ABSTRACT

Title of Thesis:
SYNTHESIS OF SYSTEM ARCHITECTURE FROM

REUSABLE COMPONENT SPECIFICATION

Degree Candidate:
Vimal Mayank

Degree and Year:
Master of Science, 2003

Thesis directed by:
Associate Professor Mark A. Austin

Institute for Systems Research

Established procedures for engineering system development begin with a top-down decomposition process, followed by a bottom-up synthesis (or implementation) of the system itself. Pressure to raise quality, reduce development time, and lower costs through increased component reuse are driving the need for formal approaches to synthesis of system architectures from reusable components. This work illustrates a framework of facilitating the bottom-up approach to system development; it identifies problems and provides solutions to improve the top-down approach to system synthesis. This work investigates the use of Semantic Web technologies (i.e., XML, RDF and Ontologies) for representation and storage of system requirements and UML diagrams. A prototype tool for reasoning with system architectures using ontologies and automated processing of requirements is developed.

SYNTHESIS OF SYSTEM ARCHITECTURE FROM

REUSABLE COMPONENT SPECIFICATION

by

Vimal Mayank

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Master of Science

2003

Advisory Committee:

Associate Professor Mark A. Austin, Chair

Professor John S. Baras

Associate Professor Linda C. Schmidt

ACKNOWLEDGEMENTS

I take this opportunity to thank my advisor Dr. Mark Austin, to infuse and entrust me with this work, and keep me motivated throughout with his tireless guidance, and great insight, making it a reality. A very special thanks to my co-advisor Dr. John Baras, who shared his vision and knowledge in this field inside and outside classroom, provided future directions and possibilities to this work and allowing me to be a part of the SEIL group of bright and motivated researchers. Thanks are due to Dr. Linda Schmidt for serving on my dissertation advisory committee, her time to read the thesis and going out of her way to make adjustments as per my scheduling constraints.

I would like to thank David F. Everett and Tom Phillips for taking time out of their busy schedules to share the current problems in this field, and providing guidance and direction to this work. It was fascinating to learn about the industrial pers-pective, and the current practices. Financial support for this research was provided by the NASA-GPM and NSF-CRCD agreements, and is gratefully acknowledged.

A very special thanks to Natasha Kositsyna for all the work and support she provided during the course. The implementation of all the concepts and functionality of the tools are interwoven into the Paladin toolkit, a brainchild of Natasha’s and Dr. Austin’s perspective. We work great as a team. Finally I would like to thank all the SEIL staff namely, Althia Kirlew, Jean Lafonta and Trevor Vaughan, for providing all your support in every possible way.

TABLE OF CONTENTS

List Of Figures……………………………………….………………..v
11
Introduction

11.1
Motivation

21.2
Top-Down Decomposition and Bottom-Up Synthesis of Systems

41.3
Present-Day Systems Engineering Tools

71.4
Problem Statement

81.5
Systems Engineering and Semantic Web

111.6
Organization of Thesis

142
Requirement Representation and Management

152.1
Organization of Requirements

152.2
Requirements Allocation and Flow Down

162.3
Graph Representation of Requirements

192.4
Requirement Template Structure

212.5
XML Representation of Requirements

242.6
Requirement Traceability and Controlled Visualization

252.7
RDQL Approach to Retrieve Nodes and Links

293
Synthesis and Management of System-Level Architectures

303.1
Visualization of System Level Architecture

313.2
Storing Visual Properties of System Objects (XML)

323.3
RDF Approach to Store Objects Connectivity

353.4
System Views and Sub-System Diagrams

373.5
Merging of Discipline Specific System Views

404
Bottom-up Approach to System Development

404.1
Component Specification Library

434.2
Schema to Store the Component Specification

444.3
Requirements Validation against the Component Specification

465
Development of a Home Theater System

465.1
Problem Statement

465.2
System Structure

475.3
System Requirements

505.4
Requirement Template Structure

515.5
Requirements Traceability and Controlled Visualization

535.6
Merging Two Requirement Trees

555.7
Collapsing Requirement Tree with Duplications

565.8
Components Library

575.9
Low-Level Validation of Requirements

586
Architecture Validation using Facts and Rules

586.1
Schematic Model Checking Procedure

606.2
Class Relationships in Port Jack Ontology

616.3
Equivalent DAML Representation of the Ontology

656.4
Conversion of DAML Representation to Jess Facts

666.5
Addition of Rules and Execution of Rete Algorithm

687
Conclusions and Future Work

687.1
Conclusions

697.2
Future Work

72Appendix-A XML Representation of the Home Theater Structure

78Appendix-B RDF Representation of the Requirement Structure

81Appendix-C Requirements Property XML File

86Appendix-D DAML Representation of the Cable-Port Ontology

88Appendix-E Jess Data Input for the Cable-Port Ontology

95REFERENCES

LIST OF FIGURES

3Figure 1.1: Top-down decomposition and bottom-up synthesis coupled to reuse the objects / sub-systems

