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Abstract

In this paper we study canonical (controllable and observable) realiza-
tions for infinite dimensional linear systems. In these realizations the
infinitesimal state transition operator is unbounded but the generator of a
Co -semigroup in a Hilbert space. We present ways to reduce a realization
to a canonical one. We also study the relation between the analytic proper-
ties of 2 transfer function and the spectral properties of the infinitesimal
generators in its realizations. Finally we describe a class of transfer
functions which can be realized by a system with infinitesimal generator
having spectral properties closely related to the singularities of the trans-
fer functions.

0. INTRODUCTION

The theory of infinite dimensional linear systems has progressed
significantly in the last few years. This is mainly due to theapplication of
certain fairly recent operator theoretic results in the study of infinite di-
mensional linear systems in Hilbert spaces. In particular the circle of
ideas related to invariant subspace theory in H® spaces, provides a natural
framework for a very successful study of the realization problem for non-
rationzl transfer functions. Based on this approach several problems in
infinite dimensional realization theory have been studied in our previous
work [1] (with Roger W. Brockett),[2], by FPaul A. Fuhrmann in [3].14]
and by J. W. Helton in [ 5].

The problem of realization, in our setting, is to express a given real
function T defined on [ o0,») as T(t) = cl eAtb] , or to express its Lapiace
transform T(s) as c[(Is~A)‘1b] in some appropriately defined region of
the complex plane. T is called the weighting pattern [6] and T the
transfer function. For further details, notation and relations to external
and internal description of systems we refer to (1),2]. m[1] we con-
sidered the following two cases: when A generates a Co-semigroup on X,
be 3¢ and ¢ is a bounded linear functional on ¥, [A,b,c} is a _r_qgular
realization: in that case we write also y(t) = ( c,x(t)) where c belongs to
X ; [A,b,c] is a balanced realization when A is as before, b belongs to
the domain of A (denoted o‘Z)O(A)) , and ¢ is a linear functional, defined
on @O(A) and such that [c[x] |s k (”Axﬂ-!- ”x”) for =xe ozo(A) and some
constant k. For a comparison between these two concepts we refer to

%This work was supported by the U.S. Office of Naval Research under the
Joint Services Electronics Program by Contract N00014-67-A-0298-0006,
and represents a part of the author' s Ph. D. dissertation, Harvard

University, September 1973.



(1]. Our motivation for introducing the notion of a balanced realization
comes from systems governed by partial differential equations with obser-
vations on the boundary of the domain of definition (see[2]p.34,and (8]
p.200). For general motivation and examples we refer to rij, 21

The following theorem ({17, Theorem 3) proves that the class of
weighting patterns which admit balanced realizations is identical with the
class of weighting patterns which admit regular realizations.

Theorera 1: A weighting pattern T has a balanced realization if and
only if it has a regular one. Moreover the infinitesimal generators in both
realizations can be taken to be the same.

We denote by It the half-plane Res>0. H2 (IT*) consists of functions
analytic inI[tand square integrable along vertical lines inTI* such that

sup Jm H;(x+ iy)]zdy <sM<o

X>0 -~
We denote by [ the imaginary axis in the complex plane. The Fourier
transform

s > [ e gt = Gl 1)

is a unitary map between Lp(-»,»)and I, (L dw/2w). L(o,=) is considered
as the subspace of 1, (-»,»), of functions which vanish on (-co,o).~ HZ(]I, =
T 1ylo, =) and H4(I) =F L,(-»,0). We have also that H2(I)™= B4(]) =
HZ(T). H2(]) consists exactly of the boundary values of the elements of
H2 (Tit ). The Paley-Wiener Theorem establishes that H2 (It )= Zf, Lz(o,oo),
where denotes the Laplace transform. [ denotes the open unit disk
and T the unit circle. H2 (T') denotes the subspace of- 1.2 ('T) of functions
with vanishing negative Fourier coefficients. HZ2(D) denotes the space of
functions analytic in D , with Taylor series around zero having square
summable coefficients. H* (It ), HZ(}I )s ENIZ(K), He(P) and H2 (T) are called
Hardy spaces.

