the initial
data; and so, (3.9)n has the form of a Green's representation
I (t,2) = {.ay(w)G(t,2;0,uw)dw : (3.19)

T - . M 1
hat is, cn(t)exp[g(t,wn_l,yn_l)]In_l(t,z,wn_l) approximates the Green s
function of the partial differential equation (2.5) for the (transformed)
unnormalized conditional density.

2. The system (3.9) 1is recursive in the observations
yo,yl,...,yn_l; that 1is, Ik depends on yO’yl""’yk~l’ and it is com-
puted from Ik-l and Yie_1* Unfortunately, it is not recursive in n or
in t. This last means that (3.9) does not constitute a recursive filter

in the usual sense of the term.

At this point there is considerable flexibility in designing a numerical
implementation of (3.9). 1In discussing possible designs we will show
that the n-step recursive evaluation (3.9) has a significant compu-

tational advantage over (most) direct evaluations of the n~-fold

integral in (3.6).

3.2 Implementation

-2 )
Suppose we require the evaluation of v(t,z) = In(t,z) 4+ 0(n ") at points
z = al,az,...,am for some m>1, and t=t1, t2,...,tN = T. The tj are pre-
specified observation times. Let nl,nz,...,nN be integers with njil,
j = 1,2,...,N. Consider the discretization of the time interval shown
below
'} 'l L l ' 41
H—+—"\— ‘Jﬁ\fl —N\—1 l
0 Gp Epprer G Cppfapceos tp e Loy T
- C = o C = A~ LU N =2 N PO
Here ty) = Ll/nl’ by, = ZLL/nl,...,LZL = (L2 Ll)/nz, ty, _(L2 Ll)/RZ’

If we only want v{(t,a.) at , t then the mesh points t,Lj can
1 )

t o
l, 2’ N)
Wi chmasen Aarhitrarilv: that is, the integers n,,n,,...,0. can be



different. The recursion (3.9) is then used to evaluate In(t,z) at

t=t If v(t,z) is required at the intermediate times tiso

1,t2,...,tN. 3
then it is advantageous to take nl,n2=...=nN=n, since this permits the
use of parallel processors (n of them) to compute the intermediate

values.

The operational count for this procedure is as follows: Each integral
Ik(t,z,w) is evaluated for each t at (z,w) = (ai,aj),i,j=1,2,...,m,
a total of m2 evaluations of Ik’ For this purpose we can use any

quadrature rule for one-dimensional integrals of the form I(z,w) =

fwe_¢(?)F(z,w,v)dv with ¢ a given weight function; that is,
—wo N
I(z,w) = £ F(z,w,a,)A. (3.11)
i=1 o

Here Ai'are weights associated with the rule, and the ai are chosen in
accordance with the prescription of the quadrature rule. By using the
same rule for all the Ik no interpolation is needed to evaluate Ik+l

in terms of Ik' At the final stage we require only m values gf
v(tl,z). Thus, on the initial interval (O’tl) we make (n-1)m~ + m
evaluations of the integral (3.11) and (n—l)m3 + m2 function evaluations
and the same number of multiplications and additions in (3.11) to com-
pute (3.9). For example, if m =20, n = 20, we must compute about 7500
integrals, implying about 150,000 additions and multiplications. While
this is not insubstantial, ‘it compares very favorably with product
formulas for (3.6) that do not use the special structure in (3.9). By
introducing a particular quadrature representation, we-can obtain a

more precise count of the elementary operations required in the

evaluation.

