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Abstract.

The problem of controlling vehicle traffic on an urban street network
is a particular example of a large scale systems problem,

In a reasonably typical

network there will be one thousand or more traffic signals, there may be several
hundred sensors (vehicle detectors) and the network is typically distributed over

several hundred square miles.
primarily from a central computer.

It is now quite common to control these systems

The traffic control problem is modelled by a kind of "store and forward" network
in which vehicles are "stored" in queues at the signals and “forwarded" in platoons.
The data from detectors is modelled as a point process that is statistically related

to the queues and platoons.

It would be very tempting to design optimal feedback control algorithms for these

systems.
optimal controls are developed.

However, the size of the problems makes this impossible.

Instead, sub-

These sub-optimal controls use the minimum error

variance estimator of the queues at each intersection as determined from the above
model to improve the control provided by several intuitively derived sub-optimal

controls.
urban traffic.
benchmark open loop controls.

The sub-optimal controls have been tested using a good simulation of
The sub-optimal controls give substantially better performance

than

Conditions under which the network can be decomposed

into "subnetworks without significant degradation in performance are also given.

Keywords.

Stochastic Control.

INTRODUCTION

The primary purpose of the traffic signal at an
intersection is to prevent accidents by allo-
cating the intersection to competing streams of
traffic at different times. In urban areas,
where the street network typically involves
many nearby signalized intersections, it is
obvious that some sort of coordination among
signals is necessary to prevent the signals
becoming a major impediment to the flow of
traffic through the network. The purpose of
this paper is to first describe a mathematical
model of traffic flow on an urban network.

The model is then used to derive signal control
and coordination algorithms. These algorithms
are traffic responsive in the sense that the
signal transitions are determined by the
signals from vehicle detectors located in the
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streets. Finally, although hierarchical in
form, the algorithms can be implemented in a
collection of microprocessors, each with
responsibility for a small subset of the
total network.

To understand the motivation for this re-
search it is necessary to briefly review the
current state-of-the-art of urban traffic
contrQl. Nowadays, it is quite common in
cities throughout the world for the coordi-
nation among traffic signals to be achieved
by means of a central digital computer which
controls the signals. With few exceptions,
the coordination, or timing pattern, is based
entirely on the time of day and on historical
data. In most of the exceptions, the data
from vehicle detectors is only used by the
computer to determine which previously
computed timing pattern to use.

Attempts to construct more directly traffic
responsive network coordination algorithms
have, until recently, been unsuccessful.
That is, when the traffic responsive control
was compared with a good open loop scheme
applied to the same network, the open loop
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scheme, produced better or equivalent perform-
ance (Tarnoff, 1979), (Holroyd, 1972).
Although it is certainly true that there are
problems associated with vehicle detectors,
the major problem has been the development of
effective traffic responsive control algorithms.
The model developed in this paper, besides
leading to what are believed to be effective
traffic responsive control algorithms, gives

a plausible explanation for the previous
failures.

Recently, two successful traffic responsive
network traffic controls have been reported.
One, called SCOOT (Robertson, 1979) has been
tested in Glasgow and reportedly produced
significant improvement over an optimized

open loop control. Since SCOOT is proprietary
very little is known about its operation. The
other, called SCAT (for Sydney Coordinated
Adaptive Traffic) reportedly produced 39%

and 35% improvement over optimized open loop
controls during the morning and evening peaks,
respectively (Sims, 1979). SCAT will be
discussed at somewhat greater length below
since it has had a strong influence on the
algorithms described in this paper.

The purpose of the research reported herein
was to (a) provide a theoretical framework in
which the above mentioned experience made
sense and (b) to develop effective traffic
responsive control algorithms. A mathematical
model which reasonably achieves the first
goal is described in the next section of this
paper. The third section describes several
algorithms for control at an isolated inter-
section and shows that these algorithms give
better performance than an optimal open loop
control. The fourth section describes a
traffic responsive algorithm for a one way
arterial and demonstrates that this algorithm
gives better performance than an optimized
open loop algorithm. It is also shown how
this algorithm lends itself to decomposition
of the arterial into sub-arterials. Then,
the extension of this algorithm to networks
is given. Finally, some conclusions and
suggestions for further research are given,

