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ABSTRACT

We consider the problem of isolating the dy-
namical behavior of a portion of a system imbedded
in a large stochastic system. The large scale sys-
tem is assumed to have a Hamiltonian structure.

The method employed is the derivation of the appro-
priate master equations. Several examples illus-
trate the theory.

1. A Probabilistic Mechanism for Dynamic
Instabilities

The equations

d2§ (), , d&(t)
M kit 44, =p
k3= £ dt m

kB Bk

(1.1)

n -~ ~
- B, .sin[ &, (t)-6.
jglEkEJBkJs1n[ () J(t)]

8,(0),d8, (0)/dt given, t20, k=1,2,...,n

describe the dynamics of an electric power network
composed of n synchronous machines interconnected
via an admittance network. Here My is the angular
momentum, di the constant damping, Pmk the mechani-
cal power input(constant) Ggk the internal conduc-
tance, Ey the magnitude of the machine internal
voltage, By; the transfer susceptance of the trans-
mission network, and 3k(t) is the rotor angle of
the machine relative to a synchronous frame. In
the model (1.1) system loads have been represented
as impedances and imbedded in Bkj. The problem of
interest is the explanation of "Spontaneously gen-
erated" small signal instabilities, called dynamic
instabilities, observed in unfaulted electrical
power systems [1]. While these phenomena have many
causes, the model (1.1) is capable of producing an
effect of this general type which is unknown to
power engineers.

To present the result, it is convenient to

change coordinates in (1.1). We define M=kgle,
n £

60(t)=(kéle6k(t))/M, the "center of angle." We

may, without lToss of generality, assume that
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8p(t)=0. Let 8y (t)=Mc3y(t), then o=k§16k(t). The

condition d8k(t)/dt=0 defines the equilibrium rotor
angles €, S in terms of Ppy-Ex2Gkk. Introducing

Bk )=§k(t)-5k5 and linearizing about 6y(t)=0, we
have
d2ek(t)
dt?
where 6k2=j§1EkEjBkj/Mk, ak=tdk/Mk, and ckj=

deg (t) ~2 =0
+2a +°0k(t)=.Z cikbs(t) (1.2)

Defining the
average coupling Ek=(.g Ckj)/n, and ckj=Ek+Ackj, we
assume that =t

(A1) Ackj(t)=eukj(t)

EkEjBkj/Mj defines the coupling.

where €>0 is a parameter and ukj(t) are zero mean,
ergodic Markov processes, In this notation (1.2)

becomes
d2ey=(t) dOkE (L)~ sniErpyae B o0 £
r +2a|. IE K 20kE(t) EjglukJ(t)GJ (t)

(1.3)
8x=(0),d6, £(0)/dt given, k=1,2,...,n.

The assumption (Al) says that the incremental
coupling Acy () is "weak", i.e., of order ¢, a
small parame%er, fluctuating with zero average
value. The fluctuations may be regarded as due to
small, random variations in the load impedances or
variations in the transmission line reactances.
Operating power systems are always subject to fluc-
tuations of this type. We assume also that

(A2) ,=0; 0<a2<...<an; &k>uk; k=1,2,...,n.

That is, the first machine has zero net damping, a
realistic-situation [1], and the other machines are
dissipative.

Theorem 1.1: If (A1)-(A2) hold, then there is
an gg>0 such that for ¢ fixed O<ese,, we have

limt(ele(t)>z+<é16(t>)2]*=» (1.4)

—>C0
almost surely, provided that

1
kEnglwk

fge-aktE[“]k(tth1(0)]Sinw1tsinmkt dt
(1.5)
< 4i12€nE[u11(t)u11(0)]C0$a wy t dt=a
where wk:(mkz=ak2)i.
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The asymptotic growth rate in (1.4) is exp
[(a-b)e2t]. The self coupling effect a is positive
and destabilizing. The cross coupling effect b can
have either sign and may induce either stability or
instability. Notice that only the second order
statistics of ukj(t) enter in the expression (1.5).
That small, random, zero mean, coupling between a
strongly dissipative system and a marginally stable
system can induce a gross instability in the latter
is somewhat surprising.

This result was first proved in a general set-
ting.by Papanicolaou and Kohler [2], except for
some details settled by the methods of [3]. It
was applied to the power system dynamic instability
problem in [4][5].

As Papanicolaou and Kohler note [2], this sys-
tem and its analysis belong to a class of problems
involving generalized master equations as their
descriptive base. Master equations have been used
in mathematical physics to study the time evolu-
tion of open quantum mechanical systems, providing,
for example, a framework for the study of irrever-
sibility. We shall review the salient points of
this theory in the next section. The primary con-
cern of the theory is the analysis of the dynamic
evolution of a study system $ moving (irreversibly)
under the influence of its surroundings B. In the
parlance of control theory the overall system S @B
is a large scale system with S the local subsystem
of interest and B the remaining system which is
usually represented by an "equivalent." The ob-
vious subdivision of the coupled oscillator system
(1.1) is typical.