4Figure 1.2: Team Development of Engineering System

8Figure 1.3: Key concerns in the team development of systems

10Figure 1.4: Technical Maturity of the Semantic Web Layer Cake

11Figure 1.5: Scope of Work

14Figure 2.1: V-Model of System Development

16Figure 2.2: Flow down of Requirements in the V-Model of System Development

17Figure 2.3: Many-to-Many Relationships in Layers of Requirements

18Figure 2.4: Tree Representation of Requirements in SLATE

22Figure 2.5: Internal Representation of Requirements

26Figure 2.6: Extraction and Visualization of "Complying" and "Defining" Requirements in a Requirement Neighborhood

27Figure 2.7: Equivalent RDF Model

30Figure 3.1: System Architectures: Collections of Modules, Connections, and Rules for System Assembly

35Figure 3.2: RDF Graph of the Data Model

38Figure 3.3: Integration of Application Specific Viewpoint of Engineering Systems

41Figure 4.1: Elements of Object (or Component) - Specification Pair

43Figure 4.2: Synthesis of System Architectures Supported by Product Descriptions on Web

47Figure 5.1: System Structure of the Home-Theater System

50Figure 5.2: Requirements Document Structure

51Figure 5.3: Requirement Template Input Dialog

52Figure 5.4: Complying Requirements (1-Level) w.r.to REQ.2.3

52Figure 5.5: Defining Requirements (1-Level) w.r.to REQ.2.3

53Figure 5.6: Complying and Defining Requirements (1-Level) w.r.to REQ.2.3

54Figure 5.7: Two Different Requirement Hierarchies Prior to Merging Operation

54Figure 5.8: Requirements Graph after the Merging Operation

55Figure 5.9: Requirements Tree Prior to Collapsing Operation

56Figure 5.10: Requirements Graph After Collapsing Operation

57Figure 5.11: Error Dialog thrown during Leaf Requirement Validation against Object Specification

59Figure 6.1: Overall Schema for Ontology-Enabled Model Checking

61Figure 6.2: Class Relationship in the Port-Jack Ontology

62Figure 6.3: A Screenshot of Protégé GUI Illustrating Class Properties of AudioInJack

63Figure 6.4: A Screenshot of Protege GUI Illustrating Slot Properties of converts_to

64Figure 6.5: Screenshot of the Exported Ontology Documentation in HTML

65Figure 6.6: Equivalent RDF Graph of the Port-Jack Ontology

71Figure 7.1: Pathway from Use Cases to Scenarios and High-Level Requirements

1 Introduction

The design and implementation of modern systems in today’s world usually requires complex systems engineering processes. Complexity and variation in systems engineering processes occurs because the field of systems engineering is still young (c.f., the traditional engineering disciplines). There is not a standard process to which every company or person adheres. Rather, different people and different companies have their own vision and unique way of addressing the problems in systems engineering development.

In an effort to keep the complexity of system development in check, the Unified Modeling Language (UML) [1] and object-oriented system development standards have emerged. These techniques have features to help engineers organize their thoughts and ideas on the basic building blocks of the system design [2]. To date, however, these techniques have been predominant only in the software development process. For the system-level development of real world physical systems, composed of hardware and software, new problems and challenges are introduced. As we will soon see, a variety of systems engineering tools exist in the market to address this problem, but they have their own share of limitations in terms of capabilities and concepts.

1.1 Motivation

This work is motivated, in part, by the need to develop methodologies and tools for the synthesis, management, and visualization of system-level architecture likely to be found in the NASA Global Precipitation Measurement (GPM) project [3]. Briefly, NASA’s GPM project is “one of the next generation of systematic measurement missions that will measure global precipitation, a key climate factor, with improved temporal resolution and spatial coverage” [3]. The implementation of NASA GPM is a multi-national effort involving at least five countries and multiple languages. The system design and implementation will occur through 2018.