'In [1] we derived also criteria for a transfer function to admit a
regular (and hence a balanced) realization. The most general conditions for
realizability derived in [1] are given by the following theorem and corollary
({1]) Theorem 6, Corollary 6.1).

Theorem 2: Let Te La(o,») and continuous. If T(iw)=F_(iw)Fo (iw),
where F¢, Fg belong to H2(]), then T has a regular realization.

Corollary 2.1: Let T be continuous and of exponential order. If for
some ¢ the function Tl(t)=e-°’ T(t) satisfies the conditions of Theorem 2,
then T has a regular realization. )

We denote, as usual, by eBt the C,y-semigroup of bounded operators
generated by A. An element g of i is called a cyclic vector of the semi-

group eAt, whenever the linear span of the vectors ¢Atg,t2o0 is dense inX.
A realization [A,b,c] (balanced or regular) is controilable if and only if b
is a cyclic vector of the semigroup eBSt (Fattorini [9], p. 393). A regular
realization [A,b,c] is observable if and only if ¢ is a cyclic vector of the
semigroup eA*t. A balanced recalization is observable if and only if

x€e oZO(A) and c[eAtx]=O for t20 imply x=0. This implies that any two
states that can be reached exactly are distinguishable. (For a summary of
Controllability and Observability theory for infinite dimensional linear
systems see [2]p. 59-65). A realization is canonical whenever is control-

lable and observable. In section 1 of this paper we show how to construct a



canonical regular (or balanced) realization starting from a given regular
(or balanced) realization.

It is often desirable that the internal model for a given input-output
map satisfy certain requirements (besides simplicity) which are due to
engincering considerations. The importance of the connectedness of the
resolvent set of the infinitesimal generator in relation to frequency re-
sponse methods for system identification is explained in [(1]. The require-
ment that the spectral properties of the infinitesimal generator of a model
should reflect closely the properties of the singularities of T is essential
from the engineering point of view. It is used as a guide in many ad hoc
modeling or synthesis methods in electrical engineering [11],M12]. In sec-
tion 3 of this paper we construct canonical realizations satisfying boththese
requirements. We characterize also a class of transfer functions which
admit such realizations. It turns out that this class includes many of the
transfer functions appearing in practical problems.

1. REDUCTION OF REALIZATIONS TO CANONICAL ONES

The following theorem describes a way; to construct a canonical regu-
lar realization for a weighting pattern T, starting from any regular
realization of T.

Note: When L is a closed subspace of J( and B a linear operator, PLBIL
denotes the operator ' B restricted on L/ provided it is well defined.

Theorem 3: Let [A,b,c] be a regular realization of a weighting
pattern T on the Hilbert space i Let M be the closure of the linear span
of the vectors Bty with t20, and Py the associated orthogonal projéction.
Then i) [PMAlM,b, PMc] is a regular realization of T, with state space M

Let now N be the closed linear span in M.of the vectors PMeA :':tPMc

~with t>0, and let Py be the associated orthogonal projection (Pyy: ¥+ N).
Then 1i) [PNA ]N’ PNb, PMc] is a canonical regular realization of T, with
state space N.

Proof: Obviously M is invariant under e?t for t20. Hence

PMeAtPM = eAtPM (2)
Let S(t)=Pye®t] . Then S(t))S(t;)=S(ty+t;) for ty,t,20, S(0)=identity on M
and S(t) is strong{\{{y ontinuous on M. Hence S(t), t=0, is a C -semigroup
on M. It is clear that the infinitesimal generator of S(t) is the operator
PyA !M=A‘ , which has domain dense in M. Then we write in our usual

notation S(t)= exp(PMA |Mt ). Now

(P Al It :
<PMc,e M M b>=<c,PMeAtb>=<c,eAtb>= T(t)
Since M, X are Hilbert spaces we have that
, (P At
s At w At B M M
(S(t))” = (PMe ‘M) = PMe ‘M = e

is also a Co-semigroup on M with infinitesimal generator PMA*IM.
Obviously N is invariant under PMeA it IM for t=20 and so

At def
= 3 = 3
P_.e P e l Sl(t) (3)

