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ABSTRACT

We consider optimal server time allocation to two parallel queues. The
server has available complete past observations of the queue sizes for his
decisions. The infinite time discounted version of the problem is analyzed
here. It is shown that the optimal strategy is stationary. The optimal
value function is shown to be the unique solution of the Bellman equation.
Finally, analysis of degenerate Bellman equations, of the type appearing in
this problem is presented. Numerical methods of solution can be derived
from the results presented here.

1. INTRODUCTION

We consider the problem of selecting which of two parallel queues to serve -
with a single server. The system is depicted in Figure 1. Customers arrive
into stations 1 and 2 according to two independent Poisson streams with
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Fig. 1 The server time allocation problem

constant rates A1, Ap respectively. The two queues compete for the services
of an exponential server with constant service rate u. Let Xy . be the
number of customers in queue i at time t, the customer in service included.
The control to be selected is clearly of a switching type. When u,=1 and
the server completes a service the next customer to be served comes from
queue 1, while if u =0 the next customer comes from queue 2. The queue
that is being served forms an M/M/1 system with the server. This is a
simple sequencing problem, where the sequencing variable is u, . Let x;=
(xl,t’xz,t) denote the state at time t. wu. is to be selected knowning X..

The server allocation time is to be selected to minimize delays, weighted
according to cj, ¢j, two positive constants. Thus the cost per unit time
with queues X160 X2, ¢ is c1xy t+c2x2’t=cht. It is shown that the pol-
icies which minimize’the infinlte time discounted average cost are charac-
terized by a switching curve S:x,=5(x;). That is up=1 1f X2,t<s(x1,t)’
while u.=0 qhwn ’2,t>s(x1,t)' Thus the optimal strategy is stationary.

The present paper is an outgrowth of earlier work [1] by one of the authors.
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There are two important differences between the work presented in [1] and
the problems treated here. First the queues are observed here while only
partial observations were assumed in [1]. Second finite time problems were
treated in [1] while infinite time discounted problems are considered here.

The problem described can be thought of as a dynamic priority (non-preemp-
tive) problem in a single queue with two classes of customers {2] [3]. The
optimal static priority assignment (i.e. open loop control) which minimizes
average cost per unit time, under steady state conditions was obtained by
Cox and Smith [2]. The result, in the terminology used here, is that queue
1 has priority over queue 2 iff c1>cy (the opposite holds when cp<cp).
Actually their result is easily extended to include general service time
distributions, as well as different distributions for different classes and
to general m queues (classes) problems. Dynamic priorities minimizing
average cost per unit time, under steady state conditions were derived by
Rykov and Lembert [3]. The analysis presented in [3] is rather formal,
however the results appear to be correct. The result, in the terminology
used here, is that the optimal dynamic (feedback) priority coincides with
the optimal static priority of Cox and Smith [2]. The result is valid under
general service time distributions. In both cases the results were obtained
by classical queueing methods and are in agreement with intuition, given

the steady state assumptions and the average cost per unit time criterion
used.

The problem considered here is quite different from those analyzed in [2]
[3], since infinite time discounted average delays are considered. We use
two methods to analyze the problem. The first uses an embedded Markov chain
and is inspired by the analysis of a simple tandem queueing system studied
by Rosberg, Varaiya and Walrand [6]. The second centers on direct analysis
of the associated Bellman equation. Both methods suggest numerical schemes
for computation of the optimal strategy, and are useful for more general
queueing systems problems as well.

Other examples of dynamic queueing control problems can be found in [4] [5].

2. A METHOD BASED ON THE ASSOCIATED EMBEDDED MARKOV CHAIN PROBLEM

We consider the discounted continuous time problem for the two competing
queues system described in figure 1. Let >0 be the discount rate and

t
V:(x): = min E{I chc e %%gq} (2.1)
yerl 0

be the minimum total expected discounted delay, when the time horizon is
t>0 and the starting state at time O is X0=X. In (2.1) T is the set of all

admissible policies
T: = {Y={ut(.),;30} such that ut:ZxZ+{1,0}} (2.2)
where Z = {0,1,2,3...}.

The main objective is to characterize the optimal cost for the infinite time
problem V2 and the corresponding optimal strategy y%. Considering the sizes
of both queues X¢» as the state of the system, we have a Markov chain with
countable state space ZxZ. The transitions of Xy are easy to describe.