Present-day systems engineering methodologies and tools are not designed to handle projects of this scope and variation. Hence, the immediate purpose of this study is to understand the key issues in this area, and to propose solution strategies for implementing systems engineering products and processes on the Web.

1.2 Top-Down Decomposition and Bottom-Up Synthesis of Systems

A quick look at the entire systems engineering process indicates that a possible pathway of the system development entails the following steps:

1. Customer needs statement initiates the systems engineering process for developing a product or process;

2. This statement is then converted to use cases, goals and scenarios and activity diagrams;

3. A consistent and complete requirements document is developed;

4. Design alternatives, composed of system structure and system behavior, are then envisaged

5. These alternative designs lead to a trade-off analysis which results into a final system design

6. Validation and verification are carried out to prove that the final system design is in fact consistent with customer need statement

These six steps are inter-related and involve the iteration between each step as the final system evolves.

[image: image1.png]Requirements O

SyslemD:esign ‘O O O O‘ ‘O

O Deliverable product

Testing/Vetification

Decomposition. Composition

Y

4

Libracy of Reusable Components.

Object Specification (O =Custom-built componeot.

Figure 1.1: Top-down decomposition and bottom-up synthesis coupled to reuse the objects / sub-systems

Figure 1.1 shows elements of a top-down/breadth first development (decomposition) followed by a bottom-up implementation procedure (composition). In the later half of the system design process, a key design decision is: should we custom build new components or buy or reuse them. Bottom-up synthesis of engineering systems from reusable components is a key enabler of enhanced business productivity (i.e., shorter time-to-market with fewer errors) and increased return on investment (ROI). This approach to “systems integration” (Figure 1.2) has become a key and most profitable engineering practice.

[image: image2.png]Project
Requirements

Req 1/ Spec. 1

Req?2/Spec. 2

Req3/Spec. 3

Working System

I - ,
) ;
! . i 1
! . i '
! . i '
I b [I
i
! Y L Y . Y i
. i
I| subsystem1 |1 1| Subsysem2 |1 1| Subsystem3 1
! 1 1
! . i '
! . i '
i] o] .] '
i
| Specification 1 || 1 | Specification2 || | Specification3 ||
1 “ i i :
Team |
EPA Test Test Rex
e SsemsToteguation. [
and Test.
]

Figure 1.2: Team Development of Engineering System

1.3 Present-Day Systems Engineering Tools

A discussion initiated with some of the leading systems engineering practitioners in the industry indicated that they use different tools to achieve different steps in the system life cycle development. A look across the entire gamut of the software tools available in the market indicates that there are predominantly three kinds of tools available:

1. Diagramming tools such as Visio [4] or Rational Rose [5]. These tools provide systems engineers with the means to draw various UML diagrams such as the system structure and behavior diagrams.

2. Requirement Management tools such as Slate [6] and DOORS [7]. These tools document the requirements, manage the changes, provide traceability between various levels of requirements and enable a limited scope of verification.

3. Trade-off and simulation tools such as CPLEX [8], Matlab [9] and Arena [10]. These tools provide mathematical capability to evaluate the system objective, simulate the behavior and provide an optimal solution.

There is no standard link between the tools, which forces the engineers to translate the output obtained from one method to a suitable input for another tool. This task can be intimidating for a large system, and in addition a scope of inconsistency between the tools cannot be ruled out here. With the above information we are now ready to analyze some of the problems faced by the System Engineers:

1. There is major problem of integration between the tools. The tools are used in different scopes as per the need basis.

2. Tools do not enforce a particular approach of system development paradigm (i.e., they are process neutral). This strategy of software development maximizes the pool of potential customers.

3. Requirements are represented as textual descriptions. This in essence means there are no underlying semantics to each requirement.

4. Requirement documents are represented as trees. But often requirements can comply and define within the same level of requirement abstraction hierarchy, meaning that graphs are needed to represent the many-to-many relationships among requirements.

5. The system engineering process is a confluence of top-down and bottom-up approaches of system development. Although a top-down development is promoted, there exists a need for a tool to support the bottom-up development process.

6. The concept of validation and verification is still missing largely. Though tools do have a provision for defining how a particular requirement will be tested and some of the related attributes, it is not enough.

Present-day requirements management tools claim to be process independent. However the following statements are true:
1. They provide the best support for top-down development where the focus is on requirements representation, traceability, allocation of requirements to system abstraction blocks, and recently, step-by-step execution of system models.