Based on (3} we prove as above that Sl(t) is a Co—semigroup on N, with

infinitesimal generator the operator P A *IN. We write again in standard
e . L

notation PNeA 'LlN :exp(l’NA* |Nt). We have also that

At
l



At _ At
PNe PN— PNe PM (4)

Hence PNeAt|N = (Sl(t))* is a C,-semigroup on N with inf. gen. PNA 'N'

Now
(P At

<PMc, e NA N pr> = <P M PNeAtP b>=<c, eAtb> = T(t)
Moreover if xeN and <PMc, exp(PNA 'N x> =0 tfor all t>0,
then it follows using (3) that <Ppge PMC x> =0 for t=0,
and so x=0 by the definition of N. If now xeN and <exp(P A' ) Pyybyx>=0
for all't 2 0, then it follows from (4)that <P eBtp b x>“
<eBth, x> =0 for t=0 , and so x=0 by the defmltlon of M. This proves (ii).

We can now use this Theorem and Thcorem | to produce a canonical
balanced realization starting from a given balanced realization. First we
show that if the regular realization in Theorem 1 is canonical, then the
balanced one is canonical too. The relations connecting the balanced real-
ization [A,b,c] to the regular realization [A, b, c ] ({1] Theorem 3)are
given by b=(1I-A)~ -1y, b,, clx] = <c1, (L.I-A)x> with )\>1 and in p(A).
Suppose x ¢ o (A) and c[eA x]=0 for t= 0. Then <cy, eh (AI-A)x> =0
for t=z0 and hgnce (A\I-A)x=0 . This implies x=0 since Aep(A). Suppose
now <eAtb,x>=O for t= 0. Then <eAtb (AI-A*)~ 1x> =0 and so
(A\I-A*)-1x =0. This implies x=0 since )\ep(A*). Therefore [A, b, c] is
canonical.

Hence we have the following:

Corollary 3.1: Given the balanced realization [A,b,c] of T, we con-
struct the associated regular one [A, by, ¢, ] (using Theorem 1), which we
reduce according to Theorem 3 to a canomcal regular realization{F, g1,h 1.
Finally we construct (using Theorem 1) the associated balarced reahzatwn
{F,g,h]. Then [F,g,h] is a canonical balanced realization of T.

Based on the above we can restrict our study to canonical regular

realizations.

2. SPECTRAL CONSIDERATIONS AND THE HARDY CLASS ON
HA LF-PLANES

In the rest of this paper we investigate the problem of constructing
realizations with infinitesimal generators having spectral properties
closely related to the singularities of T. Following 1] we denote by a(T)
the set of nonanayticity of T and by Po(A) the connected component of
p(A) which contains the half-plane Res> g. (Res>gis the half-plane con-
tained in p(A), described in the Hille- Yosida Theorem [ 7J}. We showed
in [1] that if [A,b,c] is a realization of T (balanced or regular)and if
GO(A) is the complement of Ps (A) we must have the spectral inclusion

pro Eertx

o(T) € o (8)

Questions about the connectedness of the resolvent set of the infinit.
generators, the simplicity of spectrum, and the relations to analytic pro-
perties of the transfer functions were for the first time raised and answer-
ed in [1], for bounded realizations (i.e. when the infinitesimal generators
are bounded). In contrast with the finite dimensional theory the spectrum
of the infinitesimal genecrator in a cancnical regular realization is not
uniquely determined by the transfer function (see [1],[21,[3],[4] for
counterexamples with bounded realizations, which are a special class of

regular realizations).



Here we present a2 similar investigation for transfer functions which
admit regular realizations. In the rest of this paper we restrict to the
study of the class described in Theorem 2. Extensions of our results to
include the larger class described in Corollary 2.1 are easy.

To proceed we need some facts from the theory of HZ(]T"') functions.
For details we refer to Hoffman [12], Duren (14]. A function § is inner if
it is analytic in T, with |[¢(s)]= 1 for seIl[t, while |2(iw)]=1a.e.

