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Summary

We study here multi-input, multi-output distrib-
uted parameter systems. The state space has the
structure of a Hilbert space, and the evolution
operators form a strongly continuous semigroup. We
are thus able to include a large class of systems
governed by linear partial differential equations. We
present realizability conditions for the input-output
maps considered and investigate canonical realizations
and their properties. The main mathematical tools
are invariant subspace theory in vectorial Hardy
Spaces. Using the methods of this particular branch
of operator theory we are able to classify the transfer
functions considered according to their singularities.
This classification is also related to system theoretic
concepts and especially to the existence of spectrally
minimal realizations. Finally we discuss the implica-
tions of these results to the structure theory of dis-
tributed parameter systems, to lumped-distributed
network synthesis and delay systems.

1. Balanced, Regular and Canonical Realizations

This paper is a continuation of our previous work
on infinite dimensional realization theory [ 1-3].
Operator theory was always closely related to system
and network theory. The interaction of these three
disciplines has attracted through the years the
attention of many researcher's,mathematicians as
well as electrical engineers. For the mathematician
these two applied fields represent a relevant topic to
further stimulate research in operator theory. On the
other hand electrical engineers use operator theory to
formulate and solve many problems in the analysis
and synthesis of networks and systems in general. An
example of the latter are the recent developments in
the realization theory of distributed parameter systems
[ 1-7] using operator theoretic tools from [ 8-91

Here we study multi-input, multi-output distrib-
uted parameter systems with state spaces that admit
the structure of a Hilbert space. In addition the
systems under consideration are linear and time
invariant., So we have the description

d—i— x(t) = A x(t)+Bu(t) .
' (n
y(t) = C x(t)

where: x(t)e X (a Hilbert space), A generates a G, -
semigroup of bounded operators on X [ 10], u(o)e U

a finite dimensional Hilbert space (which we will
identify with C m) and y(t)e Y a finite dimensional
Hilbert space (which we will identify with € 7). The
input functions are square integrable U-valued func-
tions with compact support. The input-output
behaviour of system(l) is given by

t
y(t) =J T(t-g) u(o)do (2)
0

where T(+) is a matrix valued function, usually called
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the weighting pattern, while its Laplace transform ’f
is the transfer function. We denote by £ (Xl’ XZ) the
space of all continuous linear operators mapping the
Hilbert space X, into the Hilbert spaceX,.

Whenever (Il), (2) describe the same system we
will say as usual that {A, B, C} is a realization of T.
That is whenever T(t) =Ce“*"B, where e t is a common
notation for the C,-semigroup generated by A. We
single out the following two important cases [1]: a
realization {A, B, C} is regular whenever Be :z, (U, X)
and Ced (X, Y); a realization [A, B, C] is balanced
whenever Be 4 (U, X) and R(B) (the range of B) is
included in the domain of A (denoted by D(A)), while
C is linear and A-bounded [ 10] (i.e. D(A)SD(C) and
HCXHYS kllle”x + kZHXHX , for some positive
constants kl’ k2 and xeD(A) ). Many examples of
regular realizations can be found in the book by Lions
[ 117. They usually come from distributed parameter
systems with distributed control and observation.
Examples of balanced realizations can readily con-
structed by considering various partial differential
equations and relatively bounded operators (see {10,
12]). They include many interesting cases of bound-
ary observations with distributed control.

Although balanced and regular realizations can
describe quite different physical situations, the classes
of input-output maps they characterize coincide, as
the following theorem indicates.

Theorem 1; Let T be a matrix valued function
with values in & (C™,C". Then T has a balanced
realization if and only if it has a regular realization.
Moreover the infinitesimal generators in both reali-
zations can be taken to be the same.

Proof: This is a generalization of Theorem 3 in
[1]. Indeed if {A,B,C} is a regular realization of T,
then with A in p (A) (the resolvent set of A) we have
the balanced realization { ¥, G,H} of T where

F=A, G=(\I-A) B, H=C(\-A) (6)

Conversely let {F,G, H} be a balanced realization of
T, then we get the regular realization {A,B,C}
where by

A=F, B=(\I-F\G, C = HOI-F) 7 (N
and Aep(A). Clearly B is closed and everywhere
defined and therefore bounded by the closed graph
theorem. Moreover using the fact that H is A-bound-
ed, it is easily shown that C is closed and since it is
everywhere defined, it is bounded.