2. Computational support for the bottom-up synthesis from components is poor. This problem is more difficult.

The lack of “inference services” in the work breakdown structure impacts the systems engineering process is several ways. Current tools are incapable of analyzing requirements for completeness or consistency. Search mechanisms are limited to keywords, which can be limiting for custom jargon in multidisciplinary and multilingual project.

1.4 Problem Statement

The purpose of this work is to develop methodologies and tools for the synthesis, management and visualization of system level architectures. This work also emphasizes the bottom-up approach of system development and addresses some of the issues in the systems engineering tool support for the top-down development approach as mentioned above in the previous section.

Today’s industry requires that teams of experts from multiple disciplines / domains work together on the solution of complex problems (e.g., integrated product teams (IPTs)). These teams may be geographically dispersed and mobile. We need to maintain a shared view of the project objectives and at the same time focus on specific tasks.
Methodologies for the team development of system-level architectures follow the pathway of activities shown in Figure 1.3. They need to support the following activities:

· Partition of the design problem into several levels of abstraction and viewpoints suitable for concurrent development by design teams.

· Synthesis of good design alternatives from modular components

· Integration of the design team efforts into a working system.

· Evaluation mechanisms that provide a designer with a critical feedback on the feasibility of system architecture, and make suggestions for design concept enhancement.

[image: image3.png]Design
Problem

Separation of concerns
for team development.
Coordinarion of activities.

Team 1

Team 2

Working
System

[Temn Absractions
Viewpoints

Systems integration of
team efforts.....
\[Va,;dm;m and Verification

Figure 1.3: Key concerns in the team development of systems

(Source: Discussions with David F. Everett, NASA Goddard)

Tools to support the implementation of these methodologies will be based on four essential elements: models, languages, ordered step-by-step procedures for defining tasks, and guidance for completing the methods [11].

1.5 Systems Engineering and the Semantic Web

Semantic web is the Internet of the future where the content on the web pages will have defined semantics, which could be interpreted by the agents looking for particular information in a consistent fashion. “On the Semantic Web target audiences are machines rather than humans [12].” The semantic layer consists of complex sub layers like:

· Conceptual Models – RDF [13] and RDF schema comes into this classification where the features include cardinality, restriction, aggregation etc.

· Domain Models – Dealing with ontology [14], where relationships between the objects are defined at higher level of abstraction.

· Languages – Use of formal language framework such as SQL, first order logic etc to manipulate the information content obtained from the domain and conceptual models.

Today’s web is designed for presentation of content to humans – humans are expected to interpret and understand the meaning of the content. The Semantic Web is an extension of the current web [15], [16]. It aims to give information well defined meaning, thereby creating a pathway for machine-to-machine communication and automated services based on descriptions of semantics. The web layer cake that realizes this vision is shown in Figure 1.4. With the support of ontologies [17], [18] that describe a particular problem domain, software agents will provide automated services by navigating the sea of DAML/OWL documents and perform logical reasoning on behalf of a user. While each agent will probably have a very limited scope, armies of simple agents will use the Semantic Web infrastructure to communicate and collectively achieve more complex tasks (c.f., armies of ants).

[image: image4.jpg]Semantic Web Layers

Trust

Ontology Support

B Resource Descriprion
Framework + Schema
XML - Structured documents
—

ral Resoure

Idenifir

Evolving

Digil Signature

Well Known

Technical Mat

Figure 1.4: Technical Maturity of the Semantic Web Layer Cake

(Adapted from: S. Selberg [19])

Mapping between the requirements engineering work breakdown structure with the layers in the Semantic Web Layer Cake has been illustrated in [19]. From a systems engineering perspective, we envision development of web-centric, graphically driven, computational platforms dedicated to system-level planning, analysis, design and verification of complex multidisciplinary engineering systems. These environments will employ semantics descriptions of application domains, and use ontology to enable communication (or mappings) among multiple disciplines (e.g., to the engineering team members, to marketing, to management, and to customers). By delegating formal and precise and repetitive activities to computers, engineers will be provided with more time to focus on the creative aspects of engineering systems development.
1.6 Organization of Thesis