A function H e H4(IT) is cuter if its boundary value on the imaginary axis
is a cyclic vector for the semigroup ' multiplication by e-iwtt op Hz(ﬂ ).
Equivalently H is outer if its inverse Laplace transform h, has the proper-
ty that its right translations form a dense set in L (0, =). A subpsace of
L, (0, ») which is invariant under right translations is mapped by the
Fourier transform to a subspace of He (I) which is invariant under 'mul-
tiplication by e"Wtr  t5>0. Following Lax [15], we call such a subspace of
HY(I) a right translation invariant subspace. The orthogonal complement
of a right translation invariant subspace is called a left translation
invariant subspace and is invariant under ' multiplication by eWt t20,
followed by projection on HZ(] ). The inverse Fourier transform of a left
translation invariant subspace is a subspace of LZ(O, =) which is invariant
under left translations followed by restriction to (0,»). Clearly we have
corresponding facts for such subspaces in HZ(TTH).

For clarity we use the variable z for complex numbers in D , while
the variable s is used for complex numbers in []'. The map

2 ——> s=12 (5)
ma ps D onto 17 . 1t is well known [12],[17], that the map }/~ defined by
2 1+
[V Fliz) = glz) = 7— Fl5—) 6)

1-2 1-2

is a unitary map from HZ(H+) onto HZ( D).V restricted to boundary
values is a unitary map of HZ(TL) onto H2 (T'). The inverse of Pis given
by

(7 L1 (s) = Fis) = =5 6555, (7)
Let as usual ¥ denote a Hilbert space and efta C,-semigroup of contract-
ions on 3}, with generator A. The operator B = (A+ I)(A—I)"1 is a con-
traction,called the cogenerator of eHt (see [16]p.141). The relation
between the semigroup and its cogenerator is the following:

At _
e = et(B), Att =20 Wr ©)
B = lim ¢ (e ) '
t
t-+0+

where e¢(A) = exp(t A+ t/a-1), t=20, ¢,t()\) = A-1+t/\-1-t. Using these
relations it is easy to show that a vector beg¥ is a cyclic vector for B if
and only if it is a cyclic vector for eM. Moreover B is the cogenerator
of the adjoint semigroup (eBt) and the relations described above are valid
if we replace B with B*r and et by (eAt)* (see [16]p. 143).

The semigroup of contractions ' multiplication by ettt on H2(T) has

as its cogenerator B, the operator ' multiplication by iw-1/iw+1*'. Then
for geHZ( D) we have
-1
[(VBY glz)=z2¢g(z) = [(Ug] (z) 9)

Hence B is unitarily equivalent to the forward shift on 12 (T) (denoted as
Y



usual by U). The adjoint semigroup is ! multiplication by eIt (hllowed by
projection on HZ(}I)' » and its cogenerator is B* and hence it is unitarily
equivalent to the backward shift on HZ(T). Clearly Fe H2(] ) is a cyclic
vector for B (resp. B*) on HZ(I) if and only if T Fis a cyclic vector for
the forward (resp. backward shift) on HZ(T). Thus we have proved the
following:

Lemma l: A function Fe HZ(H"') is outer if and only if ¥ Fe HZ((D) is
outer. A function Feg¢ H*(]) is a cyclic vector for the semigroup ""multi-
plication by et frllowed by projection on H2(J ) if and only if ¥YFeHZ('T)
is a cyclic vector for the backward shift on H2('T).

The following theorem is due to Lax and characterizes right transla-
tion invariant subspaces in HZ(T[+ ).

Theorem 4 ([15]): Every closed subspace R of HZ(H+) invariant under
" multiplication by e-st' | t>0, is of the form d HZ(T[+) where ¢ is inner.
¢ is unique modulo a constant of modulus one. If $ is the inner function
associated to 7R by Beurling' s theorem then &(s) = b S-il).

An inner function ¢ is normalized whenever the corresponding ¢ on
the disk is normalized. Any element FeHZ(H+ ) has a factorization F=¢.H
where ¢ is inner and H is outer. Every inner function has a factorization
$= cBS where ¢ is a constant of modulus 1, B a Blaschke product and S a
singular function (see [12]for details). 4

Using Lemma | we can obtain many properties of cyclic or non-cyclic
vectors for the semigroup ' multiplication by elwt followed by projection on
HZ(I[ ), from properties of cyclic or noncyclic vectors for the backward
shift on HZ(T) (see [13]). For example any FQHZ(H+ ) with isolated
branch points on.the imaginary axis is a cyclic vector.

