Paper Entitled

"Feedback Compensation with Irrational Transfer Functions: An Algebraic Approach"

From the Proceedings of

20th IEEE Conference on Decision and Control pp. 885-886

San Diego, California December 1981

FEEDBACK COMPENSATION WITH IRRATIONAL TRANSFER FUNCTIONS: AN ALGEBRAIC APPROACH

John S. Baras

Electrical Engineering Department University of Maryland College Park, Maryland 20742

Abstract

We present here extensions of earlier work [1] on dynamic feedback compensation of infinite dimensional systems. The extensions are in two directions: (a) Unstable (in the input-output sense) plans are allowed (b) New classes of irrational transfer functions are being considered (other than meromorphic of bounded type).

Summary

The dynamic feedback compensation problem considered here can be described simply as follows (refer to figure 1): Given the plant transfer function \mathbf{T}_0 , construct input and output compensators $\mathbf{H}_{\mathbf{i}}$, \mathbf{H}_0 , so that the overall closed loop transfer function has desired properties.

Figure 1. Dynamic Feedback Compensation

Formally if

$$T_0 = N_0 D_0^{-1} \tag{1}$$

is a matrix fraction description for T_0 and

$$H_{i} = K_{i}Q^{-1}$$
 $H_{0} = K_{0}Q^{-1}$
(2)

the closed loop system is described by

$$(QD_0 - K_1D_0 - K_0N_0)y = N_0Qv$$
 (3)

One wishes to choose H_1 , H_0 so that (3) has desired specifications in the frequency domain. In (1)-(3) N_0 , N_0 , K_1 , K_0 , Q are analytic (scalar or matrix functions in some left half-plane).

In [1] we solved the problem for the classes $\operatorname{H}^\infty_{\mathrm{m}}(D)$, $\operatorname{H}^\infty_{\mathrm{m}}(\operatorname{\Pi}^+)$, H^∞ (D) and H^∞ ($\operatorname{\Pi}^+$).

We also identified in [1] the necessary algebraic tools to solve the problem:

- (a) A Banach algebra of ${\bf g}$ of analytic functions in some unbounded subset Ω of the complex plane, including always a right half-plane. A subalgebra of ${\bf g}$, ${\bf g}_{\bf g}$ corresponding to stable systems. One considers also the set ${\bf g}_{\bf pxm}$, pxm matrices with elements in ${\bf g}$. Similarly ${\bf g}_{\bf s,pxm}$.
- (b) Matrix fraction descriptions for the elements of $S_{\rm pxm}$, $S_{\rm s,pxm}$ with the factors analytic in the complement of S. We denote by S, the algebra of scalar factors.
- (c) Notion of coprimeness in \tilde{g} which will imply a Bezout identity:

"if N,De $\tilde{\vec{Q}}$ are coprime, there exist X,Ye $\tilde{\vec{Q}}$ such that

XN + YD = 1".

- (d) Global parametrization of zeros of elements of $\tilde{\mathcal{Q}}$.
- (e) An algorithm to extract strictly proper parts from matrix fractions.

Abstractly, having properties (a) - (e) allows a direct solution to the problem. However in all interesting cases which are intrinsically induced

by infinite dimensional systems the development of (a) - (e) in concrete examples may require rather advanced mathematical results. For example in [1] we used the Carlesan corona theorem.

Here we extend the result of [1] to $Q = \Pi^{\infty}$, in the terminology of [1] (i.e. we allow unstable plants). Furthermore we extend the results of [1] to certain algebras Q of analytic functions on strips or wedges in the complex plane.

References

[1] J.S. Baras, "Frequency Domain Design of Linear Distributed Systems", Proc. IEEE Decision and Control Conference, 1980, pp. 728 - 732.