Mathematical Model

Many mathematical models have been developed

to describe the flow of traffic on an urban
network. The best known and most widely used
are the UTCS-1 Network Simulation Model
(Lieberman and colleagues, 1977) now called
NETSIM and the traffic flow models incorporated
in TRANSYT (Robertson, 1969) and SIGOP

(Anon., 1968). NETSIM is, however, too complex
to use for the analytical determination of
traffic responsive controls. SIGOP and

TRANSYT are widely used to determine optimal
open-loop controls and are very good at this,
But, they do not include vehicle detectors.
Thus, the first step in this research was to
develop a mathematical model for vehicle

flows on a network that would capture the
statistical relationship between vehicle

flows and detector signals and be reasonably
tractable.
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The model was partly determined by the initial
conjecture that a traffic responsive control
system needed to respond to detector data
with a minimal delay. This meant that long
time averages of detector data could not be
used. Since the detector data is a sequence
of 0's and 1's (1 if a vehicle is over the
detector at the sampling time and 0 otherwise)
this meant that the detector data had to be
treated as a point process (Snyder, 1975).

The other major determinant of the model was
that it is most common to treat urban traffic
networks as a form of "store and forward"
network. The basic notion is that traffic is
"stored" in the form of queues just upstream
from the traffic signals and is "forwarded"
in the form of platoons on the links. Both
TRANSYT and SIGOP, for example, are based

on this idea. Thus, the construction of the
model was begun by first developing mathe-
matical models for the relation between
queues and platoons and detector data.

Since these models applied primarily on
isolated links or intersections it was then
necessary to model the interrelation of

these links and intersections.

Thus, the network modelling problem was
broken into three components:
1. Model the queue on each arm of an
intersection.
2. Model the passage of each platoon over
each detector.
3. Model the coordination of the above
sub-models so as to determine overall
network behavior.

Queue Model

The queue model is described in great detail
in (Baras, Levine and Lin, 1979) and in

more detail in (Baras, Levine and colleagues,
1977). Thus, the model is only summarized
here.

The simplest practical queueing situation is
the intersection of two one-way single-lane
streets as illustrated in Fig. 1. Assume for
simplicity that the signal operates on a
known red-green cycle (no amber), and that
there is only one detector located N vehicle
lengths from the stop line. The observed
signal from the detector will be denoted by

na(t).

1 if a vehicle is over the detector

(1)

n®(t) =
0 otherwise

In practice, time is discretized with a small
enough discretization interval (1/32 second
in the UTCS in Washington) for each vehicle
to be over the detector for several samples.
For simplicity, it is assumed here that the
data are sampled so that each vehicle
produces exactly one pulse,
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Let
A(k,t) = Pr[na(t) = 1 given that there are k

vehicles in the queue and the time

is t] k=0,1,2,...,N (2)
z(t) = the number of vehicles in the queue at
time t (3)
Assume that

Ak, t) = A(t) = Aruu(t—r)+xg(1—uu(t—r));

(4)
k =0,1,2,...,N-1

A(N,£) = 0 (5)

1 if upstream traffic signal is

red
where u (t) =
u 0 if upstream traffic signal is

green

and 1 is the known average time for a
vehicle to get from the upstream stop
line to the detector.

It is important to understand the implications
of the above assumptions. First, when the
queue contains N vehicles, no more vehicles
can cross the detector which leads to Eq. (5).
0f course, in very heavy traffic flow conditions
the queue may very well exceed N by a substan-
tial amount. Although the model could be
extended to handle this case, this will not be
done here. This limits the validity of this
model to less than very heavy flow conditions.
It is believed that the moderate to light flow
conditions provide the most opportunity for
large improvement due to traffic responsive
control because in these flow conditions one
sees the largest amount of randomness. Heavy
flow conditions are relatively deterministic
and, therefore, relatively predictable and,
therefore, relatively open-loop controllable.

Secondly, it is assumed that the time required
for the lead vehicle in the queue to proceed

to the next detector is very predictable
(always t). This is a common and reasonable
assumption in moderate to light flow. Finally,
the two level approximation to the arrival rate
A given in Eq. (4) corresponds quite closely

to the similar assumption in SIGOP. It would
be reasonably easy to improve the approximation
in Eq. (4) by including the effects of traffic
signals further upstream. The result would

be very similar to the model in TRANSYT.

To complete the queueing model, imagine there
is a detector at the stop line producing an

. d
unobserved departure point process n (t).

