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Abstract
. We consider here the problem of estimating a scalar random signal based on
quantum mechanical measurements, a situation frequently appearing in

optical communication systems.

We find the minimum variance estimator

based on the combination of optimal observable sclection at each time and

optimal linear processing of past measurements.

We compare this estimator

with the one obtained by optimal selection of observables at each time
independently. Under additional assumptions we demonstrate that the former
estimator uses the same physical devices as the latter, followed by recursive

classical filtering,

The results are illustrated in the estimation of the real

amplitude of a random coherent signal through quantum mechanical measure-
ments in a single mode cavity with background thermal noise,

1. Introduction
With the recent advances in lasers and quantum
electronics, and their unquestionable bearings to
optical communication systems, problems related
to the filtering of signals based on quantum me-
chanical measurements are no longer of academic
interest only. In optical communication systems,
where the signals are composed of optical fre-
qQuencies, the various fields and interactions can
be described accurately only by the laws of
quantum mechanics, At these optical frequencies
the intrinsic limitations on performance due to
quantum mechanical laws (quantum mechanical
uncertainty), become more important than other
forms of random disturbance (as thermal noise).
It is believed that the systematic study of optical
communications systems in their natural quantum
mechanical framework, will lead to gujdelines
for the design of more accurate components and
in particular signal processing devices.

Although the problems of estimation and detection
of parameters through quantum mechanical mea-
surements have received considerable attention
(13, (2], (3], the problem of filtering of a ran-
dom signal via quantum mechanical measure-
ments, has been considered only very recently
[4]'[6]. In this paper we consider the problem

of estimating a discrete time random scalar sig-
nal Xy o k=1,2,... with zero mean for all k, which

is carried by an electromagnetic field at optical
frequencies, for example a laser beam. The field
is received in a cavity by opening an aperture at
the appropriate time. This cavity is then closed
and we make measurements on the received field,
in order to generate information about the signal,
that was carried by the field. Then, later, the
cavity is cleansed and the process is repeated
again at regular time intervals. Let us briefly
describe the quantum mechanical description of -
the physical process described above (1], [5).
The field in the cavity at time k is described by a
density operator p(xk), acting on a Hilbert space
H, which is self-adjoint, positive definite, and has
trace equal to . This density operator repre-
sents the quantum mechanical state of the field in
the cavity, Each measurement we perform on the
received field, is represented by a self-adjoint
operator Vk on H, called an observable. If we

let v, be the outcome of the measurement repre-
sented by V;, when the field is at the state repre-
sented by p(x, ), then v, is a random variable with
probability distribution function given by

ka(§)=Pr[ka§}= Tr plx, )P((-=,§]) (1

where P(*) ia the spectral measure associated
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with the self-adjoint operator Vk,
Care must be exercised in the sequel, in handling
the two kinds of randomness appearing in our
problem. Namely the randomness due to the -
stochastic signal x, , and that due to the stochastic
interpretation of quantum mechanical measure-
ments. For that purpose we will denote by E
expectation, by E  expectation with respect to the
signal process and by Eqn/s quantum mechanical
expectation given the values of the signal process
(an operation necessary since our p's are para-
metrized by the signal, xk). For example in (1)
above, we display a conditional probability dis-
tribution function. We then have

Y f"dev; Trelx). vy @

It is by now well established that the new and
interesting feature in quantum estimation prob-
lems, is that the observer (or experimenter) has
the possibility of selecting what measurement to
perform on the received field in order to extract
more meaningful information about the signal
carried by the field. This corresponds to an
optimal selection of the corresponding observable
Vi and generates the problem of subsequent phys-
ical realization of this measurement, [l 1, [2],

{33, (4], [6].

The major problem studied in this paper is the
optimal selection of observables at each time,
together with optimal selection of a linear proces-
sing scheme of the outcomes of previous mea-
surements, in order to obtain the minimum vari-
ance estimator of Xy The paper is organized as
follows: In section 2, we generate the general
formulas for linear quantum filtering. In section
3, we illustrate the special form that these filters
obtain under additional assumptions. In section
4, we give an application to a practical situation.

