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ABSTRACT
Numerical methods for the solution of the robust version of the
Duncan-Mortensen—Zakai partial differential equation are considered.
Both semidiscretization and complete discretization schemes are
included. Direct implementation of such schemes via array processors
is proposed as a design method for nonlinear filters. The importance
of existence, uniqueness and tail behavior of solutions is related to

properties of such implementations.



SUMMARY

Recent studies of the nonlinear filtering problem have emphasized
a pair of linear partial differential equations as central to this
problem [1}. Briefly, for a diffusion signal model

dx(t) = £(x(t))dt + g(x(t))dw(t) ()
with observation

dy(t) = h(x(t))dt + dv(t) (2)
the "unnormalized” conditional probability density of x(t) given y(s),
s<t, satisfies the linear stochastic partial differential equation

dU(t,x)=[a(x)UXX(t,x)+b(x)Ux(t,x)+c(x)U(t,x)]dt

+ h(x)U(t,x)dy(t) (3)
U(0,x) = pO(x), 0<t<T;

If we normalize U to 1l we obtain the comnditional density. In (3)

a(x) = —;— g2 (x)

b(x) = 2g(x)gx(x) - f(x) (4)
2 - 1.2

c(x) = g (x) + g(x)gxx(X) fx(X) 5 h™(x)

It is easier to analyze (3) indirectly via the transformation [2]
v(it,x) = exp[—h(x)y(t)]U(t,x) (5)
which implies that V solves the linear parabolic p.d.e., for each path

Y
3V(t,x)

= A(x)V (t,x) + B(t,x)V (t,x) + C(t,x)V(t,x)
It XX X

v(0,x) = PO(X), 0<t<T; (6)
usually called the robust version of (3). 1In (6)
A(x) = a(x)

B(t,x)

b(x) + 2a(X)th(t) (7)

c(t,x) c(x) + b(x)hx(x)y(t) +
+ a(x)[h_()y(t) + hi(x)y2(e)]
XX <

1



Since almost all paths of y are Holder continuous (6) can be
readily analyzed for existence, uniqueness and regularity by classical
p.d.e. methods for each path. Such an approach, leading to several
useful results can be found in [3].

Similarly, well known efficient numerical methods for p.d.e.'s can
be used to compute solutions to (6) with high accuracy. The fact that
(6) is linear facilitates numerical treatment considerably. The
program initiated here is being largely motivated by the desire to
develop systematic, efficient approximate solutions to nonlinear
filtering problems. Recent work on analytical solutions has produced
important results but most in a negative direction (see in particular
the articles by Brockett, Ocone and Sussmann in [1]).

Our purpose here is not to analyze numerical schemes for (6).
Rather we are interested in direct implementations of established
numerical methods for p.d.e.'s of the type (6) via special purpose
array processors, With the advent of VLSI technology, computer aided
design of such array processors on a single chip is now a reality [4].
The development of such a design method appears as a powerful alter-
native in nonlinear filtering studies. Such a study rests on the
following circle of ideas: efficient stable schemes for linear parabo-
lic p.d.e.'s, fast algorithmsrfor the solution of the discretized or
semidiscretized equations, existence—uniquéness—regularity results,
theory and design of VSLI processor arrays.

The end result of such a method is a high performance, VLSI
implementable algorithm (with current standards, a rather low-cost
device) which computes recursively accurate approximations of the con-
ditional density.

We assume that existence and uniqueness questions about solutions



of (6) have been settled. For some recent results we refer to [3].
Furthermore, we assume that a uniform bound of the form

V(t,x)<M exp(-K¢(x)) (8)
has been established for the solution of (6). In (8) we assume M,K to

be constants independent of the observation path and ¢ to be a non-

negative function, such that lim ¢(x) = + o=,
|x | >e

We then proceed as follows. First we choose an €>0, small, induced by
the accuracy requirements desired. Using (8) we define the bounded
region  in which (6) will be solved via

fV(t,x)dx<€. (9)
Q

Let T denote the smooth boundary of . We next use a discretization
or semidiscretization scheme to solve the following "Dirichlet
perturbation” of (6):
(6) together with the boundary condition V(t,x)=0 on T, (10)
If we use a space semidiscretization scheme on (10) we obtain the
system of ordinary differential equations [5] [6]:

GNVN(t) = AV (t) + BN(t)VN(t) + CN(t)VN(t)

N N
with initial conditions (11)
V(0 = ey g
Here
t = B + B t
By(e) N,O 178
2
t = C + C t) + C
CN( ) N,0 N,IY( ) N,27 (t) (12)
Futhermore GN, AN, BN,O’ BN,l’ CN,O’ CN,l’ CN,2 are finite bandwidth,

band matrices. This is exploited in an electronic implementation of
(11) using VLSI processor arrays in a pipeline arrangement to compute
the requisite matrix-vector multiplications (see {4, PP . 274—275]).

The result is an approximate nonlinear filter. Similar results are



obtained via full discretizations of (6), leading to digital approxi-
mate nonlinear filters.

In the paper we treat by similar methods vector signal and obser-
vation processes. We furthermore analyze the computational efficiency
of the proposed numerical algorithms and architectures. Finally, we
report on stability, operational delay and other characteristics of
approximate filters constructed by this method.
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