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Abstract

We analyze certain contrPllability proper=-
ties of systems of the type

P
00 () Tu s,

i=1

)x(t)+ Cx(t=T)

where x(t)€ IRn, u,i=1,...p are scalar func-
tions, measurable and bounded on finite inter-
vals, and A, B,,C, i=l,.. .p are nxn matrices.
In particular we derive criteria for local acces-
sibility, and a '"band-bang' theorem for these
systems. These results géneralize those
existing for bilinear systems without delays

and for linear delay-differential systems.

1. Introduction

In the last few years the class of finite
dimensional bilinear systems has been the sub-
ject of intense study by various investigators
[1] - [4]. Bilinear systems being the simplest
type of nonlinear systems, with a rich structure,
provide insight for the analysis of more complex
nonlinear systems. On the other hand delay-
differential systems have been heavily studied,
due to the importance of delays in practical
applications [5] -[8]. The theory of linear
delay-differential systems has reached a certain
degree of completeness to date.

There are however many problems where
the dynamics depict both bilinearity (due mainly
to variable structure) and hereditary behavior.
Here are some representative examples:

Example 1: The prime elements of inte-
grated circuits are resistors, capacitors,
transistors (TFT, MOS, FET, MOSFET) and
RC lines, while one of the most important
generating element is the operational amplifier
(11, pp. 8-34]. It is well known (1, p. 13]
that MOS transistors can be used as voltage-
controlled resistors when operated in the region
below pinch-off (i.e. with drain to source
voltage V4 <V_ where V_ is the pinch-off
voltage), and that the drain to source conduc-
tance is approximately given by [12, p. 229]

26

20742

g4 M(Vg Vp)

where M is a constant depending on the particu-
lar transistor. We consider the following net-
work, which consists of an integrated network

coupled with a delay line:

unit
delay
line
R=1

VAL

)
A

+
=

The equations for this network are:

x| = - M(Vl(t) - Vp)x (t)

2

p) xl(t) - X,

or
x. (t) 0 If{x(t) 0 1|f%(t)
d "1, 7 omve M :J
=3 e R I
0 0] [x(t) 0 0] [, (t-1)
"MV, x, 0] 7 [0 1] [xye-n) -

xz(t) =- M(Vz(t) -V (t-1)

Example 2: A widely studied class of
systems is the linear delay differential systems:
d =
= x(t) = Ax(t) + Dx(t-T )+ Bu(t)

y(t) = Cx(t)

where x(t)e ]Rn, u(t)e Rp, y(t)e ]Rm.

A usual control law.is that of time varying out-
put feedback u(t) = K(t)y(t). Then the original
system becomes

%tx(t) = Ax(t)+ BK(t)Cx(t)+ Dx(t-T) =
P, m
=TAx(t)+ L

K,.(t)BE_ Cx(t)+ Dx(t-7)
i=1,j=1 ]

1]



where E,. 15 8 pxm matrix with the only non
zero elerhent being the ijth one, which is 1.

Example 3: This example originates from
the theory of slowing down of neutrons [13].
Consider a2 homogeneous medium of infinite
extension in which,per second,Q neutrons of
energy Eq are produced. The energy is changed
by collisions and we want to calculate the sta-
d,onary energy distribution p (x) where x=EO/E.
A related quantity is the average number of
collisions a neutron experiences in the interval
hetween x and x+ dx, K(x), where with no

capture
o(x) i:—= Q[L(v)/v] K(x)dx/x

with Z(v)=mean free path for scattering and
v=velocity. Let k(x,x") .d_;‘. denote the proba-

bility that a neutron shall be in the inte rval dx
after one collision, if its energy before the
collision was Eo/x’. This function will depend
on the interaction and on the material which
causes the slowing down. For example [13,

p. 428] if the medium contains nuclei of dif-
ferent atomic weights Ms the energy distribu-

tion 2fter one collision,)is determined by:
r 1 (x

where pu(u)=1 for u<l and 0 for u >}, and

oo Mk’
s(xl
of nuclei of type s, since £ is the total mean

free path while Z5 the mean free path for

is a measure of concentration

scattering a.tza nucleus of type s. Moreover
) Mg-1
| (Ms+ l> . Letting y=1m x after some

calculations we derive the equation

Y
K(y)=l+§f u (o) K(o)dao

Y‘Ts
wh = P
ere us(o)'l'f;s Cglo)and 7= -],nps or
dK(y) _ -
dy s UM K(y)-u_(y-7 ) Kly-T)