2. Quantum Linear Filtering

At first let us examine the following estimation
scheme. At each time k, find the optimum
observable Vi to minimize
2_ 2 _
E(xk-vk) -ESEQ/s(xk—vk) =

2
=E Tro(x )}x 1-V,) (3)

We do this independently at each time, and the
outcome of the selected mcasurement, is the
estimator of x, . By an easy application of the
projection theorem [7] the solution for the opti-
mal observable Tk is given by

Tk n, + nka = Zbkk (4)
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where nk=!':'.gﬁ)(xk):“rp(xk)f)(xk)dxk (5)
bk Egxy Plxy )= .:"kp("k)p("k’d"k ()

and p(x, ) is the propability density function of x, .
This result is due to Personick [10], see also
Yuen {3]). The optimal estimator in this case is

%" "k (M
Existence and uniqueness of solution to the problem
defined by (3) are governed by existence and
uniqueness of solutions to equation (4).

It may be possible, however, to improve the
estimates by using outcomes of previous measure-
ments. In this paper we consider only linear
processing of previous measurements. Suppose
that at time k we have already chosen optimal
measuremfnts; VO’ Yl' VZ' e vk-l’ w}.xich gave
outcomes Vs Vpr oo vk-l' The new estimator now
is k-

2 _a ~ (k) A

Xk vk+‘2 <; v (8)

i=0
where, the real numbers E(ik), i=0,1,...%k-1 and
the optimal observable Vk, with outcome Qk’ are
to be chosen so that we minimize
1. 2
c

2_ ~ 2.- ~
€ —E(xk-xk —E(xk-vk-iizjo i vi) (9)

This problem has been previously considered by
Park in [4). Our first result is an improvement -
of the result appearing in {4]). The derivation
however is entirely new, and is based on an ele-
gant application of the projection theorem [7].

It has the advantage that demonstrates the geo-
metric interpretation of the result and in addition
settles quite readily the problem of existence and
uniqueness of solution.

Theorem 1: There exist optimal observable v ,
and optimal processing coefficients E(ik), i=0,1,..
k-1, if and only if there exist solution to the
equations

PR k-1
nvV.+v.n =26 -2% c(k)

UM N P R B (10)
3 s )7 f E
Tr COOVO e Tr Ck-l 0 Vk_1 o Tx'GkOVo
. ~ (k) _ &
. 0 1 [Tr8aV)
~ - :‘(k) . M -
Trloka1Yo T k1 Yia L %-1 Tr‘Skk-l‘{(-lJ
T'Ckovk
- TrC“V (1)
re iy
Tr'kk-lvk



where 6ij= Esxip(xj)

n=E p(x,)
= v i%j 12
cij Esp(xi)Trp(}\(j)V.j for i#j (12)
and £.=n.V,
ii ii

and Qi' i=0,1,...k-1 the previously chosen opti-
ma) observables. Moreover existence and
uniqueness of solutions of the optimization prob-
lem is determined by existence and uniqueness of
solutions to these equations.

Proof: We have
k-1
2_ ~ (k)a ,2
€ -E(xk-vk-.—? N vi)
i=0
k-1
43225 o
k . i
i=0

2 ~
= ESEQ/s(xk-Z)ﬁc Y +
' 2
k-1 k-1 k—l’\ Kia2
x o +% £ (g5 TeWel
i 17 i) =0
1—_0 J-o
k-1 1#3 ;
NP 2 R
+zi§0ci vkvi)—Es{Trxk Pl ) -2Trx plx )V, +
A2 k-l -
+Trp(xk)Vk- Zi;[Ioci Tx'xkp(xi)vi +
k-1k-1
+x g el
i=0j=0 * J
itj
k-1 & no kel
+ E(F)Trp(x.)v.z+2 T Eq()
. i A S
i=0 i=0
We recast (13) in the following setting.
(k)

Trp(xi)Vi Trp(xj)Vj +

Trp(xk){’kTrO(xi)\‘}i}(B)

We let

H “HOH® ... @H
e~ —

k times k times

vl igr1a ... e\“/iex...ex
1ith position

l(k) =I1pla... ®I
e

k times

Then (13) can be readily rewritten as

2 (k)
€ =E8Trp(x0)9 p(xl)Q. .o Qp(xk)(xkl -

k-1
S99 g ghaghoy
i=0 !