In general, a complete analysis of the "open"
system S requires a microscopic description of the
total "closed" system S @ B. By eliminating the
coordinates of B from the latter one can infer the
behavior of S. Systems which may be treated in
this way include the damped harmonic oscillator as
a paradigm for more compiex systems (e.g., spin
systems), or lasers in which S is the radiation
output and B includes the pump, loss mechanisms,
and active atoms [6]. The mathematical description
of these systems takes its most coherent form in
the use of "master equations" to capture the time
evolution of (probability) distributions for the
variables of interest. These equations, as we
shall see, typically contain memory effects. They
are most useful in (Markovian) cases when these
effects may be neglected ([6], p. 101). Our treat-
ment focusses on the form of the master equation in
the asymptotic 1imit of weak coupling between S and
B. We begin with the simple problem of line broad-
ening in a perturbed harmonic oscillator and then
consider the analysis of abstract master equations
for more complex phenomena.

2. Resonance and Relaxation Phenomena

The analysis of the energy versus frequency
spectrum of a physical system is fundamental to
obtaining information about the system. The shapes
of spectral "lines" can provide rather specific in-
formation in certain cases, including the possible
internal motion of nuclei in a molecular system in
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nuclear magnetic resonance (NMR) experiment

A line shape function is simply the (norma]?zgg;.
Fourier transform of the correlation function of
a physical variable

I(v)=§%{:§x*(t)x(0)>exp(-ivt)dt/<x*x>_ (2.1)

In engineering parlance, I(v) is the pow -
tral density function. In (2.1) <> ?s igeszsgem_
ble average.

Consider the oscillator

x{(t)=iQ(t)x(t) (2.2)
where the oscillation frequency Q(t) j

dom modulation by the environmintg %hggclgdeé(z§2-
worw(t) with <w(t)>=<0. (The precession of a spin
moment in a magnetic field is described by (2.1)
with Q(t)=yH(t), H(t)=Ho+H1(t)). In the scalar
case we have

<x(t)x*(0)>=]x(0)] 2eTwoty(y) (2.3)

where

¢(t)=<exp igtw(S)dS> (2.4)

i§ the relaxation function. The resonance absorp-
tion spectrum (unnormalized) is

H 1o _§(y-
I(v-wo)=pmlie i vmuodto(t)ae; (2.5
and it is I which is observed directly.

modulation w(t) effectively broadens %(v-$?§ ;ﬁgﬂgm
the center frequency wo. Physical observations of
the absorption of electromagnetic waves by a large
number of independent magnetic spins, the ensemble
will correspond to this kind of ensemble averagingj

The parameters

2242 =/
az=<w?(t)>, =/ <w(t)u(0)>dt/az  (2.6)
describe the intensity of the interacti
correlation time of the modulation, resggci?3e$;e
The condition At>>1 is slow modulation and Ar<<1'
is fast modulation. Roughly, for slow modulation
the 1ine shape I(v) mimics the probability distri-
bution of Q. In fast modulation the spectrum shows
the effects of motional narrowing - the line shape
becomes sharp with a Lorenzian form.

This is illustrated in the case wh i
Gaussian with‘<m(t)w(0)>=A29XD(-|t|/T).enTﬁéx) b

o(t)=exp[-a212(e~t/T-1+t/1)] (2.7)

= 1, = -
I(v)=;Re£ exp[-a2t2(e t/T‘1+t/T)-1Vt]dt.
One can show that ([8], p. 30)

. exp[-{v-wq)2/2802]V77A, ,At>>1

%(AZT)/[(V-wo)2+(A2T)2], Ar<£§.8)

The second, Lorenzian line shape has width 2A2
and it is clear that the line is much narroSédT In
NMR studies the thermal motion of nuclei causes this




kind of (motional) narrowing.

As a second example consider a two Tevel atom
(ground state and excited state with energy level
nQ) subject to random perturbations, j.e., a ran-
dom electric field E(t) [9]. The Schridinger equa-
tion for the wave vector y=[y,,¥e] is

d W1y -iQ 0 Uy . 0 1,1
qtlys)=Co G (g-TE() () ) (2.9)
where fia is the matrix element of the dipole moment
between the two states. The stationary random pro-
cess E(t) is assumed to have <E(t)>=0, <E2(t)>=1,

and correlation time t. The problem is to describe
the probability distribution of ¢ when at is small.