:

4. FURTHER COMPUTATIONAL ASPECTS OF THE RECURSIVE FORMULAS

By modifying the notation we can streamline the representation of the
recursion (3.9) and, in this way, make the underlying structure of the
computation more evident. Referring to (3.9) a natural choice for

the weight functions ¢ in (3.11) are the diagonal terms of the quadratic
form in W in (3.7). Unfortunately, it will be seen in section 5 that
the error associated with the resulting Hermite-Gauss quadrature rule

is an increasing function of bounds on derivatives of the integrand in
(3.11); these may not be finite because of the remaining cross terms in
the quadratic form. This suggests selecting as weight functions a
portion of each diagonal element, and choosing the proportionality

constants to preserve the negative definiteness of the quadratic form



gt = (t/v/a)diag(v2/3, 1,...,1,72]
J2 = diag[(l—ai)_%]
(diag = diagonal matrix), and
w = Jg&, J=J1J2 A diag[Ji]
Then
n-1 —E% -
L (t,z) = c_(£,2)/ [r e “//mIK (t,z,£,y)d
n 1i=0
R .
where
_ n-1 2
c (t,z) = 2V2/3 n (l-a )12 nz'/t /2n/2
i=0
- -1 n-1
K(t,z,8,y )= expllug-v) (¢ "(w _q)) + §=Og(t’wi’yiﬂw={§
n-1 2 n-2
-3 a - 2% a £.8 - b4}
fo i1 (g i.it17i7i+1 0°0
o . _2/2/3/n
O - t;L—OLO z
a s = ai/(l—di)
-(1//5)//(1-a0)(1-a1) , i =0
ii+1 T {—(l/Z)//(l—ai)(l—ai+l) , 1<i<n-3
-(lﬁa)//(l—a Y(1l-a ) , i=n-2
n-2 n-1

(4.1)

(4.2)

(4.3)

(4.4)

The transformation Jl isolates a factor exp—Z(l—ai)gi, which is then

normalized by J2. To express (4.3) recursively, define
rhe,,e) = explH(IE)]
i i’ i7i ,
rz(E t) = exp[—le(J £ )e/n = V(J.E.)t/n]
i i’ 2 i°1i i~i

qo(io,z,t) = exp[(2V2n7§/tVl—a0)z£O]

N 2 ]
) expla, 18841 ~ 2kkb }, 0<k<n-2

s (e = expllug=0)(7H (4

n-1

SRS

18-

Here w, = Jigi and the dependence on a. has been suppressed.

becomes 2
n-1 —Ei
I (t,z) = ¢ (t,z)i [7 e /]
n n =0

-1 Yy,

CHOIRI S
L 1

E ]

=0

[N

to,t)s. (5. ,8 3 ) d 7
S 0s (5,8 D 1alEg,z,0dl

(4.5)

Then (4.3)

(4.6)



To expresszthis recursively in terms of one dimensional integrals, let
p(g) = e % //7, and consider the sequence

I (e z) = o (t,2)f 0 (E) (xh(E 0y %2k L 0)
151> chlt2) 1P 5 050" TolSpe

'SO(EO,El)q(EOaZ,t)dEO

I ( ) = 5 (e.a)f p(E)(rl( vy K22 (e o)
i1 a1 2) = eg(ea2)) plE )0 byot r (8t
(4.7)
‘sk(gk’gk'*‘l)Ik(Ek’Z)dEk, k=1,2,...,ﬂ"2
o L 1 Yn-1_2
I (c,z) = cn(t,Z)_fmo(En_l)(rn_l(En_l,t)) rn_l(En_l,t)
PR CRD L S L
where
S o(t,2) = [e (6,21 (4.8)
n n R

. 1
Note that the functions r,, T

K 2 s, do not depend on k, for k=1,...,n=-2.

k* Tk

- )

For fixed a;, we can integrate I =£wp(5)f(£)d£ with an M-point Gaussian
formula (see, e.g., [9]1):

= +
I S eM

(4.9)
=1Aif(ai) .

wn
N
o R

where Ai>0 are weights and a, are the (real) zeros of the Mth Hermite

polynominal

M M
HM(x) = 2 x + ... (4.10)
and are symmetric about x = 0. Using this, the kth term in (4.7),
k = 1,2,...,n-2, becomes
Ik+l(aj’ai) = cn(t,ai)[Sk(aj,ai) + ek] (4.11)
where
M y
_ 1 k2
Sk(aj,ai) = I Aﬂ[r (ag,t)] r (al,t)
=1
'S(aﬁ’aj)lk(al’ai)
M . YR , (4.12)
=z Al[r (aQ,t)] r (a, ,t)
), 9,
=1
.S<al?.’aj)cn(t’ai)bk—-l(ax”,’uj)

(Nat s wo havae dranned the k=denendence aon r o . v~ a.)