We can control the siowing down by choosing the
concentration of the various types of nuclei and
hence the functions u. Similar equations can

be derived for slowing with capture [13].
The purpose of this paper, is to present
several initial results about bilinear delay-

di..fferential systems. For simplicity of expo-
sition we chose to consider only systems of the
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simple type

dx(t) _ P 1)
at (A+ iz-l\li(t)Bi)x(t)-}- Cx(t-7)

where x(t)e ]Rn, u.(+) are scalar functions (the
controls) measurable and bounded on finite
intervals and A, Bi’ C are nxn matrices. How-
ever, all the results reported here extend to
multiple delays and more complicated heredi-
tary behavior. These will be presented in sub-
sequent papers. We are mainly going to inves-
tigate properties of the reachable sets, controll-
ability and accessibility properties and "'bang-
bang! theory for this class of systems.

2. Dynamical characteristics of

bilinear delay-differential systems

Let 2 denote the set of admissible
controls, which in our case are lRp-valued
functions, which are bounded and measurable
on every finite time interval. Following a
method similar to that used in [ 5] or [ 9] it is
easy to see that for this class of controls the
bilinear delay differential system (1) has a
unique absolutely continuous solutionon| tO’ ©)
given an initial function ®eC([ty-T7, to] ;R™)
(the space of continuous RP-valued functions on
[tO-T, to] ). We let u denote the column vector
with components u, , i=]l,...p and x(t;to, ®,u)
the trajectory of (1) for t>t,, using controls u
and which satisfies x(8)= ®»(8) for ee[to—T, to]
and e C{([ tg-T» to] ;IRn). The trajectory is
described explicitely by [ 9, ltO]:
x(tity, @, WEK(E, t)0 (g |

%o

K(t, s+ T;u)Cwp{s)ds
-T (2)

where the nxn matrix valued function K(t, s;u)
is defined on [t,~T,t] x[t,,t] as the unique
solution of the differential equation
3 ‘ P
-a—tK(t, s;u)=(A+ Zui(t)Bi)K(t, s:;u)+CK(t-T, s;u)
=1
' fort2s

(3)

K(t,s)=1, for t=s

K(t,s)=0, fort.,-T=t<s

0

Note that over one delay interval t-T<s=t
the first of (3) reduces to the fundamental ma-
trix equation of a linear timevarying system
since K(t-T, s;u)=0 then.

Definition: The matrix K(t, s;u) defined
above will be called the fundamental matrix of
the bilinear delay-differential system (1)




corresponding to controls Wy..ou .
P
The natural state space for (1) is a subset

of C([-T,0];R"), and we will denote as usual
[5] by

x (8)=x(t+ 8); 8¢[-7,0]

¢ (4)

the state of the bilinear delay-differential
system (1) at time t, whenever x(t) describes a
euclidean trajectory of (1). Since we are pri-
marily interested in controllability properties
some related notational conventions and
definitions are in order, ’

The reachable set in ]Rn from initial condi-
tion @, at time t >0 will be denoted by R(t, ®),
and it is the set of all ye IRn such that x(t;0,0, u)
= y for some admissible control u. The reach-
able set in R® from initial condition ®, in time
t >0 will be denoted by IR(t, ®) and it is the set
R(t, tg)'—' U R(s,®). The reachable set in RE

<s=<t

from initial condition % will be denoted by IR(»)
and is the set R(0w)= U R(t,®). We have simi-
t20

lar notions for function Space reachability. For
ease of notation we let € denote C {-70;R™)
and @G 1 denote Cl[[ -T,O];IRn}. Then the reach-
able setin C * from initial condition ©, at

time t>0, will be denoted by RC (t, 0), and it is
the set of all Ae( * s.t. M8)=x,(6), 6¢[ -1, 0]
for some admissible control u. Similarly the
reachable set in C 1 from initial condition ©, in

- > . - '
time t>0, is the set IRC(t,Cp)OSgStRC(s, ®) and

the reachable set in L from initial condition o,
is the set IRC(Cp) =th IRc(t, o).