1 if a vehicle departs at time t

al(e) =
0 otherwise
Let
u(k,t) = Pr[l vehicle departs given k vehicles
in queue at time t]
u(l—ui(t)) ;3 k>0
Hle,t) = o k=0
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1 if traffic signal at this
intersection is red in through
direction

(6)

0 if traffic signal at this
intersection is green in through
direction

where ui(t) =

This actually completes the model for queueing
at one arm of the intersection. To see this,
note that if the switch times of the traffic
signals are known
P_[z(t+1)=]3|z(t)=1]=

0 j<i-1, j>i+1

AL, E, O+(1-A(E,8)) (1-u(d,t)), i=j

A, ) (-ud, ), j=i41 (7
u(i,e) (1-A(4,t)), j=i-1
Ade) <N
P_[%(0)=1|z(t)=1i]= {o o (8)

The model can be placed in a more suggestive
form by defining

1 if there are k vehicles in the queue
at time t (9)

xk(t) =

0 otherwise
where k = Q, 1, 2, «.., N
It is then straightforward (Baras, Levine and
Lin, 1979a) to show that Egs. (7) and (8) are
equivalent to

x(t+1) = QT (£)x(t) + w(t)
T (10)
n®(t) = AT(e)x(e) + v(r)

where 27() = [A(£) A(t) ... A(t) 0]
ng(t)=Pr[z(t+l)=jlz(t)=i] (see Eq. (7))

and w(t) and v(t) are "noise" processes.
More precisely w(t) and v(t) are martingale
difference sequences with respect to the o-
algebra generated by the sequences

{n?@0), n?(1), ..., n%(t-1)} and

{x(0), x(1), ..., x(t)}.

It should be apparent from Eqs. (7) and (8)
that the model is a controlled Markov chain
with partially observable state. It is
straightforward to extend the model to com-
plicated intersections (including two way
intersections in which left turning vehicles
complicate the departure rate H), to inter-
sections with multiple detectors and to
utilize velocity data from detectors. Some
of this is reported in Baras, Levine and

Lin (1979a) and in Baras, Levine and col-
leagues (1977). It should also be noted
that the model depends on only three para-
meters and is relatively insensitive to the
values of Ar and A . The model is sensitive

to the value of u. The parameter p is an
important parameter in most traffic flow
models but is usually called the saturation
flow by traffic engineers. Methods to



452 J. S. Baras and W. S. Levine

adaptively estimate 1y are currently under
investigation. They are based on the use of
the platoon model described below.

Platoon Model

The platoon passage model can be described in
terms of the simple situation illustrated in
Fig. 1. Suppose that, some short time previ-
ously, the signal just upstream of the figure
has turned green. This releases the queue

at the signal which then flows, as a platoon,
over the detector in Fig. 1. It is assumed
that the arrival of the lead vehicle in the
platoon is easily predictable and that the
fundamental problem is to estimate the pas-
sage of the last vehicle in the platoon.
While the platoon is crossing the detector,
it is assumed that time headways between
successive vehicles (time between successive

1's of na(t)) satisfy a lognormal distribution
2
(th—a)
h>0

202 -

1
ohv/2m  ©*P

P.(h) =
0 , h<O

Once the platoon has past, it is assumed
that traffic is free~-flowing and satisfies a
displaced exponential distribution.

B exp (~(h-1)B) , h > 1
(h) =

P

nf 0 , <1
It is also assumed that successive headways
are independent. Thus, headway statistics at
the detector are completely described by the
probability density of headway

p(h) = y(t) pf(h) + (1-y(t)) Py g (h)

where y(t) denotes the switch from following to
non-following headways and is determined by
the upstream traffic signal.

Although this has been done very briefly, this
virtually completes the formulation of the
platoon passage model. The piece of the
platoon flow model that is not given above is
the initialization of the model which is
determined by the upstream queue estimate.
The model is completely described in Baras,
Dorsey and Levine (1979b) as well as Baras,
Levine and colleagues (1977). It should be
noted that the model is closely related to
various other models of platoon flow (see
references cited for details).