In this paper cyclic or noncyclic is understood with respect to the
semigroup ' multiplication by %! f5llowed by projection on H%([)' .

Definition: Let FeHZ2(I ), e®t denote the semigroup ' multiplication
by eiwt Tollowed by projection on H (EY. The left translation invariant
subspace generated by F is the closure of the linear span of the vectors
e F, t20, in He (] ).

Theorem 5: An element F of HZ(]I ) is a noncycli% vector if and only
if there exist an inner function ¢ and a function H in H (TI7 ) such that
F(iw) = H(iw) ?(iw) a.e. on I . Moreover if we choose $ to be normalized
and relatively prime to the inner factor of H this factorization is unique.

In this case the left translation invariant subspace genecrated by F is
2172 4
(GH(I ))- :

Proof: This is a direct consequence of the corresponding theorem on
the disk ([13]p. 56) and of the properties of the map ¥ defined by (6), (7).

Definition: The inner function uniquely associated to every non-cyclic
vector FQHZ () by Theorem 5 is called the associated inner function of F.

We are ready now to proceed with the study of canonical realizations
for the class of weighting patterns described in Theorem 2.

For any such transfer function we have the 'right translation realiza-
tion' which is constructed by considering as Hilberg\fpace X the space
H“(J).,the semigroup ' multiplication by e~1Wt 1 55 " F.asband F, asc.
Using inverse Fourier transform this realization is described via the
semigroup of right translations on L;(0,»). Our plan is to apply Theorem
3 to this realization, obtain a canonical one, and then discuss the spectral
properties of the latter . We assume with no loss of generality that the




inner factors of F and F, are relatively prime. We start with the follow-
ing preliminary result .

Lemma 2: Suppose 'T‘e:HZ(]'I+) and has a factorization T (iw) = F.(im)
Fol(iw) a. e. on the imaginary a~xis, where Fc’ FoeHZ(H+ Y and have no
common inner factor. Then T is noncyclic if and only if F is.

Proof: Suppose FO is noncyclic. Then by Theorem 5, Fq(iw) =H, (iw)
$o(iw) a. e. onl, where Hoe HZ(H+) and $, is inner. Hence
T = F (iw)H, (iw) 'ﬁo(iu)) a.e. on ] . Since TeHZ(ﬂ"') we have that
FcHoeI{Z(H+) and therefore by Theorem 5, T is noncyclic.

Suppose now that T is noncyclic. Then by (6) we have

(v % (610 2_ . (1+eie)F (1+eie):leie[_VF ](eie)(eie DEE 1(e'9)
1-eie c l-eie fo) l_eie 2 c - o)

Let now (10)

VT =g; %elefffFC](ele) = fe?); (ele-l)['VFO](ele) = h(e ) (11)

Then geHz( D) and by Lemma 1 is a noncyclic vector for the backward
shift; feH2(D) and £(0) = O; heHZ2(D ). By Theorem 3.1.5in [13], there
exists an element gieHZ([D) with gi(O)ZO and an inner function ¢ (on the
disk) such that g=g ¢ a.e. on T. Therefore

g=fh =g (12)

Now ¢fe HZ(D). Let U denote, as usual, the forward shift and U* the back-
ward shift on H2( D). Then

n .

<¢f, UTh> =<U™¢f, h> = J‘ Y, hdp(9)=j‘z g du(6)=0;n=0,1,2, ...

1
because g, 1 HZ( D). Since ¢f L Uslh, for n=0,1,2,... it follows that h
is noncyclic. But ve HZ(T) is a noncyclic vector for the backward shift if
and only if el®y is one (see [13] Theorem 2.2.8). We conclude therefore
from (11) that‘VFo is noncyclic. Then by Lemma 1,Fg is.noncyclic and
this completes the proof.