Consider the simpler problem of analyzing the
second moments, i.e., averages of

Ur= e, Ua=ye™Po, Us=y1*Po, Un=Po™yy.(2.10)

Set u=[uy,...,us]T. Then

G(t)=Aou(t)+iaE (t)ALu(t) (2.11)
where Ao= diag{l,1,i,-iR}and A;=A,T has a=

-i _% ’ on the off diagonal blocks and 0p,, on

the diagonal. Consider the change of coordinates
v(t)=exp(-Ast)u(t)
(2.12)
Ai(t)=exp(-Aot)A exp(Act).
Then
dv_.
at—'laE(t)Al(t)V(t). (2.13)
Since E(t) has zero mean the effects of the coeffi-
cients are 0(a2). Using averaging theory for this
problem (e.g.[10]), one can show that the mean
<v(t)>=v(t) satisfies to O(a) the averaged equation

St (1) (2.14)

where
TiAy=lim [TIEE(DE(S) Ay ()AL (5)ds dt

s -a a |, [ -a+ib’| [ a+ib
_d1a9{( a -a:l’[ a-ib | ’(-a-ib_g (2.15)

with - .
%(a+1‘b)=f°<E(t)E(t-s)>e1QSds. (2.16)
It follows that the mean of u(t), say u(t), satis-
fies (to 0(a))
DL (Ao, () (2.17)
The coefficient matrix has one zero eigenvalue
which corresponds to an equilibrium state [¥,]2=
|¥o]2=1/2 in which both states are occupied with the
same probability, rather than with the Boltzmann
distribution. This flaw is inherent in (2.9) in
which the perturbing field E(t) causes state transi-
tions in either direction with egual probability.

The model

dM_
T [H(t)+Ho] X M(t) (2.18)
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for a spin moment M(t) in a magnetic field (Ho=
steady external field, H(t)=stochastic magnetic
field describing the surrounding lattice) suffers
the same defect; specifically, under natural as-
sumptions on H(t) the spin relaxes to zero instead
of to the equilibrium corresponding to the external
field [11]. In [11] Kubo and Hashitsume modified
(2.18) by introducing a frictional term, not unlike
the frictional force in the Langevin theory of
Brownian motion, obtaining

FE=rTHoHH(E)] X M(t)-xlHo X M()] X M(t) (2-19)

By a formal argument they were able to show that
M(t) relaxes to xHo for certain values of «. The
latter is chosen by invoking the "fluctuation -
dissipation" theorem (*)[12] to balance the inten-
sity of the fluctuations H(t) and the dissipation
to maintain the proper temperature. A phenomeno-
Togical treatment of this type is possible for the
two-state model (2.9); however, this kind of analy-
sis is somewhat arbitrary and unsatisfying, especi-
ally when noniinear models like (2.19) arerequired.

These formulations provide an incomplete des-
cription of the interaction between the system and
its surroundings, particularly the influence of the
former on the latter. In the Kubo paradigm the
force produced by the surroundings acting upon the
system behaves 1ike a Gaussian process. In order
to validate this model one should take steps simi-
lar to those in the proof of the central limit
theorem, deriving the cumulative force from an in-
teraction Hamiltonian composed of a large number of
terms. This point was recognized in the formal
treatments of "master equations” in [13][14](among
others); however, the lack of a precise analysis
and range of validity of the conclusions makes
this work less compelling than it might otherwise
be.

3. Markovian Master Egquations

In [15]-[17] E.B. Davies gives a careful treat-
ment of master equations in the asymptotic limit of
weak coupling in which the system response becomes
Markovian. In this (generalized) diffusion limit
the important conclusions regarding resonance and
relaxation behavior states earlier can be rigorously
defended. What follows is a brief sketchof Davies's
Erﬁatment of the Nakajima-Zwanzig master equation

6].

Consider a closed system S@ B consisting of
two interacting parts S and B. The state of S@B
is defined by the density operator V(t) which satis-
fies the Liouville-von Neumann equation

V(t)=-(i/n)[H,V(t)]=-LV(t). (3.1)

(*) This result is perhaps best known to elec-
trical engineers in the form of the Nyquist theorem
for the thermal noise in an impedance. Nyquist
showed that the random electromotive force appearing
across a resistor is determined by its impedance.
See his 1928 paper in Physical Review, vol. 32,
or [12].



The Hamiltonian H is time-invariant since the sys-
tem S@B is closed. It, and so L, consists of
three parts

H=HS+HB+HSB

L=LS+LB+LSB
corresponding to the free motion of S and B (each
is a system in its own right) and an interaction,
respectively. The free motion of S and B (LSB=O)

is described by a one parameter group U(t} on some
Banach space X. Assuming the U(t) is strongly con-
tinuous, its infinitesimal generator L=LS+LB is

(3.2)

closed and densely defined. Let P, be a projection
so that PoX=X, is the state space S and P;X=
(1-Py)X=X; that of the bath. Evidently, U(t)
leaves both X, and X, invariant. We have !