Coordination

Although the queueing model described above
applies only to a single arm of a single inter-
section, it already contains the basis for
combining these single intersection models

into a network model. Clearly, the queue

model is coupled to its nearest upstream
neighbor by means of A(t) and, therefore,

A(t) contains the network coordination (see

Eq. (4)), Thus, assume that
(1) the network consists entirely of one
way streets with signals at every
intersection,
(2) there is a detector Ni vehicle lengths

from the stopline on every link,
i=1,2, ..., 1,
(3) A, and Agi are known for every link

ri
i=1,2, ..., 1.
Then, once the traffic signal values,

uj(t), i=1.2, ..., J (uj(t) = 0 if signal

is green and 1 if it is red) are known the
network coordination is completely specified
by the Ai(t) 1=1,2, ..., I for every link

with

Ai(t) = Ariuji(t—ri) + Agi[l—uji(t—ri)]

i=1,2, ..., 1 (11)

1 if traffic signal at inlet

where u,i(t) _ to link i is red
J 0 if traffic signal at inlet
. to link i is green.

T, = average time required for a vehicle to
get from the inlet to link i to the
detector on link i

Ari and Agi are related to the departure
rates at the upstream intersection and

the percentage of turning traffic,

Several observations are in order concerning
this model of network coordination. First,
this model of network coordination corresponds
approximately to the models used in SIGOP
and TRANSYT. Consider a more detailed
comparison to TRANSYT. TRANSYT is based on
the following assumptions:
(1) All traffic signals are periodic with
the same period (called the cycle), T.
(2) The arrival flow at the inlets to the
network (see Fig. 2) has exponentially
distributed inter-arrival times with
constant A. That is, Ai(t) = Ai for

all inlet links.
Each cycle is then divided into fifty sub-
intervals. Then, if the traffic signals are
specified (uj(t) specified j = 1,2,...,J,

all t) it is straighforward to calculate
Ai(t) for every link 1 = 1,2,...,I. The

result will be a picture similar to Fig. 3
for a typical Ai(t). In fact, TRANSYT

includes several other more sophisticated
features including a platoon dispersion
model. The essential point to be made here
is that Eq. (l1) can be viewed as a fairly
simple approximation to the above described

aspects of TRANSYT and that the Xri and Agi

should be computed as in TRANSYT. Thus, one
sensible view of the proposed model is that
it is an approximation to TRANSYT or SIGOP
with a very detailed queueing model super-—
imposed at each intersection.
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secondly, notice that conservation of vehicles
js only satisfied on the average (the A's
satisfy conservation of vehicles if computed

as described above but they are only averages).
This is reasonable in urban networks where
parking causes vehicles to enter and exit the
system or equivalently to vanish and reappear
at random. Similarly, the correlation between
adjacent queues has been ignored in the above
model since Ai(t) contains no information about

the upstream queue. This could be fixed, at
the expense of greater complexity, in several
ways. The easiest is probably to use a

TRANSYT approximation to Xi(t) (fifty values

per cycle). Better, but much more complex,
would be to let

= - +(1~ -
xi(kr,kg,t) pou (k=T )+l pg)ug(kg,t T,)
(12)
number of vehicles in through
queue and perpendicular queue

respectively at time t
P_>P_ = probability a wvehicle does not

where k ,k =
r g

rg turn from through and perpen-
dicular queues respectively
T = as before,

Clearly, this is hopelessly complicated and so
is abandoned. A third option would be to
utilize the platoon passage model developed
above to model the network coordination. This
would also be quite complicated and so one is

left with the relatively simple model in Eq. (11).

Third, the above model appears to capture the
essential difficulty in designing traffic
responsive controls for grid networks. That is,
the "downstream" demands and, therefore, the
"downstream" controls are highly correlated to
the "upstream” signal. However, this corre-
lation occurs with a delay corresponding to
the possibly large travel time between the two
intersections. For example, in Fig. 2, the
controls at node 8 and node 1 will be dominant
factors in determining the optimal control at
node 2. Thus, calculation of the optimal
control at node 8 requires accurate prediction
of the demand that will occur at node 2 a
total of at least (T,_+t_.) time units into the
future. To further complicate matters, in a
true grid network, there is flow in both
directions so "upstream" and "downstream"

are ambiguous designations. To take an
eéxtreme example, in Fig. 2, node 8 is "down-
stream" from node 2 via the path traversing
links 15-10-18-19-3-22. The point is that the
tight, but delayed, coupling between inter-
section controls creates a difficult control
problem, Furthermore, the more complex and
accurate models discussed above intensify

this coupling.