[image: image5.wmf]Paladin

Component

Assembly

System

Structure

System

Behavior

Requirement

Representation

&

Management

Mapped to

Import / Export

Visual

Properties

to

XML

Store

Connectivity

Information of

Objects

in RDF

Merging Two

Requirement

Trees

Collapsing

Requirement

Hierarchy

with Duplicates

into a

Graph

Requirement

Template

Structure

Requirement Validation

against Component

Specification

Requirement

Traceability &

Controlled

Visualization

Validation of

System

Architecture

Figure 1.5: Scope of Work

Figure 1.5 illustrates the scope of this work. Paladin is a software prototype to support the UML diagrams. The scope of this work involves add different functions to improve the systems engineering process. Currently the Paladin GUI supports exporting and importing of various UML diagrams constituting system structure and behavior and the associated requirements in form of RDF and XML schema as will be explained in Chapters 2 and 3. Currently, semantics are only associated with system structure and a simple validation on the basis of these semantics is attempted. Except for specified XML and RDF scheme to store system behavior diagrams, analysis of associated semantics lie outside the scope of this work.
Chapter 2 outlines the requirements representation and management and provides a formal framework to specify the XML / RDF schema and template structure to store the requirements. With this formal representation, an approach for controlled visualization of requirements hierarchy-using RDQL is outlined. Various other features like collapsing of the requirements tree with duplicates and merging of requirements trees are explained on the basis of the underneath RDF structure of the requirement document.

Chapter 3 deals with the synthesis of system structure and issues like multiple viewpoints of the system architecture, merging of two sub-systems etc. An XML schema to store the visual properties of the object is specified and a RDF model is developed to store the connectivity information between the objects. This model is further used to split and merge the system viewpoints.

Chapter 4 deals with bottom-up synthesis of system development from the reusable components specifications. Object specifications are translated into an XML schema, which is used to validate the requirements mapped to that particular component.

Chapter 5 provides a working example of design of a home theater system to illustrate all the concepts and features outlined in Chapters 2, 3 & 4.

A Port – Jack ontology is developed in Chapter 6 to introduce the concept of reasoning and ontology within system development. Class relationships and the domain restrictions between the Port and Jack specify what kind of connections is permitted. This fact base is translated to Jess input and rules are added on the basis of the instances created in Paladin GUI to ask questions about the validity of system architecture.

Finally conclusions of the current work and future directions are provided in Chapter 7.

2 Requirement Representation and Management

The basic building block of object-oriented system development is assessment of customer needs in the form of goals and scenarios, followed by their conversion into high-level requirements (see Figure 2.1). Requirements define what the stakeholders – owners, users, and customers – expect from a new system. Satisfying the needs of all stakeholders may be far from trivial – their demands on the system may be many, and in some cases, conflicting in nature. So in order to achieve a proper system design it becomes absolutely essential to have a formal structural framework in place to manage and enforce project requirements that are consistent and unambiguous.

[image: image6.png]‘Validate the system.

Stakeholder
Reguirements

Stakeholdec
Test

Verify the system

System

Requitements Validate the system.

-

Subsystem
Requiements

‘ Component Component
Requirements g Test

Allocate requirements
1o components.

Subsystem
Test

Figure 2.1: V-Model of System Development

(Adapted from Hull et al. [20])

2.1 Organization of Requirements

Requirements are arranged to support separation of concerns and top-down decomposition and development of systems. This structure of the requirement document translates into requirements arranged in hierarchies with the stakeholder requirements dictating the needs of the overall system (e.g., functional requirements, interface requirements). Often these requirements are termed as the Level 0 requirements or the mission statements of the system.

A common practice is to import requirements into systems engineering tools by parsing a textual document, such as a Microsoft Word [21] document. Many system engineers find this conversion pathway from Word to a systems engineering tool convenient. The key limitation of this approach is that requirements lack semantics and therefore they are largely abstract in nature and may not be quantifiable. It is the job of the systems engineer to break down these higher-level requirements into lower-level requirements suitable for quantitative evaluation.

2.2 Requirements Allocation and Flow Down

Requirement allocation involves the breaking of single attribute value into parts and assigning values to subordinate values. For example,the overall system budget is a constrained resource that is divided and allocated to components making up the system structure. Thus requirements allocation (or flow down) is the process of allocating a set of unique requirements to one or more subsystems or components (Figure 2.2).

Higher-level requirements are made more granular by refining them and breaking them down at various levels. The goal of this process is to keep on defining the complying requirements till we reach a state wherein a particular requirement could be assigned to a single component. Typically different teams / persons are responsible for various layers of requirements. So once all the requirements mapped to a particular component are identified, a team can be assigned to design that particular component.