The error in the second expression should be clear from (4.11). Now

let S, be the MxM matrix with elements Sk(aj,ai),i,j=1,2,...,M.

k

s = {s (a.,a)}" (4.13)

2y T R R S| | :
and let

2 ~
o _ 4

R(t,1,3,¢) r (ag,t)S<ag},aj)cn(t,ai) (6.14)

Then
M 1 Yy

Sk(aj’ai) = gil Ag[r (ag,t)] R(t,i.5,8¢) - Sk—l(ae’ai) (4.15)

The terms Ag’ rl(ag,t), R(t,i,j,2) can be precomputed "off-line". In

this case, calculation of the matrix §k consists of
(i) raising the elements of the vector r (az,t)
£ = 1,2,.~.,M to the Y, Power;

(ii) performing M2 vector products of

_ 1 k A . -
‘}E‘lj - {Ag[r (azyt)'] R(talsjsg)a L = l)--"M}
i
and Vi1 {Sk—l(aZ’ai)’ 2 = 1,...,M}
for i, = 1,2,...,M.
. , 4.
To compute Ik+l(aj’ai)’ it is necessary to multiply Sk(aj’ai) by

¢ (t,a.),
n i 3 9
Thus, a total of 2M +M"+M elementary operations is required to
compute the M2 entries Ik+l(a8’ai) , i,j=1,...,M. This is for
k=1,2,...,n-2, a total of (n—2)(2M3+M2+M) operations. The operation

3

count for Il(a8’ai) is the same, adding (2M +M2+M) operations. Only

2
2M” + 2M operations are required to compute the M-vector

1 (t,ae), £ =1,...,M. Thus, the total number of elementary operations
n

. required to compute the approximation In(t,z) of v(t,z) at the
ope

points z = aé, 2=1,...,M is

- 2(a-1)M° + (n+1) (M) (4.16)
oper

For n=20, M=20 we have N = 312820.
oper

Note that it is possible to do the multiplications of iii and

vi
—k-1
which leads to considerable time savings.

and that of Sk(aj’ai) and En(t,ai) using "parallel processing”

Finally, referring back to (2.4) the evaluation of the
unnormalized density u(t,ai) from v(t,ai), i = 1,2,...,M, requires an

additional M function evaluations and M multiplications.



Qur final formula (4.11) for the approximation of v(t,z) depends
on the weight parameters a, and involves two basic errors: (i) the
error O(n—z) in the approximation (1.10) of the function space integral
by an n-fold "ordinary'" integral; and (ii) the error, ey in the M-point
Gaussian quadrature formula (4.9). (The error in the substitution
(4.12) is clearly a linear multiple of eM.) For obvious reasons we
would like to have sharp estimates of these quantities, the last of
which should be minimized with respect to Q. .

The analysis in [5] which led to the estimate O(n-z) in (1.10) 1is
so complex that a precise evaluation of the order expression appears
to be out of the question. In specific cases one can probably emulate
the analysis of Cameron [8], sec. 6, which shows that in some cases
the O(n_z) estimate is actually very conservative. (E.g., "Simpson's
rule,” included in our formulas, evaluates the Wiener integral of the

4 3.)

We can say somewhat more about the error eM=eM(t,z,g). Natural

functional F[x] = [fé xz(s)dx]2 to within an error of 1/8mw n

bounds are of the form
IeM(t,z,g)Iic(n,M)N(t,z,l,n,g) . (5.1)

where C is the error coefficient and N is some bound on a derivative of
the integrand in (4.6). There are several possible procedures, see,
e.g., [10][11]. We shall follow the approach used by Lether in [117.
Since the recursive evaluation (4.7) does not reduce or increase the
error relative to direct evaluation of the n-fold integral (4.3), we
may as well apply Lether's procedure to the latter.