Fourth, the model suggests an obvious method
for decomposing a large network into sub-
networks. Any links for which Ai(t)= A\ a

constant, can be cut without loss of infor-
mation. Such a link can be regarded as an
output link for one subnetwork and an input
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link for another subnetwork. This rule of
thumb is in fact used by the developers of
TRANSYT to decompose traffic networks
(private communication from P. Hunt of TRRL,
1979).

Fifth, and finally, the initial assumptions
can now be seen to be not restrictive. Two
way streets can be modelled as two one-way
streets. Intersections that do not have
signals simply change Ari and Agi in Eq, (11).

Missing detectors result in the queue on
that link being dropped from the model. Note
that this is important because detector
reliability is something of a problem. And,
finally, xri and Agi can be computed from

knowledge of impact flows to the network and
saturation flows in the network, data that is
also used by TRANSYT or SIGOP.

Although the equations will not be written
out explicitly, the model developed above is
clearly just a controlled Markov chain with
partially observable states. Of course, the
chain has a huge number of states so it is
impractical to attempt to compute an optimal
control. The following sections of this
paper develop sensible sub-optimal controls.

CONTROL OF ISOLATED INTERSECTIONS

There are two reasons to begin the discussion
of controls for networks by examining the
degenerate case of a single isolated inter-
section. First, the structure and solution
of the isolated intersection problem is a
valuable guide to the solution of the network
problem, In fact, the solution given here
for the network problem is an extension of
the solution for the isolated intersection.
Second, in practice there are a significant
number of intersections that can be, and are,
controlled in isolation.

Thus, consider the isolated intersection of
two one way streets. Assume each arm of the
intersection contains a detector located as
in Fig., 1. Let zl(t) (4 = 1,2) denote the

number of vehicles in the queue on arm % of
the intersection at time t and let ni(t)

denote the corresponding detector signal.,
The model contained in Egqs. (7) and (8) then
applies to each arm of the intersection
independently provided that the control
signal u(t) (see Eq. (6)) is known. Unfortu—
nately, if a traffic responsive, or equiv~
alently, a feedback control is used the
queues and detector signals on the two arms
of the intersection become statistically
dependent.

This statistical dependence means that, in
fact, it is impossible to separate the
problems of estimating the state (the size
of both queues) and determining the controls.
That is, the separation principle does not
apply. However, because of the inherent
advantages in separation, the separation of
state estimation and control will be imposed
subsequently by limiting the class of



454

admissible controls. Once this separation is
imposed, one can write the dynamics of the
intersection as

x, (641) = Q) (e,u(e))x, (6) + w, (£)

L =1,2 (13)

a T
ne(e) = A (£)x, (£) + v, ()

Although many measures of performance are

used in urban traffic control, the aggregate
delay is almost always considered important.
In practice, the traffic signal is not allowed
to switch too often because (1) there is
usually a minimum allowable green time for
each arm of the intersection and (2) each
transition introduces some additional delay.
Thus, it is reasonable to attempt to minimize
the performance criterion below

t
_oref T T 2
J = E{E=1 Cix; (£)+C %, (£)+C4 (Au(e)) ™} (14)

+1 when the signal facing arm 1

where Au(t) = changes from red to green

-1 when the signal facing arm 1
changes from green to red.

and gl and §2

direction to be given priority over the
other while C3 penalizes too many switches,

Finally, the set of admissable controls will
be limited to those control laws which depend
only on the optimal estimate of the state
based on the model in Eq. (13) and the
observations nz(t), 2 = 1,2, The minimum

are weights which allow one

error variance estimate of ﬁk(t) given
n2(0), np(1), «e s nz(:-n,‘which will be

t-1), has been derived in

denoted by_é (t

(Baras, Levine and Lin, 1979a) and in (Baras,
Levine and colleagues, 197%), The derivations,
explicit algorithms which can be realized in
a microprocessor and test results are given
in the above references and so, will not be
given here. Here, it is sufficient to
indicate that

& (t+1]e) = £, (c,x (e]e-1), nf(e), u(e)) (15)

where £2 is a known function given

explicitly in the above cited references.
Thus, Eq. (15) replaces Eq. (13) as the
mathematical description of the dynamics for
the control problem. And, the admissible
controls become

Bu(t) = glx, (t]t-1), x,(t]t-1),t) (16)

where g(*,*,*) is an arbitrary function.
1,2)
in Eq. (l4) results in a well defined

stochastic optimal control problem with
dynamics given by Eq. (15), control by

Replacing El(t) by il(tlt’l) & =

J. S. Baras and W. S. Levine

Eq. (16) and performance given by Eq. (l4).
This problem can be solved, in principle, by
dynamic programming but such a solution
could not be implemented in practice.
although research is continuing on this
problem, at present it is not feasible to use
the truly optimal control even for the
isolated intersection, much less for the
network.