(14)

Let now i be the set of operator valued functions
of the form

kel
f(x)=9xl(k)+2 a.ng)+A(k) (15)
i=0 ii k

where B, x, a., i=0, ... k-1 are real numbers and
al-10.. elea , with A, a self-adjoint operator

\——Y_‘J

k times
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on H, for which
EsTr p (xo)Q p(xl)Q ‘e Qp(xk) f(x,k)z is finite,

Clearly-’£ is a real vector space. Now for f,
ge:[, let us define

<f, g7 7E Tro(x))@. .. @p(x, ) {flx )gix, ) glx )0 )}
(16)

It is readily checked that <-,-> satisfies ond the
properties of an inner product, except from the
fact that <f,{>=0, does not necessarily imply
f=0. So (16) defines ond a degenerate inner pro-

duct. Let/{be the linear manifold in £ of functions
of the form
k-1
hix)= T @, V.(k)+ A(k) 17)
i=0 ii k A

So from (14), it follows that we are looking for the
element of X which has minimum distance defined
by (16), from the element xkl(k) of 4 This is
precisely the setting for the projection theorem.
The fact that our inner product is degenerate
prohibits the proof of existence and uniqueness of
solution, but nevertheless, the projection theorem
can still be used to provide necessary and suffi-
cient conditions characterizing the optimal solu-
tion. These are Ko
0900 5005
k " 71 i
i=0

o k), (k (k)
ajvj +Dk5(xkl -

EsTrp (xo)Q. ..Qp(xk) [(Xkl( )

k-1 k-1
(L a.v.(k’+ D(k))’r( >

=0 kKT

k-1
_(,(k)_ T E(F) \”k))]= 0
k i=0 i

(18)

for all real numbers ¢,, i=0, ...k-1, and all self-
adjoint operators D, , on H. This is just the
expression of the fact that the error must be

orthogonal toll. Carrying out the trace operation

in (18) we get

k-1 : ~ kelk-l (k)

E (I 20 Tro(x)V -2 L &

j=0 3 =0j=0 ?
i#j

cx.Tr{:)(xi)Vi .

k-1
Tro(x)V.- ¢ 280
Y )= 1
k-1 a ~
-j=020jTrp (xk)VkTrp(xj)Vj + Z)ﬁ(Trp(xk)Dk -

a2
o.'iTrp(xi)Vi -

k-1
(k) 2
-IEOZCi Tx';:t(xi)Vi Tx'dxk)Dk - Trp(xk)

(V, D, + D, V,) }=0 19)

for all real numbers «,, i=0, ...k-1 and for all
. i
self-adjoint operators Dk‘ on H.



Letting ai=0, i=0,1,...k-1 in (19) we get

k
2TrE xkp(x )D -2z ‘(k)E Trp(x )V, Trp(xk)D -
i=0
- Tr(Esc(xk)Vk+ VkESp(xk))Dk =0 (20)
for all self-adjoint Dk'

Letting D, = 0 in (19) we get

k
k-1 L kelkel .
z ZcrE x Trp(x )WW.-2% £ e, 'eE Trp(x. ) V.
j=0 3 Viz0j=0 ' ) ° Yot
el i#;
STro(x )V, zz:“,k’az Trox )V -
) 31_0 i s ii
k-1
- % 20E Trp(:ﬁ()v Trpl(x, )v~ 0 (21)
j=0 J

for all 01 »J)=0,...k-1. Therefore our original
problem has a solution if and only if (20), (21)
have a solution. Using the notation of (12) we get

from (20)

k 1 (k)
Tr(Zékk = ag o - vknk)o =0 (22)
for all self-adjoint Dk But clearly (bv letting

-1,( k), s .
Dk—ZISkk E ki-n'kvk_vknk) (22) can hold if
and only if

V.+v =26, ‘“‘)zc (23)
L
0

Similarly from (21)
k-1 k-1 (X)
L (Trb V.- & Txc v TrC v)a 0 (24)
5=0 ki'j g

for all o, j=0,1,...k-1. Clearly (24) holds if

and onl
k-1

Tr6 \2 -Tr{ Vk‘Z
ki i=0

‘(k)Trc v (25)

for j=0,1,...k-1,
and this completes the proof of the theorem.

The coupling between the equations determining
the optimal observable V, and the optimal pro-
cessing vector c(k), in the result of theorem 1,

is only apparent and can indeed be disposed of,
as the following corollary indicates.

Corollary 1: The optimal observables V. and the
optimal coefficients &'’ satisfy the equations
o1 % e (26)
LI S e
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TrQV...I‘rCVH TrO0...Tr Ak

k1o ko ko ko kkiff 0
TeL V... Tel V Tlo...TrL o |R(K
ok10 E.]k.t\" EHko [T314.3!( S
Tz.' 6k°V o T r.ckoTk
=| B : (27)

5V TrC T
Tr Kk kA rEx-t k

where T, is as in eqution (4) and

k
MOt G M 25 1500 - - kel (28)

Proof: T. satisfies YI T + T T] =26 and we let
OJ be the solution of 'n O .+ O n = zg then from

k- 1 (k;
(10) above Vk _ rec i ki which is (26). But
i=0 k- lﬁ(k) :
then Ter Vk TeriT Lc. ’IeriOkj (29)

=0
for i=0,1,...k-1. Substituting (29) into (11)
completes the proof.

