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Abstract

Filtering problems arising in quantum
electronics are investigated. In particular the
minimum variance linear filtering problem in-
corporating quantum mechanical measurements
is solved for both scalar and vector signal pro-
cesses. The simplification of the filter under
certain assumptions is demonstrated. Examples
from optical communication systems illustrate
the results.

Summary

With the advent of lasers detection and
estimation problems in quantum electronics
became of primary importance [1,2]. More
recently linear filtering of a random signal se-
quence utilizing quantum measurements has
been considered [3,4,8,9]. The basic problem
we consider is the linear filtering of a random
sequence {xk} , which influences a quantum
field, based on quantum mechanical measure-
ments. The following optical communication
problem gives a concrete example. At each time
k a laser modulated in some fashion by {x.] is
received in a cavity and a device is used to per-
form a measurement on the captured field.
Then the cavity is cleansed and reopens to repeat
the process at time k+1. We wish to select
optimally the measuring device at each time a-
long with the postprocessing scheme of past and
current measurement outcomes, in order to es-
timate {x,_}. This is clearly a nonclassical
filtering problem.

There are two cases, depending on whether
{xk} is a scalar or vector process, with mark-
ed difference in the complexity of the analysis.
First we describe our results for the scalar case.
For details we refer to [ 3,4]. The formulation
is a follows. The quantum state of the captured
field is described by a density operator [ 5] p(xk)
on a Hilbert space ¥, which does not depend
explicity on k due to the cleansing of the cavity.
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The device which measures one scalar physical
quantity at time j is represented by a selfadjoint
operator V, on X (an observable) [5]. The out-
come v. of'this measurement is a random variable.
The statistics of the outcomes {v.,...v.}are de-
scribed by the joint probability measure

ror
b, (By...xB )=jeee o= Tr{p(x)M (B)}:--F {dx,...d
k O 1711 RyreesX (o4 Xy
(1)

where M, is the projection valued measure associa-
ted with JVi [5], F, is the joint distribution

0" Ky
function of fxo, ...xk] and Bieﬁ, the Borel O -alge-
bra of R. Given the outcomes v_, ...V choose

the measurement V, at time k and the c-oefficients
K A2
Ci(k)’ so that to minimize E ka xkl where

. k
xk—-f ci(k)vi (2)
i=0
The MMSE estimate of x, without postprocessing
(i.e. set ci(k)=0, i=0,... k-1, in (2)) is given [6] by
the outcome T of the measurement represented by
Tk which is the solution of:

nka+ Tknk= Zékk (3)

where nkéEi {p(xk)} and 6kj éEi[ﬁﬁ(p(xj)} (4)

The solution to our filtering problem is ([ 3, 4]):

PN

Theorem 1: The optimum observable Vk and

optimal processing coefficients c.(k),i=0,1,... k-1
~ i

(c, (k)=1 always) exist and are given as solutions of
the equations:
- k_1
= -2 & 5
Vk Tk 'Z' Ci(k)oki (5)
i=0
k-1
& -C O )= 5 V- ;i=0,... k-1 (6
jfocjm)rr{gjivj G FTr 8V G T e, (6)
(7)

where n O i+c n_ =2

k 'k ki k ki




E [(Trie)Vhetg)), i#]

and ¢..=4{ ~ (8)
1 *n V. , 17
i'i

This general filter is not very satisfactory from
practical considerations. The number of measur-
ing devices needed for implementing the filter is
large and Vk may depend in a significant structural
way on k and on new data.
fies a recursion like

1™ AT Ve 9
where . is a sequence of scalars and [w }is a
sequence of independent, Gaussian random vari-
ables with zero mean and variance Q. , a recur-
sive filter is highly desirable. Additional assump-
tions on the problem produce highly simplified
filter structures. A crucial resultin this direc-
tion is the following ''separation'' theorem from
[3,4]:

In addition if x satis-

Theorem 2: Suppose the signal process {xk}
is pairwise Gaussian, the measurements V,,i=
0,1,...k, are optimally chosen (according to
Theorem 1) and that the outcomes Tj of the mea-
surements represented by T, have the property
that (7, x;) are jointly Gaussian for each i. Then
the quantum mechanical linear filtered estimate
of xy (i.e. Qk) is equal to the classical linear
MMSE estimate of Xy given the random variables

{1,i=0,1, ..kl

Consider now the problem where x satisfies
a recursion like (9) and is transmitted as the (real)
amplitude of a laser {assumed monochromatic) and
received, along with thermal noise, ina single
mode cavity. Then the optimal filter becomes

[3-4]: ]_, Kalwman filter .
field at L+ + Xy
t=k TRt Ky by
= optical !
2==| homodyning L

' wnit

| (Pk-l d:{ay

o rp N g 2
K=PIRrz+ )] Pii%a (1K 1], 10

Next we describe our results when the signal
process is an RN vector process. This case is
more delicate and difficult because of the funda-
mental '"compatibility' constraint in quantum me-
chanics. That is, only ''compatible'' measure-
ments can be made simultaneously [5]. However
by adjoining auxiliary aparatus to the original sys-
tem [1,7] one can perform "compatible'' measure-
ments on the augmented system which correspond
satistically to ''non compatible " measurements on
the original system. The effect of this on our prob-
lem is that instead of considering measurements
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as represented by projection valued measures (and
thus self adjoint operators) we have to consider
representations via positive operator valued mea-
Such measurements are called
Considering now a

sures (p.o.m.).
extended measurements [1].
sequence of measurements represented by the
p.o.m.'s M, we have that the probability measure
characterizing the joint statistics of the vector mea-
surement outcomes fvo,... vk} is given by (1) with

the appropriate changes from scalar to vector pro-
cesses. The corresponding filtering problem is to
find a p.o.m. M, and NxN matrices Ci(k),i=0,1,...k
so as to minimize E{ Hx(k)-—?{(k)“2

IRN

k
where §k= 'Z Ci(k)v.1 (11)
i=0
The existence of solution to this optimization prob-
lem has been established in [ 8,9] and various
necessary or sufficient conditions have been found.
Here we have also a '""separation'' of the filter un-
der additional assumptions as described in the se-

quel. We restrict to p-o.m.'s with a base , that
is p.o.m.'s that can be expressed as
f
x(B)= | P(u)u (du) (12)

B

for some positive-operator valued function P and a2
measure [l on 8N, Tet M,,i=0, ...k be the optimal
measurements when we usle post processing (with
outcomes vi) and let Zi’ i=0, ...k be the optimal
measurements (with outcomes Zi) when we do not
use postprocessing. Then we have [8,9]:
Theorem 3: Suppose that the vector signal se-
quence fx.} is pairwise Gaussian, and that (Zi’xi)
are jointly Gaussian for i=0, ... k. Then the quan-
tum mechanical linear filtered estimate of %) is
equal to the classical linear MMSE estimate of X

given the random variables {Zi’ i=0,1, ... k1.

As a multiparameter recursive filtering ex-
ample consider the problem of estimating the two
which is transmitted as the
amplitudes of a

dimensional state
in-phase x) and quadrature x
laser (assumed monochromati& and received a-
long with thermal noise, in a single mode cavity.
Suppose that x satisfies the vector analog of (9).
Then the filter becomes [8,9]:

i 1 Filter

field at g Kalwman h+ a

t:k [ 3 xk
XX | optical r‘j_‘;)-_—@ ¥
| heterodyning r

—
'

l $(k-1)

unit

delay

Bp 1 1
.=

where K(k)=P(k)[P(k)+<-—2— Z\)IZ]'

P(k)=:(k-1)[ P(k-1)-K(k-DP(k-1)] é(k-l)t+Q(k- 1)
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