Thus,

Instead, several sub-optimal controls were
developed. The basic idea behind the devel-
opment of these sub-optimal controls was to
use the above-mentioned X, (t|t-1) as the
queue estimates in control algorithms that
had been previously developed by traffic
engineers, Two such control algorithms were
used, The first is a fairly standard control
algorithm that was previously analyzed
approximately by Darroch, Newell and Morris
(1964). The algorithm is described by
assuming that the light has just turned from
red to green on arm one. The light is kept
green for long enough to empty the current
queue and then remains green as long as the
interarrival time between subsequent vehicles
does not exceed a value B,. In practice,
there is a maximum allowa%le green time as
well. The second is an improved version of
this algorithm developed by Michalopoulos
and Stephanopoulos (1979). Both obviously
require effective queue estimates.

The performance of both of these suboptimal
control algorithms was evaluated by means

of the UTCS~1 network simulation (Lieberman
and colleagues, 1977). A single intersection
was simulated, A standard open-loop control
procedure, due to Webster (1958), was used

as a benchmark. The results are summarized
in tables 1 and 2 below.

TABLE 1 Results of Single Intersection
Control Tests for Heavy Traffic
on Both Arms of the Intersection

Average  Average Stops Per
Speed Delay Per Vehicle
(mi/hr) Vehicle
(secs)
benchmark 14 42.4 .84
M, + S. 15.5 36.6 .65
D,N. + M. 17 32 .67
TABLE 2 Results of Single Intersection
Control Tests for Moderate
Traffic on One Arm and Light
Traffic on the Other
Average  Average Stops Per
Speed Delay Per Vehicle
(mi/hr) Vehicle
(secs)
benchmark 24.6 15.3 43
M. + S. 29.3 10.3 .13
D.N. + M. 30.3 9.3 .06
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These tests will be reported in more detail
in Baras, Levine and colleagues (1979c).
However, the salient point here is that,
using estimators based on the model described
in this paper, these control algorithms made
significant improvements over an excellent
open loop control. This provides validation
for the model as well as suggesting effective
sub—optimal controls for the network case.

CONTROL OF ONE WAY ARTERIALS

An arterial is simply an urban street,
complete with traffic signals, that carries

a relatively large volume of through traffic.
The interesting case is when the cross streets
intersecting such an arterial carry random
traffic. For example, consider the network

of Fig. 2 and imagine that traffic on all

the vertical links satisfies the condition
Ai(t)=ki. Then, for purposes of determining

traffic signal timings, the network can be
decomposed into three independent subnetworks.
Each of these subnetworks (the arterial
consisting of links 1,2,3 and 4 with their
associated cross streets, for example) can be
regarded as a one way arterial with random
cross traffic.

Such one way arterials occur quite frequently
in practice. Even two way arterials frequently
have much larger flow in one direction and so
can be treated as though they were one way.
Good open loop control schemes for these

one way arterials are known. The closed loop
control problem is considerably simpler than

it is for a more general network. The principle
reason for this is that the well defined
direction of flow allows control decisions to
be made sequentially in both time and space.

Since it is clearly impossible to compute the
optimal control based on the model developed
earlier in this paper the main effort has
been development of effective suboptimal
controls. The suboptimal control that was
developed is based on three ideas:

(1) Control the first upstream node of the
arterial as though it is an isolated
intersection,

Control the nominal coordination of the
downstream nodes in an open loop fashion
based entirely on the average time to
traverse the links,

Adjust the timing of the downstream
nodesl, within limits, according to the
local estimates of queues at the node.