We have now the following set of definitions
(see also [2]):

Definition 1: Let ) (*)=x(-;0, 0,u) be a trajectory
of the system. The system has the local
accessibility property along A, in IRﬂ, at time

t; if there exists an ]Rn-neighborhood of

x(LL;O, @ u) which is included in R(tl’ ®).

Definition 2: Let A\ as above. The system has
the local accessibility property along ), in
function space, at time t, if there exists a C -
neighborhood of xtl WhicIl'x is included in RC(tl,Cp).
Definition 3: The system is euclidean controll-
able (resp. at time t, in time tl) from initial

condition ¢ if R(p)= R" (resp. R(tl, co)=]Rn,
R(t, o)=R").

Definition 4: The System is function space
controllable to a subspace HC @ 1 (resp. at
time t in time tl) from initial condition  if

c C
HS R (o) (resp. HS R(t,0), HS R (t), o).

Definition 5: The system is completely euclid-
ean controllable (at time t,, in time t ) if it is
euclidean controllable (at time tl’ in time t,}
from every initial condition o,

Definition 6: The system is completely functiorn
Space controllable to the subspace HC C7 (at
time t;, in time t)) if it is function space contro’

lable to H (at time t;, in time tl) from every
initial condition .

Definition 7: The System has the euclidean
accessibility property from ©{resp, the
accessibility property in function space from o)

if R(®) (resp. IRC(CD)) has non empty interior
: n .
in IR" (resp. inC ).

Definition 8: The system has the euclidean
accessibility property (resp. the accessibility
broperty in function space) if it has the euclid-
€an accessibility property (resp. the accessi-
bility property in function space) from every
initial condition ©.

Definition 9: If we replace IR(®) (resp. IR.C((p))
with R(t, @) (resp. Rc(t, ¢) for some t>0 in
Definitions 7 and 8 we have the strong euclidean
accessibility property (resp. strong accessi-
bility property in function space) from initial
condition ©., Similarly for every o.

It is a consequence of the definitions given, that
the system has the strong euclidean accesi-
bility property (resp. strong accessibility
property in function space) from initial condi-
tion © if and only if it has the local euclidean
accessibility property (resp. in function space)
along all trajectories emanating from ¢ at
some time t>0, the same for all trajectories,
It may help to note that whether we are in R® or
in function space if the system has the local
accessibility property along some trajectory at
some time tl’ it certainly has the local accesi-
bility along the same trajectory at any time

ty 2 t. So conditions guaranteeing local acces-
sibility a long all trajectories imply strong
accessibility. Local accessibility is very
strongly related to controllability of linearized
equations. Notice that controllability implies
accessibility,

3. Euclidean Accessibility Properties

Consider the general nonlinear differential
delay system

x(t) = £(t, x(t), x(t-7), u(t) ) (5)



wnere x(t )eIR (t:)e:IRp f is continuously

di? ;ferentiable in all arguments and £(t, 0,0,0)=0.
e first show that local euclidean accessibility
of (3)1is implied by controllability of the lin-

earized system about the trajectory x (t) =

x(t; 0, % O)
y=A Dy Cle)y(t-T)F B(t)ult)

where
3 ,
A= o (g, x(t), x(t-7), u(t) )]xo, ug
2 Y (7)
Ciy== £(t, x(t),x(t-T), u(t)) |
X _ . xo,uo

B(t) = = £(t, x(6), x(t=T), u(®) )]

0’ %o
26 and x_o(t)=
is a variation of that used previously by Weiss
[o].

Theorem l: Suppose that system (6) is com-~
oletely euclidean controllable at time t,. Then

the nonlinear delay differential system (5) has
the local euclidean accessibility property along

where uoe x{t-T). The method

xo at tl.

Proof: We let

z(t)=x(t)-x0(t)=-x jf(G x(9),x(c-T)u(odo
(8)

and introduce a parameter £¢ R™ in (8) via

u:’ (t)=u0(t)+BT(t)KT(tl, t)§; 0= tst1

where K{t, s) is the fundamental matrix of (6).
Then let the solution of (8) due to control ug(t)

be z(t'O £) and define
J(t)= 0, .
| $Zwo,¢ )]§=O (10)
Then since z(t;0, 0)=0 and ﬁo(t)=u0( ) we have
from (8)
g
J(t)= J[A o)+ C(0)J(0 - T)+B(o)auag(c)]dc (11)
£=0
So J(t)=A(t)J’(t)+C(t)J(t-T )+B(t)BT(t)KT(t1, t) and

since J(G) 0 for 6€{-T,0] we have
r l
l) J K(tl,c)B

and from the complete euclidean controllability
assumption we have [6]:

(o )Bj(“c)KT(tl, oydo

det J(t,)# 0 (12)

l)
Consider now the map

2R R™+ R?
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B(E, y) =xit;;0, 0,07 -y

Then clearly g(0, x(t;0, ®, u’) )=g(0, x,(t;) )=0

and the Jacobian with respect to § is of full

rank (12). Then by the implicit function theo-

rem there exists an open neighborhood N0 of

x (t,) in ]Rn,

hgotg of x (t
01

tinuous map m:N-=R" such that g((y), y) =0 for
all yeN. But this is precisely the statement of
local euclidean accessibility along x, at t;.

such that for every open neighbor-
), N< NO there exists a unique con-

Certainly theorem 1 applies to bilinear
delay differential systems. We next utilize it
to obtain local euclidean accessibility criteria

for (1). Let us denote
A A
B_(t)=[ Byx(t);B,x(t);. . .;Bpx(t)] (13)

Then (1) becomes

ot

%-x(t)=Ax(t)+ éx(t)u(t)-*' Cx{t-T) and therefore

l[Ax(t)ﬂ?_’a (t)u(t)-i-CX(t-T)]] =A+E u, (t)BA

ox X %4, U j=1 10 ) =)
LA

2 [Ax(t)+% (t)u(t)+Cx(t-T)]] =C

ox_ . X X.,u
0’0

b} ~ ~

[ Ax(t+B_(thu(t)+C x(t-‘T‘)]] =B_ (t)

u x x ,u. %g J
0’70

So the linearized system 1is

gdé—-x( t) = (t)x( )+Cx(t- T)+B§f yu(t) (15)

Theorem 2: Let xo(t)=x(t;0, ©,

tory of (1), Let

uo) be a trajec-

Pl(t) = - A(t)PO(t)+ Po(t)

P ()= AP, (P (0)
Q(t; x4, k)= =Pl P (t)iee. Py (¢ t)]

Suppose there exist t1> T and an integer k> 0
such that the derivatives needed in the definition

of Q . exist and are continuous and rank
QC(tl’x ,k)=n. Then the bilinear delay differ-
erntial system (1) has the local euclidean acces-

sibility property along X5 at 'c1 .



Proof: Observe that the fundamental matrix of
the linearized system (15) Kz(t, s} is identical to
the fundamental matrix of the bilinear system
(1) corresponding to controls Uy, K(t, s;uo).
Notice also that the derivatives needed in the
hypothesis will exist and be continuous if the
controls u;4, i=1,...p and the initial condition
¢® have k-2 continuous derivatives, or if the
time tl> (k-1)T). Then proceeding in 2 manner
first used by Buckalo [14] for linear delay sys-
tems we show that the hypothesis of the theorem

I (e, 0)B, (0B, O,
t o)B o

£ 1
o o
Because if not, there exits Ne ]Rn, n¥o0

such that

irnply that rank o)B, tl,c)dc

ll

=n,

T]TK (t., G)ﬁ ()= 0 foroe[0,t,] andso
471 x 1
0

T A _

n Kz(tl, o) BXO(U) =0 foro e[tl—'l', tl] (16)
Differentiating (16) we have

T2 .
0=n"[ = %, (1), B, (01K cr)_]
= nT[-KE(tl'O)A(O)BXO(OH Kﬁ(tl'O)on(o) _]=
= T[K (t,,0) P{( 1
=T K yltp0) Prla) |
Similarly 0= n'[K, (t,,0) m(o)], m=0,1,... k-1
for ce[tl-’r, tl]. Therefore 0= T] K(t o) C(G;XO’k)’
oef tl-'r, tl] and so rank QC(’c1 Xg ,k)¥n, which is

a contradiction to the hyp%thesm. Then since

t - .
rank | LK, (1,00 By (0B (9K, (1),0)= B implies

complete euclidean controllability at tl of the

linearized system (15) [ 6], the result follows

from Theorem l.

The following theorem is an improvement

of Theorem 2, and utilizes a result of Weiss [15].