We note that in (26), (27) the equations for v

and &) are decoupled in the following senset(
First we solve for V0 and we find Vo = To.
Having this we can calculate all the coefficients
in equation (27) and therefore solve for c(l). A}so
we can solve (28) for 0l o Then (26) gives us Vl.
This in turn allows us té) calculate all coefficients
in (27) and solve for (c , (2)) We can also
solve (28) for O, @ 20° Then (26) gives GZ’ and
80 on repeating the process. That is the calcula-
tion of &(k) each time requires only past data.

We would like to emphasize that the results of
theorem | and corolary | are quite general; no
assumption was made about the stochastic pro-
cess x.,k=0,1,2,... . We shall see in the next
section, how various assumptions on the process
X)» modify these results.

Let us note also that the estimator described by
equation (7) is an unbiased estirnator. Indeed

I:‘.'rk=Es'l‘rp(xk)Tk=Tr'f‘;ka=Trl.‘>kk=E$xk (30)

Moreover the estimator described by equation (8)
(when we allow processing of previous measure-
ments) is also unbiased. Indeed

Lo k! S
Exk—Ev + Z ¢ 'Ev. = E‘T T e&'E Trp(x )O
i i . k
i=0 1-0
k-1
+ T etk )Ev “Ex -L ‘“"T Ct z Lo cpy -
i i i sk
i=0 =0
k-1 k-1
6(.k) Trp(x )V +Y c(k)Ev Exk z é‘(k)E\'} +
S i i T i
x—Ok_l i= 0 i=0
z (k)Ev

* i:ocl i Sxk ) (3“



Recently [2], [3]. (8] has been observed, that one
can obtain better estimators, in some quantum
estimmation problems, by considering generalized
measurements, A generalized measurement is
visualized as a measurement (corresponding to a
self-ajoint operator) on the composite system
which consists of the original system (cavity) and
an adjoined to the cavity auxiliary apparatus, The
composite system is represented by a density
operator p(xk)ﬂ DA (pA is the same for all k) on
the extended Hilbert space H@H,. However since
we are dealing with 2 scalar random process,
considering generalized measurements (i.e.,
minimizing (3) or (9) over all generalized mea-
surements as well) does not change the results of
theorem 1 and corollary 1. This follows from a
modification of results in [3]. So we have
Theorem 2: The optimal measurements, and
optimal processing coefficients, derived in
theorem 1 or corollary 1, remain the same even
if we consider generalized measurements. That
is no additional (auxiliary) apparatus is necessary
for the filtering schemes presented here.

3. Recursive Quantum Linear Filtering

The results described in section 2, solve com-
pletely the linear filtering problem in quantum
estimation. They are not recursive however.
This can lead to serious difficulties when we try
to physically interpret the results, by means of
physical realizations of the optimal measure-
ments. In this section we will see how these
filtering schemes be come truly recursive under
appropriate additional assumptions.

For the rest of the paper, we assume that the
signal Xys has the property that x; ,x, are jointly
Gaussian for any pair of indices k, £, A special
case of this is when x; satisfies the recursion

e 17 it Ve (32)
where ¢, is a real number, w, is a white noise
Gaussian process with zero mean, x, is a
Gaussian zero mean random variable and w, is
indepented of past signals x., j<k. Sox, isa
Gaussian, zero mean rando%n variable for each k,
and moreover any finite collection of :ﬁ('s are
jointly Gaussian.

The observables Tk’ are intrinsic variables in
any filtering scheme. In general the function
Trp(xk)T will be a nonlinear function of X . 1f
it is linear however, we have a considerable
reduction in the complexity of the result of the
previous section, as the following theorem
indicates. .

Theorem 3: If Trp(xk)Tk=rkxk for k=0,1,...,
537

_=BT.A .8

where I, are scalar constants, and x yX, are
jointly Gaussian for any pair of indices k, £, then
there exist scalars B,, k=0,1,... such that the

optimal observables of thecorem 1, can be expres-

sed as Vk: Bka.