Since the properties of the ' right translation realization' depend
heavily on T being cyclic or noncyclic, we study these two cases separ-
ately, in the sequel. ‘

3. NONCYCLIC TRANSFER FUNCTIONS

Since T is noncyclic it follows from Lemma 2 that Fg is noncyclic

We study first transfer functions, for which F¢ is outer. Then the
' right translation realization' is controllable. Hence applying Theorem 3
we obtain a canonical realization with state space N = left translation
invariant subspace generated by I in H2(T ), with PNe'lwt ’1\ as e with
F,asc and PyF. as b. Moreover by Theorem 5 since F, is noncyclic we
have that N =(§0HZ(]I))'L, where 3 is the associated inner function of Fo.

The following theorem describes the spectrum of Ehe infinitesimal ‘
generator of the semigroup PNe'lwt lN (where N=(§ H (X ))'L ) in terms of
the inner function ¢,.

Theorem 6 ([ 8]p.70): Let N be a left translation invariant subspace
of H?‘TI), i.e. N = (¢ HZ(E))L for some inner function 3. Consider the
semigroup ' multiplication by e Wbt  Lestricted on N(i. e. P\,e"]wtl ).

The spectrum of its infinitesimal genecrator is the set 5§> which consists of




i) all complex numbers p with Re 1< 0, such that $(-p)=0

ii) all complex numbers p with Re p =0 such that $ cannot be continued
analytically across the imaginary axis at -p.

Combining this result with the previous discussion we have

Theorem 7: Let T be a transfer function which belongs to HZ(H+), is
noncyclic and has a factorization T “F.F, a.c.on the imaginary axis with
F.» Fo in HZ(H+ ) and F. outer. Then T has a canonical realization with
the spectrum of the infinitesimal generator being exactly ‘3@ » where ¢ is
the associated inner function of F,- This realization is constructed by
taking, as state space the subspace of HZ(]I), N:(ioHZ(I))J’ , as ¢ the
function Fy, as b the projection of F_on N and as semigroup the restrict-
ion of the semigroup ' multiplication by e Wh on N (i.e. P e'm’tl ).

Suppose now that T has a meromorphic continuation across tﬁ
imaginary axis in II 7 (i. e. it has a finite number of poles in any finite

region of IT =, which accumulate only on I ). Now
T (iw) = F (w) F (iw) = F_(inH_(w) 3 _ (i) (13)

where H_, ¢ are the factors of F, according to Theorem 5. Now since T
is real valued we have
F (~iw)H (-iw)
c o

T (iw) = T (-iw) = @o(_iw) (14)

The right hand side of (14) is the boundary value of the function
FC(—s)HO(—s)

G(s)= 7 (os) , which is meromorphic inIl~. Since F. does not have

o -

any inner factor and §, is relatively prime to the inner factor of Ho we

see that G is analytic in TI = except at points pe]]~ where &,(-p)=0. Since

T has a mermorphic continuation in I[~ we must have that ’f‘(s)=G(s) in I[-.

Hence the singularities of T inIl- are the points p with éo(-p)=9.

Since T is real valued we have T (-%¥) = T(-s). Therefore T has an
analytic continuation through iw in I[ 7, if and only if it has one through -iw.
From (13) T (iw) = F(iw)H, (iw) & (iw), where §_ and the inner factor of _
FCHOeHZ(T[+) are relatively prime. Hence by a theorem in [8]p. 66, T has
an analytic continuation inT[~ through -iw, if and only if %, has one through

~

-iy. Comparing ¢(T) as described above with the set S : of Theorem 6, we
see that for the canonical realization given by Theorem Pthe spectral
inclusion property becomes again equality -
o(T) = o(A)

This motivates the following definition.

Definition: A canonical regular (resp. balanced) realization (A, b, c]
of a weighting pattern T is called S-minimal regular (resp. balanced) (S
from spectrum) if and only if U(’f) = g(A), multiplicities counted whenever
possible,

We have thus proved the following.

Corollary 7.1: Any transfer function which satisfies the conditions of
Theorem 7 above and is meromorphic in the left half plane, has an S-mini-

mal regular realization with infinitesimal generator having connected
resolvent set.  The construction of this realization is given by Theorem 7
above.