Remark 1: We did not use in the proof the finite
dimensionality of the input and output spaces, and
therefore this theorem is true for U, Y infinite
dimensional as well.

Definition: The balanced (resp. regular} realiza-
tion constructed from the regular (balanced) realiza-
tion by (6) (by (7)) will be called the associated
balanced (regular) realization to the given regular
(balanced) realization.

In the effort to choose simplified models one




defines as usual a realization { A, B, C] to be controlla-
ble if BreA*tx=0) for t 20, implies x=0,and observable if
Ce’ Ty - 0 fort >0, implies x = 0.
canonical whenever it is controllable and observ-
able. Given a realization (regular or balanced) it is
an easy matter to obtain a canonical one. This is
described in the following theorem which we give
without a proof since it is a straightforward general-
ization of previous results [ 3,137,

Theorem 2: Let {A, B, C} be a regular realization
of a matrix weighting pattern T with state space X,
Let M be the orthogonal complement in X of the
subspace M, = {xeX, CeAtx =0 fort 20} and Py, the
associated orthogonal projection, Let N be the
orthogonal complernent in M of the subspace N} =
{xeM,B" Bty 0 for t20] and let Py be the associated
orthogonal projection. Then {PNAIN P B CPN} is a
canonical regular realization for T, w1th state space
N.

A realization is

In the statement of the theorem P Al denotes
the restriction of A on N. It is well defined since it
is easily shown that D (A) and N have a dense (in N)
intersection.

It can be shown that the associated balanced
(regular) realization to a regular (balanced) realization
is canonical whenever the regular realization is. This
theorem therefore provides also a reduction for
balanced realizations.

2. Vectorial Hardy Spaces and Realizability Criteria

In this section we characterize the matrix valued
weighting patterns that admit realizations like those
described in the previous section, In addition we
give some background material on the so called
vectorial Hardy Spaces.

The following theorem provides a preliminary
characterization, and shows explicitly the limitations
imposed on the weighting pattern when it admits such
realizations.

Theorem 3: Let T be a matrix valued function,
with values in &, (€™, C™). Then if T is realizable,
it is continuous and of exponential order (i.e. each
element of the matrix is like that). A sufficient
condition for realizability is that every element of T
be locally absolutely continuous and that the derivative
of T be of exponential order.

Proof: This is a straightforward generalization
of Theorem 4 in [ 1] and we omit the proof.

To proceed we need some background and notation on
vectorial Hardy spaces (for more details see [8, 14,157
If 3 is a Hilbert space (usually separable), then
L,(¥) denotes the space of all weakly measurable
3 -valued functions, with square integrable K-norms.
That is L7(3) LZ((o, ); ). The Fourier transform
of LZ(K) we denote by H2 1:%), where 1 is the
imaginary axis. Every element f in Hz(ﬂ ;3X) has an
analytic extension in the right half-plane TI * and
' r 2
sup . ||f(o+im)|[[dn s M <=
>0 " H

These analytic extensions form the space HZ( H+;3ﬁ )
every element of which has strong limits a.e. on the
imaginary axis as Res+0. As usual we will often refer
to H%(¥ ), and it will be clear from the context whether
we refer to the space of analytic functions or to the
space of boundary values. Similarly H®(¥ )
denotes the space of all

bounded X -valued analytic functions in T+ or their
boundary values on the imaginary axis. Also KZ( ¥
and K® (¥ ) denote the spaces of ¥ - valued functions
analytic in the left half-plane T[ - which satisfy similar
norm conditions as the functions in H2(¥ ) and H*(X).
Functions in Hz(j‘\), Hm(f_‘){) are usually called analytic,
while functions in KZ(’JQ), K2 (3} ) are called co-
analytic. By Hz(i (Xl’ XZ)) we understand the space

of weakly measurable (in the operator sense)

(X4, 2) valued functions (on the imaginary axis)
which are square integrable on the imaginary axis and
have analytic extensions in T, Similarly H® ({(Xl,
XZ)) is defined. The left translation semigroup on

L“(¥) is unitarily equivalent (via Fourier trans-
forms) to the semigroup ‘rnult1p11cat1on by eWw
followed by projection on H (3(\' on HZ("K }; and
similarly the right translation semigroup on LX) to
the semigroup 'multiplication by e ™" on H2(H). We
denote by PH %) the orthogonal projection from
L (]I o ) w onto HZ(F).