[image: image7.png]‘Validate the system

Stakeholder
Reguicements

Stakeholder
Test

Verify the system

System
Reguicements

Validate the system

-

Subsystem
Requicements

Subsystem
Test

Flowdown of

Component
Reguirements

Component
Test

Requirements -

Allocate requirements
1o components.

Figure 2.2: Flow down of Requirements in the V-Model of System Development

(Adapted from Hull et al. [20])

2.3 Graph Representation of Requirements

Present-day systems engineering tools such as SLATE represent the complying and defining requirements in a tree structure with respect to the requirement of interest. This model works well if requirements comply / define from a single source. In the real world problems as the requirements are classified and broken down in more granular components, they trace across the same level. This happens because requirements are tightly interdependent with each other across the same level of abstraction.

This leads to the fact that within the same level one requirement may comply or define the other requirements. A partial requirement document with requirements arranged in layers is shown in Figure 2.3. Here requirement C in layer 2 defines requirement E in layer 3. Conversely, requirement E complies with requirement C.
[image: image8.png]Flowdown

Requicements ate organized into lagers

for team development.

Compaction of
the tree representation
into a graph.

Figure 2.3: Many-to-Many Relationships in Layers of Requirements

A complying relationship from the top-level requirement in SLATE yields a tree structure similar to Figure 2.4. As seen there are repetitions of the node GPM Microwave Imager under the Sampling Requirement. This happens because of the inherent concept of representing the requirement documents as trees. Extracting requirements from a Word document, which are arranged in paragraphs in the form of a hierarchy, can be a rationale behind this. But once the requirement document is extracted, links are modified as the requirements evolve. This renders the underlying structure of the requirement document as a graph instead of a tree. This tree representation of the requirement leads to the duplication of the leaf nodes in a partial view of the requirement document.

[image: image9.png]Ble

ep

equirement_Flowdown.def -[o) x|
Edit Create Show Options View iindow WorkingSet Liities Visio GPM Test Help

B 2|9| &|®| x| X| @ || 6|E

Requirement Flowdown

UFRp 4-282 (Level 1) Sampling Requirement

8266 (Level 2) GMI Swath Width
/a8 2.1.1.1.2 GPM Microwave Imager (GMI)
5 BRb 36-41 Earth-Viewing Sector Size
o[B8 2.1.1.1.2 GPM Microwave Imager (GMI)
261 (Level 2) GMI Resolution
o[B8 2.1.1.1.2 GPM Microwave Imager (GMI)
5 DR 8-260 (Level 2) GMI Contiguous Coverage
o[B8 2.1.1.1.2 GPM Microwave Imager (GMI)
5 PR 4-191 (Level 2) GMI Earth Incidence Angle
o[B8 2.1.1.1.2 GPM Microwave Imager (GMI)
/59 8285 (Level 2) Spacecraft Selection
£ [E] 2.3 1dentify Constellation Members
5 BRb 11-34329 New Req Title
3.1 Collect Science Data
4229 (Level 2) Sampling Frequency
5 DR 8-285 (Level 2) Spacecraft Selection
é [8] 2.3 Identify Constellation Members
1-34329 New Req Title
=Y 11 357 (Risk) Lack of Constellation Coverage

B

>

BB

Requirement (Level 1): 4-262, in Folder: L1 Mission Requirements

Ll

iy

Delete this object and all attachments and descendents

Figure 2.4: Tree Representation of Requirements in SLATE

(Source: David F. Everett, NASA Goddard)

2.4 Requirement Template Structure

As pointed out by Hull et al. [20], in writing a requirements document, two aspects have to be carefully balanced:

1. The need to make the requirements document readable.

2. The need to make the set of requirements processable.

While requirements written in a text editor can be readable and facilitates pathway to import into a systems-engineering tool, a fundamental limitation is the lack of semantics associated with each requirement. In an effort to mitigate these limitations, the concept of boilerplates has been proposed by Hull et al. in [20]. Boilerplates define placeholders or tag that can be filled in by the user to make consistent requirement statements. Boilerplates enable classification and reuse of requirements across several projects.