(2)

(3)

To see the control scheme more clearly,
consider Fig. 4. Node 1 is the upstream

node and this intersection is controlled, as
though it is an isolated intersection, by
either of the two algorithms described in

the previous section. Suppose the transition
from red to green occurs on the light facing
link one at t = to. Suppose link two has
length 22 and mean free speed Voo Then, the
nominal switch time from red to green of the
signal at node two facing link two will be

w

(t0 + Zz/vz). In fact, this switch time

will be advanced slightly in practice to

take care of vehicles moving slightly faster
than the average and vehicles queued on

link two. This nominal "offset" is quite
good on the average. However, it does not
account for variations in the queues on links
two and nine. This variation can be
accurately estimated by means of the queue
estimator described earlier. Based on this
estimate, the nominal offset 22/\)2 is adjust-

ed by up to + o seconds. The opposite
transition, from green to red facing the
arterial, is determined by the isolated
intersection algorithm modified to insure
that the next red to green transition can
occur at the proper time. Obviously, the
same basic scheme, with proper choice of
offset, is used for the intersections
further downstream.

The above algorithm was tested by means of

the UTCS~1 simulation (Lieberman and
colleagues, 1977) on an arterial corresponding
to Fig. 4. As a benchmark, the well known
open loop procedure of Little, Martin and
Morgan (1964) was used. The results are

shown in Table 3 below.

TABLE 3 Tests of Arterial Control
Algorithm for Moderate Traffic
on the Arterial and Light
Crossing Traffic

Average  Stops/ Average
Speed Vehicle Delay Per
(mi/hr) Vehicle
(secs)
benchmark 17.4 .67 20.6
proposed 18.9 .62 16.2
control

The tests summarized above involved fairly
small amounts of turning traffic. It is
clear that large amounts of turning traffic
will cause substantial degradation in the
performance of the above algorithm. However,
if large amounts of turning traffic exist,
the arterial can be broken into sub-networks
each of which is controlled independently.
This idea can be explained more clearly by
considering the example tested. Consider
the arterial illustrated in Fig. 4 and the
simulation that resulted in Table 4.

Change the simulation so that about 30% of
all traffic at each intersection turnms.

This causes the volume of traffic on the
arterial to decrease as it moves downstream.
Three control algorithms were tested for
this case. First, the benchmark algorithm
was used. Second, the proposed algorithm
was used to control the full length of the
arterial. Third, the arterial was decomposed
into two sub-networks by cutting (for
control purposes only) link four. Nodes 1,
2 and 3 were controlled via the proposed
algorithm with node 1 as the upstream node.
Nodes 4 and 5 were controlled by the same
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basic algorithm independently from the rest of
the network. The results of the test are given
in Table 4.

TABLE 4 Tests of Arterial Comntrol
Algorithm for Significant Amounts
of Traffic Turning Off the Arterial

Average Stops Per Average
Speed Vehicle Delay Per
(mi/hr) Vehicle
(secs)
benchmark 17.3 .58 17.4
proposed 18.5 .56 14.1
control
one network
proposed 18.8 .45 13.4
control ’
two sub-
networks
Several comments are in order. First, the

algorithm proposed here, complete with
decomposing the network into subnetworks
whenever the average volume on adjacent
arterial links is substantially different, is
quite similar in spirit if not detail to

SCAT (Sims, 1979). The algorithm clearly
performs quite well in the tests described
here. In similar tests in which volume on
the arterial increased as the distance down-
stream increased (due to large amounts of traffic
turning into the zrterial) the benchmark

open loop algorithm gave the best performance.

The difficulty in making the proposed algorithm
work well when the largest demand occurs at

the downstream node illustrates the problem of
traffic responsive network control extremely
well. The volume of traffic at an intersection
basically determines the nominal period (cycle)
of the traffic signal at that intersectiom.

The heavier the volume the longer the period.
Any pair of intersections that are to be
coordinated must have the same nominal cycle.
Thus, only one node in a coordinated arterial
can be allowed to operate as an isolated
intersection. That one node should be the

one with heaviest volume and will be called
the leader node. When that node is downstream
from other nodes in the arterial, these
upstream nodes must predict the signal tran-
sition of the leader node so they can compute
their offsets. The required predictions

can be quite far into the future, on the order
of several cycles for a long arterial.