In view of the necessary conditions described in
Theorem 3, we restrict for the rest of the paper to
transfer functions that belong to Hz(i(cm, cyn

*(d,(Cc™,C™). This does not restrict the
generality of the discussion (all that is envolved is an
appropriate exponential factor or equivalently shifting
of the imaginary axis).

Theorem 4: Let T be a matrix valued function
which is continuous and such that T belongs to
B3 (™, ) NH (L (C™, ™. A sufficient
condition for T to be realizable is that T has a
factorization 'f‘(iw) =C(iw ¥*B(im) a.e. on the imaginary
axis, where CeH2(Z(C ™, N)) and Be H (£ (C ™,N))
and N is an auxiliary Hilbert space.

Proof: We take as state space X the Hilbert space
H%(N), and F, G, H as shown below

{(Gu)(iw) = B(iwju

eth - p R exwtx (8)
H™(N)
Hx=o= |7 Crimx(in)d
2m | (iw)x(iw )dw

-m

Clearly Ge (€™, %), Hed (X,C ™) and eftisa Co-
semigroup. To complete the proof observe that

1f iwt A
T(t)hu = Zn_j e T (im)udw = J.C “(im)e

B(iw)udw
for all ue c™,

We will frequently refer to the realization des-
cribed by (8) as the translation realization. The
following discussion has two aims. Firstly we want to
indicate under what additional assumptions the condi-
tion of Theorem 4 becomes necessary. Secondly we
would like to investigate relations between the above
factorization condition and properties of the models of
the system.

Let us first of all observe that Theorem 4 is a
generalization of the conditions described in Theorem
3. Indeed the sufficient conditions of Theorem 3
imply that after mult1p11cat10n by a proper exponential
factor, T and T are in LE(Z (€™, C")). If in
addition T{0) =0 we have the factorlzatlon

T (iw) =Ql+iw)-11 3 (1-iw Y T (iw) (9"

Cn/
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and here N =CR, In case T(0) # 0, the problem can be
reduced to the previous one and solved using (9) for an
auxiliary weighting pattern.

Suppose we know appriori that T comes from a
system like (l) which is dissipative, in the sense that
the operator A is dissipative, that is

(Ax,x) + (x, Ax) <0 for xe D(A) (10)

(the inner product being that of X),and globally
asymptotically stable, in the sense that éi_zg”eAtxH =
0 for x¢X. In this case following [ 15]

consider the new norm

H-"HiI = - (Ax,x) - (x, Ax) for xe D(A)

2_

then for xeD (A), eAtxe D(A) fort=> 0 and “eAtHN

-2 Re<eAtx, Ae 'tx) =

- NN
dt X

and so J:HeAtxl |ZI‘\I = Hx]\i

That is if we let N denote the completion of D(A) under
the new norm then the map

P: X LZ(N) 1
Ac (11)

X + h(s) =" " x

is an isometry and since D (A) is dense in X can be
extended to the whole space X. Moreover

At Ft
X =e

Ft

Pe Px

where e " is the left translation semigroup on LZ(N).
Since P is an isometry its range R (P) is closed, i
fact it is a left translation invariant subspace of L“(N)
which we denote by X,. So P as a map from X to X =
R (P) has abounded inverse. Therefore we obtain a
realization with state space X, and eFts left transla-
tion, G = PB and H = CP-l, Applying Fourier trans-
forms ,- we get a realization on X; = X1 (a sub-
space of H4(N)) with H =CP~1%' "l and eF1* = multi-
plication by et and, G,=¥PB Then  there
exists BeHA(L(C ™,C ™)) such that (Gyu)(in) =
B(iw)u for all ue Cm Similarly tilere exists

(12)