They correspond to arrivals at queue 1 or queue 2, and to service comple-
tions. The transitions induced by arrivals occur at arrival times in

queues 1 and 2 respectively denoted by
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The control strategy does not affect arrivals. Therefore if we let A , A
be functions describing the new state after a transition induced by arrivals
we see that for u = 1 or 0, the transition probabilities are

Al(xl,xz) = (x1+1,x2) with Prob. Aldt + o(dt)

Az(xl,xz) = (xl,x2+l) with Prob. Azdt + o(dt

(2.4)

On the other hand transitions induced by service completions occur at
service completion times

s =ty £]s t5e0d (2.5)
and depend on the value of the control. Thus when u=l, Dy is possible where
+ .
Dl(xl,xz) = ((xl-l) ,x2) with Prob. ndt + o(dt), (2.6)
while when u = O, D2 is possible where
D, (x;>%,) = (xy» (xp=D)™) with Prob. ude + 9(de) @.7

Here (x)+ = max {x,0}. The transition epochs [2], [31, [6], for the state
process X, are

7= (2.8)

The embedded Markov chain method analyzes the behavior of the state process
x_ at transition epochs from J 21, [3], [6]. It is a consequence of our
fSrmulation that the sets G+, G~, o are disjoint (i.e. no simultaneous
occurrence is possible).

To treat the infinite time discounted problem we need some results of
Lippman [8], particularly since we do not have bounded costs for all x. The
action space in the problem treated here is finite: {0,1}. The set of states
accessible from a iiven state (xl,xi) in one transition is {(x1+1,x3),
(x1,%9+1), ((x1-1)7,%3), (xl,(xz-l) R (xl,xz)}, independent of the trans-
jtion epoch. Furthermore the cost is linear in the state. As a consequence
Assumptions 1 and 2 in Lippman {8, pp. 719] hold.

The strategies in TI' are Markovian [9]. Let us also consider the more
general class of randomized nonanticipative strategies:

;:={Y=(ﬂt(0),nt(l)), t>0} such that m. is a function of the (2.9)
past history ht=(xs, ugs 0<s<t).

Here m (i), 1 = 0,1 is the probability of choosing u=0, or 1 at time t. A
strategy in I' is stationary whenever ut(.) is independent of t. We now have
the following result:

Theorem 1:

The infinite time discounted problem (a>0), for the two competing queues,

has an optimal strategy over T, which is Markovian and stationary. Further-
more the optimal value function V% is the unique solution of the Bellman
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equation

v 1)--C—L +52—+—min {z Pl (v)P (VG530 )
2T W ge{0,1) 3,,3, T0dr T dprdy T2
(2.10)
1112>0
where Pl V), P2 (v) are given in (2.21) below.
il,j1 1,53,

Proof: Since Assumptions 1, 2 of Lippman [8] are satisfied and the
action set is finite, the first result is an immediate consequence of
Theorem 1 in Lippman [8, p. 719]. Since the optimal policy is statiomary
we can restrict consideration to stationary Markovian strategies which
change values only at service completion times, tﬁ € /. We denote this
restricted class by Ty. As a result we need find the equivalent discrete
time stochastic control problem for the embedded Markov chain with trans-

ition epochs o’ and not J. For ease of notation we denote X, by x, and ug

k
by uy. It is plain that the intertransition intervals t§+1 - tﬁ are
independent, identically distributed random variables with an exponential
distribution

s s _ B
Prob {tk+1 - tk>t} = exp (-tu). (2.11)

Consider now a policy in Iy and let us compute the corresponding cost over
the random interval [O,tgl and i{nitial state x:

t3 n-1 ;t$
n - k+ -
EXI e at cht dt = E z f 1 e at chk dt
X k=0
s
n-1 2 &
= E L ch E J ktl e_utdt} =
k
=0 s
k
s s
n-1 -0t -at
=-§ E I {chkE[e k k+l]}
k=0
n-1 n-1
=lp » T Eeh =B o gl (2.12)
k=0 k=0
n-1 T °
provided B<1, while when B=1 it equals E I cix . In the sequel we shall
X k=0
ignore the comnstant — 1 in (2.12). Here
= B
= e (2.13)

so B=1, corresponds to the discount rate a=0., So the infinite time cost
for the embedded Markov chain is

Wonx = E Lz g%Tx) (2.14)
* k=0
when policy yero is used. Obviously for a>0,
v = LB yf (2.15)
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where WB is the optimal over yel, of (2.14). We next compute the transition
probabifities for the embedded Markov chain x Let 51 ,k» &2 i be the total
arrivals for queues 1, 2 during the interval rﬁ Note’ that given