Theorem 3: Let x (t
£ ().

Define the matr1ces Q. J(t) via the

equations
o ~
Qo(t)=Bx0(t)

Qlw=0"ty-Awina ty-ca, i
i i i-1

1

i=1,...m, j=i,..., k-1
and Q.1J=O for i<0ori>j. Let
0 k- 1 -
Q=(a),...Q 19,0,(t-1,...2 e, ...
..Q;'l(t-m uby

x(t;0, @, uo) be a trajectory

30

Suppose there exist integer k>0 and time t €
[mT, (m+1)T) such that all the derivatives need-
ed in the formation of Q exist and are continu-
ous and rank Q(t,)=n. Then the bilinear delay-
differential system (1) has the local euclidean
accessibility property along Xy at t).

Proof: We follow Weiss [15], and show that the
hypothesis imply that rank

1 ~ ~T
I Kz(tl,cr)BX (o)BX (0 Kz(tl ogydo =n,
0 0 0

For if not, then there exists ne ]Rn, n#¥ 0 such

that
T A -
N K,{t,0)B_(0)=0; de[0,t] (17)
FARS x,
Or equivalently (17) holds for Oe[tl-(i+l)'1', tl-i'T]
i=0,1,...m-1 and for GS[O,tl—mT] Leti=0

and differentiate (17) repeatedly to obtain

T aPo)=0; =
K, (tl, 0)Q (cr)— 0; gelt -T,tl], p=0,1, ... k-1L.
Therefore n QP( £)=0; p=0,1, ... k-1 (18)
T (b t.-T)Q (t. =)= 0; p=0,1, k=1 (19
nK (T Qe mT= 0 pR0 L e ke
Let i=1 and differentiate (17) repeatedly to
obtain
T P P P
ﬂ [Kz‘(tl,O)Qo( ) z(t1;0+T)Ql(o)+Kﬂ(t1)o+2Tm2(o)]_o
for ce[tl-ZT’ tl-T], p=0,1,...k-1. Therefore
TWTQ?(tl-T)=O; p=l,...k-1 (20)

and nT[K (£t ZT)Qp(tl S2THE bt Tp (t,- m)]=0

Similarly we have

p
ﬂTQ (tl-rn‘r)= 0; p=m,... k-1 (21)
m T
Then (18), (20), (21) imply M Q(t1)= 0 and
therefore rank Q(t.)#¥n, contradiction. Then

the hypothesis imply that the linearized system
(15) is completely euclidean controllable and
the result follows from Theorem l.

Note that the matrix QC of Theorem 2 is

part of the matrix Q of Theorem 3. Again the
derivatives in the hypothesis will exist and be
continuous if either the controls u, and the
initial condition @ have k-2 continuous deriva-
tives or the controls u_, have k-2 continuous

derivatives and t1> (k-1)T7. Notice that if the

reference trajectory corresponds to controls
O- 0 (i.e. force free), then the matrix A in the

statements of Thearems 2, 3 becomes A and we
need no differentiability assumption about the



controls, which is very satisfactory from prac-
tical considerations. Indeed in that case we only
need t. > (k=1)T and the criteria are easily com-
puted. In that case it is easily checked that
whenever C=0 (no delays) both criteria, reduce
to the well known ones for bilinear systems
without delays [2], [16]. Moreover one can
then express the matrices Q.. or Q in terms of
commutators (or Lie brackets) of the parameter
matrices A, B;, C of the system.

4, Bang-Bang Control

In this section we generalize the results of
Sussman [17] to bilinear delay - differential
systems. Following [17] we let U (T)= set of
all measurable functions defined on [0, T] with
values in the cube ((ul,uz, L..u )i-lgu. <1,
i21,2,...p} UB(T)={ueU (T):]ui(t)|‘=1,i=1,...p};

U BP(T)= {ue U B(T): u(t) is piecewise constant].
Then we know from Lemma 1 of Sussman [17]
that U BP(T) is weakly dense in U (T) (in the
weak L, sense). According to whether we use
controls from U(T) or UB{T) or UBP(T) we have
for a given initial condition @, the reachable
sets R(T, ®), R(T, o), RB(T,»), RB(T,®),
RBP(T, ®), RBP(T,®). Then we have as a
straightforward generalization of Lemma 2 of
[17]:

Lemma 1: Let the functions u, converge weakly
to u. Then x(+;0,0, uk) converge uniformly to
x(-;0,0,u) for 0st<T.