1 o
CeH2(£ (€ 1, N)) such that H,x =7;j_mcil=(i(|n)x(iul)dw

for all xeH®(N)., Therefore
T(im) = Cpx(iw ) Biw)

For reasons that will become obvious in the
sequel we are interested in realizations {A, B, C}
which are canonical and moreover there exists an
a>0 such that the integral | e®*tcxCete-atdt exists
and defines a bounded Opeeror on X, denoted by MAC’
which is bounded from below. These are controllable
and exactly observable realizations (see Helton (7)
and also Balakrishnan [13]). The last requirement
expresses the property that the initial state be deter-
mined by knowledge of the input and the output in a
stable way. Their importance lies in the fact that any
two controllable and exactly observable realizations
of the same weighting pattern T, say {A,B,Clon X1
and {F,G,H}on X, are related via PAP-l-F, PB=G,
HP=C with a boundedly invertible,bounded operator P
from X, to X,,[717]. (The State Space Isomorphism
Theorem).

Suppose that a matrix weighting pattern (in the
class we are studying) has a controllable and exactly
observable realization. Then following [ 13, p. 113] we
construct the following realization using left transla-~

(13)
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tions. The state space is the closure of the image of
L(€C ™) functions with compact support under the
Hankel operator

(Hpu)(t) = df:T(tm jufordo (141

which is well defined and bounded under our assump-
tions. That is X=R(HT) and is a left translation invariant
subspace of L2(C ™),

eFt = left translation semigroup on X7

(Gu)(¢) = T(e)u, Hx =x(0) i
It is easily shown that the existence of a controllable
and exactly observable realization for T is equivalent
to the operator 'evaluation at 0' being bounded on
RTH;S_ {13]. Moreover by the state space isomor-
phism theory all other realizations of T, of this type,
differ from (15} by a similarity,

Applying Fourier transforms on (15) we get the
following realization in H(C ™ ®
X=R(H.), eAtze“”tl , (Bu)(iw)= Tiw)u, szij x(iw)dw

T X 27 | (16)
where HE‘:HZ( CT)*HZ(GH) is the Hankel operator
associated with TeH*(4 (C™, C ™)

Hau =P (I w and (Juwi(in) = ul-iy).

T THAe™ w
The realization described in (15), (16) will be called
the restricted translation realization. From(lé) we
see by a similar argument as before that we have a
factorization 'f‘(iw)=F1(iul)'F2(iw) as described in
Theorem 4. We have thus the following.

Theorem 5; Let T be a matrix valued transfer
function which belongs to H2({ (€™, O )nHIL(C™,
c™).

If either a) © has a dissipative and stable realiza-
tion or b) T has a controllable and exactly observable
realization then ’f‘(iw):C*(iu) )B(iw) a.e, where
Be Hz(i(‘ﬁm, N)) and CeH2(4.(C ™, N}) and N is an
auxiliary Hilbert space.

In Theorems 4,5,N is a Hilbert space which may
very well be of infinite dimension. If N can be taken
finite dimensional then it follows that we can realize
T by placing together Lcopies of the one dimensional
translation semigroup where £ is the dimension of N.

Definition: The minimum dimension for N for
which a factorization like the one appearing in
Theorem 4 exists, will be called the multiplicity of
the weighting pattern T.

There is a large literature for factorizations of
operator valued functions in H®({, (H), HZ))[ 9,16].

It appears that the multiplicity of a weighting
pattern is related to the smoothness of T. This is
based on the observation that when T satisfies the
smoothness conditions of Theorem 3, then the multi-
plicity is finite. For the rest of this paper we restrict
to weighting patterns of finite multiplicity.

3. Spectral Analysis

The analysis of the structure of a linear distri-
buted parameter system like (1), (i.e. decomposition
into subsystems, instabilities etc.) depends greatly
on the available information about the spectrum of
the infinitesimal generator A. On the other hand
from the input-output point of view this information
should be directly related to the analytic properties
of T. Thus the need for models with spectral
properties that reflect the analytic properties of Tis
evident, The use of such models for the contruction
of approximate models is self-evident. When the
system displays some internal symmetry, for

{15)




example A is self adjoint, a very satisfactory theory
can be developed (see [ 1 ]for details). In the general
case however the situation is much more complicated.