=S
Pol, LB=P1E with [Ps,L]=0, etc.

The interaction LS
which is assumed to be go
Writing Aj;.=
Then Log= 1

represents a perturbation
unded operator €A on X.
PjAPj, we assume Ago=0 for simplicity.
Ag1+A1o+A11). The parameter >0 is
introdaged to monitor the intensity of tne inter-
action. Let UE(t) be the group generated by
[+cA;; so that [UE(t), Py]=0 for all t. The total
system is described by V(t)=VE(t) from (3.1) which
satisfies

VE(t)=U€(t)+e£tU€(t-s)(A10+A01)V€(s)ds. (3.3)

To obtain the master equation for the description
of S, we use the projections

Pove(t)Po=U€(t)Po+e{fu€(t-s)Aolplve(s)Pods( |
3.4
PIVE(t)Po=eﬁtUE(t-s)AlgPoVE(s)Pods.

Defining WE(t)=PoVE(t)Po, the density (operator) of
S, we have (in Xo)

WE(t)=U(t)+62£tQSU(t-s)A01U€(s-r)AloWE(r)dr ds
(3.5)
where US(t)P¢=U(t) because Ag,=0.

This is the integrated form of the master
eguation. To obtain the differential form, set
z8(t)=W(t)z,zeXo. Then formally

(
9£5=-1Lsg€+e2{fA01u€(t-s)A1oc(s)ds (3.6)

dt
and this is the master equation in the form devel-
oped by Nakajima and Zwanzig. The memory effect is
evident.

As a description of a large category of phenom-
ena (see [6]), the master equation is an extremely
flexible concept. However, as Haake points out,
there are 1imits to its practical (computational)
usefulness. Unless the memory effects can be neg-
lected in some systematic way, usually by exploit-
ing expansions in terms of small parameters, the
generalized master equation (3.6) is an "empty con-
cept"[6], p. 101.

In [15]-[17] Davies studies the weak coupling
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limit (e+0) in which the asymptotic form of the
master equation becomes, after rescaling, memory-
less or Markovian. The setup is as follows: Tlet
1=¢2t be the slow time scale and Y&(1)=
U(-t/e2)WE(t/e?) the interaction coordinates (re-
call (2.12)-(2.14)). Then

Y& (1)=1+S"HE (1-0,0)YE (o) do (3.7)
when ¢

HE(1,0)=U(-0/e2)KE(T)U(c/c?)
2 (3.8)
KE('[')=}0E U(‘S)AOIUE(S)AlodS.

Restricting attention to the case X, finite dimen-
sional (this is removed in [16], Davies's limit
theorem is:

Theorem 3.1: ([15], Theorem 2.1). Suppose
for aTTl t.20, 3c such that ||K®(7)||sc for le|s1,
Ost€ty. Suppose also 3K: Xg+Xo, bounded, such
that if 0<ty<e, then ]18||K€(T)-KI!=O uniformly in

—

Then for xeX,
Tim] [ Y& (1)x-Y(T)x!|]=0
£

T, ToSTSET:.

(3.9)
uniformly in 0stst,, where

Y(1)=exp(Ke) ,R=limb=s U(s)KU(-s)ds (3.10)

and KU(t)=U(t)X as operators on X, for all t.

Remarks: 1. If A;;=0 (and Ay,=0), then
UE(t)=0(t) and one can take
K={fu(-s)A01u(s)Alods. (3.11)

The case A;1=0 is more complex, see [6], Theorem
2.3.

2. The 1imiting evolution of S in the slow
time is dY(t)/dt=KY(t), a quantum - mechanical
Fokker - Planck equation (see the example in [15]).
The original model (3.1) on X is fully reversible;
however, the Timit (3.9) leads to a semigroup on X
which represents an irreversible dissipative pro-
cess. The origin of irreversibility is inherent in
the weak coupling limit.

3. The formal similarity of this limit theor-
em and those for stochastic differential equations
on a Banach space X, may be demonstrated by setting
X=L!(2,Xq,P(dw)), where (Q,P) is the sample space,
and Pof=/ f(w)P(dw). The interaction is (LSBf)(w)=

A(w)f(w), where A is a random operator. See [17]
[18] for a more complete discussion of this point.

4. 1In [19] J. Pulé adapts Davies's model to
derive the phenomenological Bloch equations for
time evolution of a spinor interacting with a heat
bath of harmonic oscillators in equilibrium. Since
the particle is different from those constituting
the bath, some modifications are necessary. The
analysis centers on the weak coupling limit, and it
employs the rescaling of time and the transformation
to the interaction picture. Despite its complexity,
the treatment is natural, within its 1imits, and
more satisfying than the ad hoc adoption of



phenomenological terms.
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