Proof: Since x;,x. are jointly Gaussian there exist

scalars A;. suchthat the conditional expectations
. =AT. iri,j.
E(lexi) ini for any pair i,j

Now \70=T0 and

§10=Es p(xl)Trp(xo)V():Esp(xl)Trp(xo)TO=

= E_p (x))Tx =E_(p (x )T Elx x )=E_(0(x)T A x))=
*To%10

So from (28) 0. =T A T and from (26)

R ) 10 ?1)10 1
= ..A = -A = .
Vl T1 c 0 010 (1 CO IOAIO)TI BlTl ; we complete

the proof by induction. So let \A/i=BiTi, i=0, ... k-],
then Cki=Esp(xk)Trp(xi)Vi= Bi}Eisp(xk)’l"rp(xi)Ti =

= B EpGq )Tx; =B LER G IEM, |x F BT Ep(x )8, xF

So from (28) 0, . =BT A
ki

ii kiTk’

i i ki kk*
i=0,...k-1 and from (26)

k-1 k-1
bX efk)B.I‘.A T, =(1- T Efk)
ii ki'k i

:01 0

V. =

" Tk"i B LA T~

k
"B Tk
We note in particular that

k-1 (k)
¢ BiliAy

B,=1-% (33)
Remark 1: If the random variables Ti’ xi are

k i=0 i

jointly Gaussian for each i, then clearly there exist
scalars 1‘1 such that Trp (xi)Ti:E(Ti‘xi)zl;xi' So

this represents a special case of theorem 3.
Moreover if T.,x. for each i, and x ,x, for each
pair of indices k,ll are jointly spherically in-
variant [12],the result of theorem 3 holds.

We would like to emphasize the physical signifi-
cance of the result of theorem 3. It states that
under these conditions the estimator that uti~
lizes past measurements, uses the same mea-
suring devices as the other estimator where we
use only current measurements. These are
represented by the Tk's. Indeed the quantum
linear filter in this case displays an interesting
separation property. At the first stage one opti-
mally selects the measurements at each time
independently, and then proceeds with the selec-
tion of an optimal post processing linear scheme
which is a classical estimation problem. The
following two figures, display the estimators,
and should be helpful in the interpretation of the
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Figure 2. Estimator using past measurements.

We would also like to note, that in many practical
applications the observables Ty, for all k, will
represent the same physical measuring process.

The following theorem makes these ideas precise,
and represents the main result of this paper.

Theorem 4: Let T, be theoutcome of the measure-
ments represented%y the observables T, defined
in equation (4) and let the conditions of theorem 3
be satisfied. Then the minimum variance estima-
tor of x,, which combines optimal observable
selection and optimal linear postprocessing of
past measurements (i.e., the one described by
equation (8) and theorem 1), is precisely the
minimum variance linear estimator of x, based
on the random variables Ti' i=0,1,...,k.

Proof: Using the result of theorem 3 we can
write (8) in the form

A()B
B-r+): T (34)
%= BTk o |

Moreover we have from (12)
Trb V.=B.Trb T.=B.TrE x, p(x.)T. =B.Ex T,
kjj ) b G S S B I
= i = T i
i BiBjTrESO(xl)(Trp(xj)Tj)Ti BiBjE i j,1¢J

N 2 )
Tr(, .V.=B.2Trn, T.=B_2TrE p(x.)T,2= B,ZE'T.2
ii i i ii

kj

Trgijv

Trcki BkB E(Trp()ﬁ()T )(Trp(x )T )= B B Exk

Then we can rewrite (11) as

2 a(k)

ETO“'ETk-lTo B,S, Ex, T,

. : ) .(k) =(1-3kfk) . {35)
. ~

E u-I° ETk-l Blo-lcki E’%de

The J th row of (35), for j=0,1,..,k-1 gives
( )B E'r T -(l B I‘ )Ex T. (36)
1=0 kJ
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Ex T-(lBT)Ex T+B Ev 1= ExT-
k7 kj kj

-BkE(TjE(wk]ka BkE’rk‘Tj— Exk‘rj (37)

since E(TjE(Tk! xk) )=ESE('GE(’Tkls)ls):ES(E(leS)E(Tkl s))=

ET T, since T T are independent conditioned on the
signd]l process.
We rewrite (37) as

E(:’Ek-xk)'l’j=0; j=0,1,...k-1 (38)
Now from (33) we have
-1, (%)
B.+ Z ¢ 'BTLA =1 (39)
k i=0 1 i1 ki
Exkxi
and since A_ = 5~ by definition we get
ki x
k
k-1
2, alk) R i} 2
I‘kBkL%xRJr zoc B, I‘Ex x, I‘Esxk (40)
L E’ﬁc B BB x )=ET x, (41)
I‘kl‘iEx x =E(E(T Ix )E(T,lx.))=ETkT, (42)
Notice from (4) that Trnka Trékka and so
2 .
E‘I‘Z: = = =
K ETrelg) T = TrE x p(x )T, Es(xkE(Tklxk))

=Ex1 (43)

Using (41) (42) (43), we can rewrite (40) as
~{k) -

BkETk+120c1 BiETk‘Ti—Ekak (44)
which using (34) reads
E(xk-xk)‘rk= 0 (45)

With (38) and (45) the proof is completed.