Whenever {A, B, C]lis a realization of T, we have
’I"(s) - C(Is-A)"1B for Res>w, for some w>0. Then if
we let o’('f) denote the set of points of nonanalyticity of
T and Po (A) the principal connected component of the
resolvent set of A we have the spectral inclusion
property {17, c-(T Y& cro( ) where OO(A) denotes the
complement of o,(A). A realization {A, B, C}is called
spectrally minimal (c.f. [l] if o(D = o(A) for some
analytic continuation of T in the left half-plane. In
infinite dimensional systems we encounter often trans-
fer functions that have many possible continuations
due to branch points. We want to investigate here the
existence of spectrally minimal realizations for the
class of transfer functions we study. In the scalar
case [ 3] every noncyclic transfer function has
spectrally minimal realizations. The property of
noncyclicity is equivalent to the existence of a mero-
morphic pseudo continuation of bounded type in T[ “(18].
(Recall that the transfer functions we are studying are
analytic in TTY).

We need some background on vectorial Hardy
spaces on half- planes 8,1 J. A function G in

(L (C™, M) is outer if the range of the operator

MG, where MGf = Gf for feHZ(Cm is dense in H (Cn)
A function U in H® (£ (C®, C™)) is inner if U(iw) is a
unitary operator for almost all w. Every function F in
H®(Z (C™, €M) has a factorization F = U.G where
Uis ri%id and G is outer and the factors are unique up
to a constant unitary factor from the right for U and
from the left for G. We have a decomposition of inner-
functions to a Blaschke product part and singular part,
but the situation here is complicated due to the non-
commutativity. For detailed description we refer to
Potapov [19]. For a matricial inner function U, det U

is a scalar inner function which determines the structure

of U to a great extent (see Helson [ 8] p-80), and has
the property that (det U)H(C™)c UHZ(CM).
of Lax [14]any right translation invariant subspace M
of H4(C M) (i.e. invariant under any H®(4 (C ™, C™)
function) is of the form QHZ( C™ for some matrix
valued function Q, which is analytic in TT ¥, bded by 4,
and partially isometric onl with fixed initial space.
These
factor from the right. If the invariant subspace is of
full range, that is for almost all w the span of f(iw),

feM equals C™, then Q is actually inner. Two functions
) are left (right) prime if they

F, F,in > ({(Cc™,C"
do not have a common nontrivial inner factor from the
left (right) in H*({ (C™, C ™) (HY (C™, C™)-

In view of the state space isomorphism theorem
for transfer functions that admit controllable and
exactly observable realizations, the structure of any
such realization is determined once we know the
structure of the restricted translation realization.
Moreover even for transfer functions that satisfy our
general realizability conditions (Theorem 4) the
structure of the translation realization can provide

useful information about the system. Although we could

treat the general case here we prefer due to space
limitations to give the details for the class of transfer
functions which admit controllable and exactly observ-
able realizations. Since R(HZ) T)1s a left translation
invariant subspace it is of the form Q% (C™M* for
some rigid function Q,. which is uniquely defined
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By a theorem

are called rigid. Q is unique modulo a unitary

{modulo a unitary factor). We are mainly concerned
with transfer functions T that have the property that
Q is inner. Fuhrmann in [20,21] has shown that this
is the right generalization of the notion of noncyclicity
of the scalar case. Such functions are called strictly
noncyclic. From the network theory point of view the
importance of these functions is also demonstrated in
{22,237, A function F is meromorphic of bounded
type inIT- if it has the form F =& where G is in
Ko(L(C™,C™) and g in K®(i. e scalar), A function
E in H®(Z (C ™, C ®)) has a meromorphic pseudo
continuation of bounded type if there exists ¥ which is
meromorphic of bounded type in T ~ such that

lim F(s)u =lim +E(sufor alluin €™, Asa
Res+0~ Resa0

direct consequence of Theorem 3.1in [21]we have

Theorem 6: Let T be in H®({ (C™,C ™). Then
the following are equivalent:

a) T is strictly noncyclic

b) T hasa meromorphic pseudo continuation of
bounded type in T - %

c) T has a factonzatwn T(m)) U(iwH(iw ) with
U inner in H®(L (C?, " )) and H in H®(Z (C®,C ™)
and such that U and H are right prime,