S, 51 k’€2 kx are independent random variables, with Poisson
dis%ributions, with melns A18, A,8 respectively. Let Nj s Ny t be the
counting processes for queues 1,2, ’ ’

Then ©
X8 Bk
-) = = : ’ -
PriNy 1M, i78 [ e e TR
0 1,k
A £
1 1,k w
e Ly Lk _u (2.16)
A1+u X1+u
Similarly .
R
PriN; 11Ny (=5 ) = (A2+u) Ty (2.17)
Now if u = 1
XLkl T XLk T L by o 1 X L #0
X e " El,k , 1if Xk s 0 (2.18)
X041 - %2,k TGk :
Similarly if u = 0
\
e T Lkt Rk > v
X,k T X2 T 1 by 0 1 X, L F0 (2.19)
Xkt - 52,k » A x) =0

So the (reduced) embedded Markov chain has state space ZxZ and transition
probabilities

P ’12’31’32(u)= = Prix =53 Ix=(1,1,)u = v}
= Pr{xl,k+1 1[ 1k = ij’ uy = v}.Pr{xz’k+1=j2]x2’k=12,uk=v} (2.20)
RN OB AR
1’Y1 2’ 2
From (2.16) - (2.19) there result
(/2 +u) (u/kl+u) » Af i) =0, §;20
+l—il
1 -
Pil’jl(l) = /A1+u) (u/A1+u) , 1f il>l, Jl>i1 -1 (2.21a)
. otherwise
i
L ()\ /A +11) (u/>\1+u) , 1if Jl_>_il
Pi 0) = (2.21b)
1’91

» Otherwise
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3p1, )
) (XZ/AZ'HJ) , (u/xz'hl) ’ if jzz,iz
P . () = (2.21c¢)
103 ’
0 , otherwise

]
2 )
O/ 2un,m i 1,20, 3,0 )

2 Ipt1-1, .
Piz’jz(O) = (AZ/A2+u) (u/A2+u) , 1if 1211’ jziiz“l (2.214)
0 , otherwise .
Then WE is the unique solution of
B : B
wm(il’iz) = clil+c212+8 min z ww(jl’jz)) (2.22)

P
ve{0,1} 3,51, 1103503103,

Multiplying (2.22) by liﬁ we obtain (2.10), and this completes the proof
of the theorem.

It is now clear how to obtain the switching curve in ZxZ, once Vg is known:
S = {(il,iz)erZ:

5 pi 5 (l)Pi
131

o, . . - 1 2
5, WVapi) =L By (O

R EONMERSIOY
303, 1771 2

. . J
J ,J 1’ 2’ ]
=2 (2.23)

From (2.21) easily follows that (0,0)eS. The optimal stationary policy
v3={£%,£%,...} is determined by the function £*:ZxZ+{0,1} as follows. If
(11,15) 1is such that

1 2 o 1 2 o
LBy Ly OB WV G.30<E By (0B (0)V (3;,35,)
iy, 1’71 2792 i10d; 1’71 2772
(2.24a)

then

o

f (11,12) = 1 (2.24p)
and

£%(1,,1,) = 0 ' (2.24¢)

when the inequality in (2.24) is reversed. From (2.21), (2.24) easily
follows that £%(0,1i3) = 0 and f“(il,O) = 1, These results agree with
intuition.

The result of Theorem 1, suggests the following scheme for the numerical
computation of V¢ and f%,

Let

‘1, %
E;ail+aia 12 . 11’1239 (2.25)

Qo =
v g1y =
and define V: recursively via
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2 o4+ M e {z Pt

V1) = e 1+ WP @) v G.90)
n1’72 pto "1 o "2 pto ve{0,1} jl’jz il,j1 12?32 n-1-1°-2

(2.26)

Let

f:: ZxZ+{0,1}

be the function defined by the minimization in (2.26). Then we can show
that

1im V* = Vv*
ad n *®
o 2.27)

1im £2 = £%,
n

>

3. DIRECT ANALYSIS OF THE BELLMAN EQUATION

First recall from [10] the following result on Bellman equations over an
arbitrary Hilbert lattice V:

max (Lau - fa) =0 , uevV, £y (3.1)
acA .

where L2 is coercive, and A is the action set.
Let
a a N E
K = {veV:L%v<f"~ , all aeAl . (3.2) ;
Next for arbitrary acA, let ¢ be the solution of the variational inequality
<L§¢—fa,v-?> > 0 for all veK,peK. (3.3)

Then (see [10}) @ is the maximal element of the set of all subsolutions of
(3.1) (which implies that ¢ is independent of the choice of a from A in }
(3.2)). Furthermore, under appropriate technical assumptions [10], ¢ is \
also the strong solution of (3.1). In view of the result of Theorem 1 in
section 2, it is only necessary to consider stationary problems.