Remark 2: From the result of theorem 4, it is
obvious that the minimum variance achieved by
the estimator which used previous measurements
is in general (with the exception of trivial cases)
smaller than the minimum variance achieved by
the estimator which does not use previous mea-
surements, So with the same equipment, employ-
ing a simple signal processing scheme we obta.m
2 better filter.

If we let k(i) be the vector of coefficients in the

expression of x1 as a linear combination of the

T.'s, then any recursion on the k{i)tg (which will
epend on the nature of the signal process and

of the T, 's) will produce under the assumptions of

this section a truly recursive filter.

4. An Example

In this section we illustrate the results of this
paper with the example of estimation of the real
amplitude of a random coherent signal through
quantum mechanical measurements in a single



mode cz(vity with backgound thermal radiation.
- Then the receiver ficld has the density (with
appropriate normalizdtions for simplicity (ul

lZ
D(xk) f cxp( K )‘ a><a|d a
in the P-rcprcsentatlon, [1]),02],0(3]. Here the
coherent states |a> are eigenstates of the photon
annihilation operator a. Let us suppose in
addition that the amplitude X0 k=0,1,..., is a
Gaussian stochastic process, generated by a
dynamical model driven by white noise, as in
equation (32) of the previous scction (e.g.,
amplitude modulation). Then if we denote by

- 2
)\k Exk and by Qk Ewk, the observables T}
take the form
A
k
Tk= 7 (ak ) (46)
N42) +=

k 2

Persomck (10], where a; and ak are the photon
annihilation and creation operators. If we let ¥
denote the outcome of optical homodyning, then
this corresponds to the measurement represented”

: a, .,a
+
by the operator ———, see (10)p. 78. Then of
course ;'—k: kak where Tk is as in (47) below. One
computes, [4], [10]
2

TrO(ﬁ()T}: mz}ﬁ(’ so the conditions of

theorem 3 are satisfied, in this example, with

Zlk

2 N+2), +1/2 (&7)
We see from (46), that all Tk's correspond to the
same physical measurement (apart from a scalar
scaling), so we need only consider one device
which produces measurements at each time k.
From Personick [10] we also know that if we let
‘&k denote the outcome of the measurement
a ta’ )

k 'k

represented by , then ‘l‘k conditioned on

. . . . N 1
% is Gaussian with mean Xy and variance > + e

So

- wk, Xk. - .

introducing a white noise Gaussian process €,,
with zero mean and covariance

(N 1
Ee €, = (2+4>6kz
we can represent ’Tk as (see [10]. p- 77)

are jointly Gaussian. Therefore by

which is independent from X

e D bt ) =k (48)

where I‘k is given by (47). But then from theorem
4 it follows that the minimum variance estimator
using past measurcments, is just the Kalman
filter estimator of x;, satisfying (32), using
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observations T., i=0,...k, described by (48).
From [7) we have the following recursive form
for X, .

K
-1
N1 R
P T yp + == -r
’“k 1 k-1( W17 Pyt 217 kq’k_’fk_)i (49)
or using (48),
R0 % +P, (P, 4 N4ty q, (50)
X A1 Pt 217 ke k1
2
Prtilk ™ O 1k T @
- 2 N, 1 -1
B Plk-1 ™ Bdie-1Fifk-1t 21 %) (1)
- 2 s 2
for k=1,2,..., XO x0 pO[O_EXO and P |k (xk—.})

The following picture illustrates the filter deriyed

-1
+ N2
in this example, where K(k)= kh\ 1 klk-l >+ 4)

is the Kalman gain, computed via (5}).

veceived taser beom o~~~

; - == ecpticat
ot time t=k = homod yning

Persomnick —
quimtum .'Fk < *
estimator

. . - . A
Kelman + + X,
$ittering Kk > >—

+ —(—,
unit
@-def’.uy

Figure 3. Illustrating the filter for the example.
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