We discuss briefly an application of these results to a particularly



interesting class of weighting patterns which belong to the class we are
considering here. Recall (see (1]) that if T belongs to LZ(O,m), is locally
absolutely continuous, its derivative belongs to LZ(O, w) and T(0)=0, thenT
belongs to the class we are studying. In this case we have FC(im)=l/(1+ iw),
Fo(iU))‘:(l-iw)T(iu)). Now [¥F_.](z)=1 and by Lemma 1,F. is outer. We thus
have

Corollary 7.2: Let T be a weighting pattern which belongs to 1, (0, =),
is locally absolutely continuous, its derivative belongs to LZ(O,OO) and T(0)=
0. If.T is noncyclic and meromorphic in the left half-plane, T has an S-
minimal realization with infinitesimal generator having connected resolvent
set. The construction is given in Theorem 7.

Remark: The meromorphic assumption is satisfied by many systems
governed by several forms of the wave equation (e.g. Schrodinger Equation,
Maxwell' s Equations) (see [8] Ch. VI and appendix 4, [10]).

If Fe is not outer the ' right translation realization' is neither controllable
nor observable. By Th. 3 we obtain first a realization with state space
M=t§CH (L) where @C is the normalized inner factor of F_, with e lwt IM as
e, PyF,asc and F. as b. Next we reduce the latter realization to
obtain 2 canonical one.  This has as state space N, the closure of the linear
span of the vectors Pl\/Ie_1uJ PMFO, t20 , in M, Py F,as ¢ and PyFe ais”E.
The semigroqptis PNe‘w’t}N. Since M is invariant under e-Wt, P_ e v
PuFe = PMelw F, for t=0. Since F is noncyclif, the left translation
invariant subspace generated by Fo is (@OHZ(I)) where ¥ is the assoc.
inner function of Fy. The situation here looks similar to the previous case.
Howewver the existence of the projection PM complicates the discussion of

the spectral properties of this realization.

4., CYCLIC TRANSFER FUNCTIONS

Since T is cyclic, it follows from Lemma 2 that F, is cyclic also. This
class is very interesting because it contains transfer functions with branch
points, such as those usually appearing in systems governed by partial dif-
ferential equations. By the spectral inclusion property all the points on
branch cuts of T are included in the spectrum of any infinitesimal generater
with connected resolvent set which realizes T. Hence there is no unique
"minimal' spectrum, due to the nonuniqueness of the branch cuts. When F
is outer, the ' right translation realization' is canonical. The spectrum of
the infinitesimal generator in this realization is however the whole closed
left h21f-plane and hence generally it is far from being equal to ~(T). So
again {see 11) canonical by no means implies S-minimal. When FC is not
outer the ! right translation realization' is observable. Reducing this
realization by Theorem 3 we obtain a canonical realization with state space
M= i H2(]) where ? is the normalized inner factor of F., with PMe'Wt'”
as eAt, with PyqF _ as c and F_ as b. Since M is invariant under 'multi-
plication by e-iwtt it is easy to see that the spectrum of the infinitesimal
generator in this realization is the whole closed left half-plane, and so this
realization is generally far from being S-minimal.

Therefore independently of F being outer or not, whenever T is cyclic
the * right translation realization' does not reduce to an S-minimal realiza-
tion in general. Only when T is noncyclic, we can reduce the' right trans-

v

lation realization' to obtain an S-minimal one.
It may be possible to construct S-minimal realizations for T cyclic, by

othes means however (compare with [ 1], section 6).



We conclude this paper with the following.

Remark: We do not have a complete picture for the rclations between
canonical (resp. S-minimal) recalizations of the same weighting pattern T,
for thé class considered in this paper. It is apparent however that there is
no analogue of the state space isomorphism theorem of the finite dimen-
sional theory. Counterexamples similar to the ones presented for the
bounded case (see [1],(2],[3],M4]), can be constructed easily. To obtain a
state space isomorphism theorem we need more assumpdtions. J. W, Helton
[5]introduced the notions of exact controllability and obs ervability and
obtained a state space isomorphism theorem for bounded realizations.

This result can be extended in a straightforward manner to regular and
balanced realizations.
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