Based on the model described in this paper

the optimal, in the minimum error variance
sense, predictors of the signal transitions

of the leader node are known. And, the optimal
prediction for any time greater than one

cycle depends only on the average volumes, the
known nominal offsets and the traffic signal
settings. Thus, the detector data is not
useful for prediction times longer than one
cycle and so one might as well use open loop
prediction. Of course, one might object

that the model described here is over simplified
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and ignores the coupling between queues and
"nearby" detector data. However, the
estimators based on this simplified model
have been tested and work quite well. The
implication is that a more elaborate model
will not produce significant improvement in
prediction accuracy.

This suggests that the best traffic responsive
control procedure when the leader node on an
arterial is downstream would be the following:
(1) Determine the nominal cycle and split
(percentage of green allocated to
arterial) at the leader node by
Webster'ts Method (1958), the
benchmark for the isolated intersection.
The nominal offsets are determined, as
before, from the mean free speed and
length of the links.
The nominal signal transitions are
adjusted, based on the optimal queue
estimates, by an amount no greater
than + o seconds. This local adjust-
ment is carried out in isolation from
the rest of the network,

(2)

(3)

The above control algorithm is a form of open
loop local feedback optimal (OLLFO) control
scheme and will be referred to as the OLLFO
control. It will be discussed in greater
detail in the next section.

CONTROL OF GRID NETWORKS

The general grid network presents a much more
difficult coordination problem than the
arterial because there is no unambiguous
definition of “upstream" and "downstream'.
However, the OLLFO scheme proposed in the
previous section is certainly applicable to
the general network, In fact, a related

idea was tried as part of the UTCS experiment
in Washington, D.C. (Tarnoff, 1975). The

idea was called, Critical Intersection
Control (C,I,C,) and was basically to (a) use
an essentially open loop control for the
network as a whole and (b) to make "small"
adjustments based on local detector data

at a few "critical intersections. The
conclusion drawn from the tests was that
C.I.C. did not produce significant improvement.

There are two major differences between
C.I.C, and the OLLFO algorithm proposed here.
First, the local feedback control algorithm
proposed here is based on much better
estimates of the queue at the local inter-

section, Second, the local feedback control
would be applied at most, if not all, inter-
sections, If this is not done one would

expect much of the gain from C.I.C. at one
intersection to be nullified at nearby
intersections,

The local feedback optimal control proposed
here is based on solving a slightly modified
version of the isolated intersection problem
defined by Egs. (14), (15) and (16).

However, the performance criterion would be
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t0+c T _—
Jppo = B E=to_° C, X (ele-1) + ¢ x, (efe-1))
(17)
where t, is the nominal switching time

0

40 is the maximum allowable change
from the nominal switching time.

For reasonable values of o, say +5 seconds,
this optimal control problem, or a close
approximation, should be solveable.

Clearly, the best that one can expect from
such limited local feedback control is that
one or two more vehicles per lane can be
squeezed through the intersection without
delay. Even in heavy traffic this would
represent a potential 5-107Z improvement over
open loop control. Since the real advantage
to feedback control is believed to occur in
moderate and light traffic this is believed
to be a significant potential improvement.

CONCLUSIONS

The proposed network control algorithm has
not been tested on a grid network, The tests
of a version of the algorithm were, however,
successful on a simulated arterial. Thus,
the proposed algorithm is believed to be
practically promising. Similarly, the
proposed model for traffic flow on an urban
network seems to capture many of the special
features of urban traffic flow that have
been observed in practice. Thus, the model
is believed to have potential use in the
theoretical investigation of algorithms for
traffic control.

At present, urban traffic control systems
are believed to be a fruitful subject for
research. The typical urban network is
clearly a large scale system problem with a
rich sturcture. There is some evidence

that the practice, in the form of SCAT and
SCOOT, may now be leading the theory. Thus,
additional theoretical work is indicated.
Our group is currently investigating a number
of theoretical aspects of the problem
including (a) the establishment of good per-
formance estimates for the OLLFO algorithm,
(b) methods for adaptively improving the
estimates of Ari and Xgi on the network and

(c) the establishment of good bounds on the
degradation in performance due to decompo-
sition of a network into subnetworks.
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Fig. 1 Detector location on one arm of an intersection.
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Fig. 2 Example of a one-way grid network Links 1,9,13,21,5,17
are inlet links. Links 8,16,24,12,4,20 are outlet links
I=24, J=209.
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Fig. 3 Typical plot of Xi(t) vs. t for

one cycle.
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Fig. 4 Example of a one-way arterial.