Proof: For each veU(T)
t P
x(t;O,Cp,v)=cp(0)+j [A+Z Bivi(c }]x(o;0, P, vido +
1
t 0
+f Cx(c-7;0,0,v)do
0
now since the functions A, Bi’ C are bounded ®
is bounded and Vi(t) <1 then there exists con-
stants C CZ’ such that

! t

lx(s:0,0,9)1sl| @0}l + G, | |Ix(0:0,8, vlao +
0

t
+C, [ l1x(o-150,0,v)||a0
0
Now if 0 st <T we have

Hx(t;O,CP,v)” < D1+C1J.0Hx(o;0,cp,v)lldc

where Dl =HCD(O)H + CZT supHco(O)H . Hence

C.t oeg[-T7,0]

Ix(t;o0, v)||s D.e L for all vand 0sts 7T

'|
1

31

Similarly for T St< 27
t

I x(t:0,0,9) [} (0| +C, | |1x(0:0,0,0)]ldo +
0

t Cl(o -7

+C2JD1e do = D2+CJ [1x(0;0,v)|do
0 0

with obvious identification &ftconstants.

So again H x(t;O,CQ,v)H < D2e 1" for all v and

T<t<27. By a finite argument (since T is

finite) we deduce
C.t

Hx(t§0,°P,V)|l <De L for all v and 0<t<T.

thus the functions x(+;0,%®, vk), Vi e U(T) are

uniformly bounded. But then their derivatives
are also uniformly bounded, (1). By the Ascoli
Arzela theorem every subsequence has a sub-
sequence that converges uniformly to some
function. Thus our lemma will be proved if we
can show that if w converges weakly to u and
if x(-50, cp,uk) converges uniformly to x(+) then
x(+)=x(-30,,u). But

t p
x(t;o,cp,uk>=co<0)+fo(A+>i B

(o) x(c;0,0,u ) -

. k
t :
-x(c)]do + J C(x(o -‘T;O,Qo,uk)-x(c-'f ))do

t P 0
+ “:[A‘*' z B.uk (0)] x(o )t Cx(c—‘r)]dc
0 1t

i
Using the weak convergence ofuyto u and the
uniform convergence of x(-; O,r.o,uk) to x(- )it
follows that

t p
x(t)=e (0 )+j[(A+ £ B,u,(0))x(o ) Cx(c - )] do
0

Thus

x(t)=x%(t;0, ®,u) and we are done. The following
theorem is then the analogue of Corollaries
1-3 of [17] in our setting.

Theorem 4: The sets R(T,®) and R(T, ®) are
compact. The sets RBP(T, ©v) and RBP(T, @)
are dense in R(T, ©) and R(T, ©) respectively.

Proof: Observe that Lemma 1 implies that the
map u-+x(-+;0,o,u) is continuous from U(T)
with the weak topology into C([ 0, T] ;R™) with
the uniform topology. Then the result follows
from the weak compactness of U(T) and from
the fact that UBP(T) is weakly dense in U(T).

We consider now the reachable sets in
function space RC(T, ®), RCB(T, o), RCBP(T, ®)
and IRC(T. ®), IRCB(T, ©), IRCBP(T, o). Let
xt(cD, u) be the state at time t starting at © and



using control u, i.e.

xt(w,u)(e>=x<t+e;o,w,u>: eel-7,0]

Now suppose thatu, “u weakly, then x. )(co, uk)

converges uniformly to x( . )(CD,u) in the space
C([0, T];@) (the C inside the parameter is

c{[-7,0];R"]).

Indeed

o)== @ lleo, 715 @ -

v

= S\lp HX (CD, )-X (@) u)H =
el 0, T] A e e
=sup (sup “x(t+e;0,cp,uk)-x(t+€:0,co ol )n

te[0,T] %¢[- 1.0

and we are done by Lemma 1.

R

So we have the

analogue of Theorem 4 in function space.

Theorem 5:
compact.

are

[1]

(2]

[4]

(5]

(6]

[7]

(8]

The sets R_(T,®) and R_(T,x) are
The sets RCBP(T,QO), IRCBP(T,co)
dense in RC(T, #) and ]RC(T, @) respectively.
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