Because the weight function in (4.3) is normalized, and the error

coefficient for each coordinate is (independent of the coordinate)
e (i) = M!/2M(2m)! (5.2)

the error for fixed (t,z,a) is bounded by (from [11], equ. (7))

n-1 82M ~ e ~
EM(tSZQE) = 8(M) 'Z 2M Kn(go""’ E.n_1> (5'3)
i=0 agi
for some point (EO’f"’gn—l) in R". Here Kn is the integrand in

(4.3). (We have supressed Ehe t,z,¥,a variables in the argument of K.)
Of course, we assume that K and, therefore po, f,g,h, are sufficiently
smooth for (5.3) to make sense.

The dependence of EM on a mayvbe found by computing upper bqunds
for the derivatives of Kn' Writing

K (£,0)=F (JE)G(Z,0) ,F (w)=exp [ (ug-¥) (87 (w

n

N+ I g(w)] (5.4)

n-1



n-1

n-2

G(g,a)=exp[-( I aii(ai)gi + I oaggegse DEE T bolaglEy)]

i=0

i=0

assume F has continuous derivatives up to order 2M+1, bounded by a

constant F

0 possi

bly depending on the observation rath

y(t).

By

completing the square with respect to gi in G(£,a) and employing a

bound for Hermite polynomials

(127,

. 2y
23125172

Hj(x)e < C

0 , s CO=1.086
and die—X /dxi = e Hj(x)-(—l)l, it may be shown that
: n-1 -
E. (t,z,a) =C.e(M) & P_(a)sup e Qi(é’g) (5.6)
M - 1 . 1=
i=0
-n/2
Cl(n,t,z) COFO V2 (2) t exp(-nz /t7)
n-1 -1/2 1 -m —m 2m rm. — 1 j/2
P.(a) = (O (1-a.) Y(JT) T (l-a)) 2 (VI a)
i . 3 i i . j i i
=0 : =0
1 .2 1 T -1
explj bi/aii+ 7 BiA B, 1(a)
_ 1 -1 T 1 1
Q (E,0) = [(2+ 5 A77B) A (2 + 5 A7 B)1(2)
where B 0
A (2) = M (a)A(a), 0
. a,. ., .la,.
A (alj)’ M= —; % i-1,1 i1
i nx 0 1 0
35417254 ]
9
- 6 - nxn
1 - —
=b
270 by
- 0 _ 0
5o~ ’ Bs™
0 0
e el S -
Here aij’bi are defined in (4.4) and Ai is quint-diagonal. By continﬁ—

ity arguments it may be shown that the matrices A, are all positive

» . . I]_
definite in some nonempty subset S of the cube & =TI i =

region the factors

1
0

exp—Qi in (5.6) may be bounded by unity.

(0,1).

l:‘:(m) .

to

Also,

In this

the

det ine

. - . . . . |l
function Lgi(g) is continuous in & and diverges to + « as a = ad
Therefore, » P.(a) attains a minimum in S at some point
=
*
This value & may be computed numerically and used
the approximations in section 4, giving rise to the evror

bound



n-1

le, (t,z,a*)|s E (t,z,a™) = Coe(M) I P (a*) (5.7)
M M 1 . A1
i=0
/ It is robust in the sense that a* does not depend on the data f£f,g,h, .-
or the observation process y(t). Of course, the dependence of
(5.7) on (m,n) is crucial. At present, the asymptotic behavior of

a% as m - » has not been determined, but analysis of similar integrals
with Ai diagonal suggests.that the performance should be good.
Remark : The assumption that F(w) have bounded derivatives 1s not
very restrictive. From (2.6) (3.8), (5.4) it is clear that we include
the cases
(i) f,g,h and their derivatives bounded
(ii) g constant , f,h together with their derivatives of

"polynomial" growth, and lim sgn(x)f(x) < =
'x‘ - oo

More general classes of f,g,h may be identified from (2.6),(3.8),(5.4).
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