For the case of interest here A = {1,0}, i.e. we have two operators
LI’LO- Furthermore we have two state variables XqsX) which are integer
valued. Let us define

Cc c

: =1 2
£G.1,) = S b T o 1, » 1;,1,>0. (3.4)
Furthermore for a function v(il,iz) let
(0] (1,1) = vty - Xz pb . ©@pE . (0v(i;si)
1°12 1°%27 7 e f 1,3 1,1 1°32
ippd, 11 2°J2
- (3.5)
L,y = v,y -1 e @ . vy
121 1’2 T i.,3 i,,3 1*-27"
i3, 1 2°32

Then (2.10) can be written
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max (L0v,Llv)= ¢ C(3.6)

The main difficulty arising here is due to the fact that Lg,L; are not
coercive, but degenerate. Thus, it is necessary to modify the method of
[10] to apply to degenerate problems; this is done in [11]; here we present
the method for the particular case of two operators.

It is easier to explain the main features of this method by introducing
some functional spaces. Because our arguments do not depend on the maximum
principle, they are applicable to both, the continuous and the discrete
problems.

Let {1,2,...,n} = AUB, where n is the dimension of the spatial variable and

A\B#¢. Let Q=0,xQ CRP, where Q,CR® and Q CRB are bounded open sets in the
\/ respective spaces. (The case % an unbounded set Q can be handled similarly,
¢ by introducing weighted functional spaces).

Let

Ll = Ll,l + Ll,Z’ L0 = LO,l + L0,2

where L is a first-order hyperbolic (differential or finite difference)
operator }n the A-variables and L1 2 is coercive in the B-variables, while
the situation is reversed for L0

Now let

=
]

1 1
HO(QA), Wy = Ho(nB)

o
L]

{veLZ(Q): v|<L1,1,n>|% eLZ(BQA), v =0 on F;}

= {xe3Q n><0},

—
i

A <Ly1e

DB is defined similarly.
m
(Notation: 1f L= b 2 + b,, then <L,n> = Ib 40 sn(x) is the outer
i=1 i dx, %y 0 ii
normal at point xeanA).

Finite differences must be substituted instead of derivativss for the
discrgte problem. Further we denote by H,, H, the spaces L (QA), L (QB)
(or & (QA), L (QB), for finite difference equations). We define the spaces

V) =Dy ®Wy, Vo =W, ®Dy; Uy =H, @ W, Uy =W, @R,

(Notation: ® signifies tensor product.)
Let the convex set K be defined by

K= {veV nv : L v<f }

1 [
We observe that K is sup-stable, 1i,e. u,weK implies wweK.

v<f1, L

Let Kl be the closure of X in Ul, and K1 = Kf\vl.

Let u be the solution of the variational inequality
276



<L1,1v + Ll,ZuF £, v-w
1 2 1 2.
= 7 J [V~L1’1] (V“'U) dx - 2 f- <L1’1snA>V. don
Q FA xQB
for all veKl; uef1 (3.3)

Then we have the following:
Theorem 2:

There exists a solution u of (3.3) and 1s equal to the maximal element of
K,.
1

Existence follows by a penalization argument as in [12]. The claim that u
is the maximal element of Kl follows by methods similar to those of [10].

When fézo, we have the following iterative scheme for computing the solution
of (2).

Let u2, a = 1,0 be subsolutions of (1), i.e. u2ev, L ulef?, Suppose that

uaslmQQ). Let u? be defined inductively as the solufions of the variational

inequalities
a

<L u_ - f
an

a a —a, _a_a'
s Vo u > >0 for all veKn; uneKn (3.4)

where K& = {v V_: v>ua+1}
n a

- n- s

X2 = {closure of K? in U_},
n n a

K2 = KNv
n n a
a=1,0.

The variational inequalities (3.4) have strong solutions if we make the
regularity assumption:

a
) uneva+l

Conditions under which the regularity assumption (A) is true are given in
[13].
Then, we have the following:

Theorem 3:

u_>u, solution of (3.1), in weak Ulfand ueLm(Q) (uelw(ﬂ), for the finite
difference problem), ’
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