Moreover if T is also in H2 (£ (C ™, C 1Y) then
His in H&(Z (C ™, €C™)) also. U is uniquely deter-
mined modulo a umtary factor from the right and
R(Hg) =(U H2(C n, )(where H~ is the Hankel operator
associated with T see equation (16)). "As in the scalar
case U is called the associated inner function of the
strictly noncyclic function il

By a generalization of a theorem of Moeller (c.f.
[14] p. 69) we know that the spectrum of the infinite-
simal generator of the semlgroup 'multiplication by
elwt 1 restricted on (UHZ(C B))* consists of

a) the points u in T - where U*(-p,') has non null
kernel.

b) the points on the imaginary axis through
which U cannot be continued analytically to Tl -,

But by Th. 6, T(iw) = U(iw )H(iwpk and the right hand
side has the meromorphic continuation in T~ given
by U*(-F) H#*(-F), which describes completely the
singularities of tin T -, Using the Potapov
expressions for U, and due to the right primeness of
U and H it is shown ( we omit the details from here)
that the singularities of T in TT~ are given by the
points i, where U*(-{1) has no inverse., Also by a
generalization of an argument in [ 14]p. 72 we see
that T has an analytic continuation in T] - through iw
if and only if U does. So we have the following.

Theorem 7: Let T be in H2({ (C™, Ty N
NH" (4 (C m’fn) and strictly noncycllg\. Then the
restricted translation realization for T is spectrally
minimal.

4, Conclusions and Related Problems

We considered here multivariable distributed
parameter systems in Hilbert space. With the aid of
invariant subspace theory in vectorial Hardy spaces
we developed realizability criteria, studied canonical
models and investigated the existence of spectrally
minimal realizations for the class of transfer
functions considered here,

Let us observe that the restricted translation
realization (equation (16)) can be defined for any trans-
fer function © which belongs to H®(#(¢™ € M), That
is we can drop the requirement that 'f‘g HY( 4 (¢ m,

C 1)) also. The resulting realization is neither




regular nor balanced. The operators B, C are
unbounded.

On the other hand the theory can be developed, in
that case, using the rich structure of H® (£ (C™, CM))
as a ring or as a Banach algebra, in a much more
algebraic fashion. This can be generalized even
further by introducing the following algebra A®({ (C r?
T B)). Elements of this algebra are functions which
belong to H®(I[H; £ (C™, €M) for some p>0, where
TT T denotes the “half plane Res>p. Functions that are
analytic continuations of one another are identified.
Clearly this algebra includes all transfer functions of
importance. Much of the structure of H® can be
transferred to A®, There are advantages in an
algebraic approach, but the major gain will be the
inclusion in the theory of certain very common transfer
functions, which are not included in the present status
of the theory. We have in mind delay systems,

It is hoped that in this way a complete realization
theory for delay systems can be developed.

The connections between infinite dimensional
realization theory and lumped-distributed network
synthesis become very strong, when invariant sub-
space theory is used as a common framework (see
[ 247). DeWilde [22]has developed precise
synthesis results for distributed networks using these
tools. The problem is far from solved however, A
detailed analysis of networks arising in practice is
needed, in order to determine the physically meaning-
ful conditions for the mathematical theory. We note
the role played by strictly noncyclic functions here
(roomy in DeWilde's terminology). Sz-Nagy-Foias
{9,25)have developed Jordan models for certain
classes of bounded operators on Hilbert space,
similar to the Jordan canonical form of matrix theory.
These results can be lifted for the corresponding class
of semigroup generators via the Cayley transform.
The restricted translation realization in particular will
be amenable to such a study. The structure of the
systern will be determined by the structure of the
associated inner function. In this way an invariant
factor analysis and a structure theory, parallel to the
finite dimensional one can be developed.

Finally it would be of interest to investigate the
implications of the available infinite dimensional
realization theory to the construction of approximate
models and infinite dimensional linear filtering.
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