In this work, the concept of boilerplates is interpreted as templates. Templates provide users placeholders, so that they can provide input to those placeholders. By gathering the values from the placeholders consistent requirement statements can be generated automatically. Templates are provided for the requirements relevant in the context of the system structure diagram as a first step. In the system structure perspective, almost all the requirements can be written in a primitive format i.e. <attribute, relation, and value>. For example a weight requirement on a particular component may state that the mass of the component shall not exceed 10 lbs. This in essence translates to <Mass <= 10>

Template Definitions

There is one another clear advantage of using the templates in the system structure context. As we will soon see, we can use this information to support the bottom-up system development. The following templates have been specified with respect to the system structure:

1. The <specification> of <object> shall not exceed <value> <units>
2. The <specification> of <object> shall be less than <value> <units>
3. The <specification> of <object> shall be at least <value> <units>
4. The <specification> of <object> shall be greater than <value> <units>
5. The <specification> of <object> shall lie within <lesser value> and <higher value> units

6. The <specification> of <object> shall be <value (numeric)> <units>
7. The <specification> of <object> shall be <value (alphanumeric)> <units>
8. The <originating port> of <object> shall connect to <destination port> at the other end.

Since it is not possible to represent the entire requirements document (For example behavior requirements, or the higher-level requirements that are abstract and often non-quantifiable) on the basis of the above templates, template 0 is reserved to represent these requirements. Requirements at the lowest level in the hierarchy (leaf requirements) are mapped to individual components in the system structure. These requirements are in turn grouped on the basis of the components to which they are mapped and assigned to either teams or to sub-contractors for the final design of the component. Most of these requirements are checked against the existing component specifications (possibly among a pool of available choices for that component to promote reuse), before the designer comes up with a final component that matches the requirements mapped to it. It is especially important to specify these component-level requirements in the form of templates described above to promote reuse and the bottom-up synthesis of the system. Templates add semantics to the individual requirements and in turn can be processed to check the specifications of the components against them. This results in saving considerable amount of time and increase in productivity. This practice of checking requirements against component specification is still manual and as the system grows more complex, it quickly adds up the number of checks to be performed. A complete working example with graphical user interface to show the complete working of templates and specifying inputs will be illustrated in Chapter 4.

2.5 XML Representation of Requirements

Depending upon various project needs, requirements have different attributes associated with them. For example some of the attributes might be verification method, description of requirement, creator, priority and rationale etc. These attributes are customizable depending on the particular vision of documenting a set of requirements. The extensible markup language (XML) [22] can be used to store the attributes and their values. Then either a XSLT [23] transform can be used to transform the XML format of the requirement to generate the requirement documentation or a Java [24] parser such as Xerces [25] could be written to extract the value of the attributes and display them in the graphical user interface.

Internal Representation of System Requirements

In this software prototype implementation, systems requirement document is stored as three separate files (see Figure 2.5).

1. Visual properties of the requirements that include the way they are drawn on the Paladin GUI screen are stored in an XML document. Detail of the associated XML schema is similar to the XML representation of the system structure and discussed in detail in Section 3.2.

2. Properties of the individual requirements are encoded in another XML schema as discussed next.

3. The connectivity information among various requirement objects is stored in a RDF file, discussed in Section 2.7. [image: image10.jpg]Visual
Properties
of Requirernert

o
=
2

Properties of
Requirement

Connectivity
between
various

requirement
objects

Figure 2.5: Internal Representation of Requirements

XML Tag Set for Representation of Requirements

To start with we consider following attributes of a particular requirement:

1. Unique identifier

2. A descriptive name of the requirement

3. Rationale

4. Verification Strategy

5. Comment

6. Creation / Last modified date

7. Description of the Requirement (Text), and

8. Template on which the requirement is based (As defined in the section 2.4)

Example 1: Based on the above information, a sample requirement encoding in XML might be as follows:

- <Requirement ID="REQ.2.2">
 <Name Value="Wall mountability" />

 <Rationale Value="Space saving need" />

 <Verification Value="Experimental" />

 <Comment Value="Detailed agreement between the cutomer and builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="0" />

 <Description Value="The display should be able to be mounted on the wall" />

 </Requirement>
As can be seen above, this XML encoding is based on the generic template 0, because the requirement is an abstract higher-level requirement.

Example 2: Another requirement example based on second template looks like as follows:

- <Requirement ID="REQ.3.2">
 <Name Value="Cost of TV" />

 <Rationale Value="Splitting of overall Cost of the System" />

 <Verification Value="Analytical" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="2" OBJECT="TV" SPECIFICATION="Cost" SPECLINK="tv1.xml" VALUE1="5000" UNITS="USD" />

 <Description Value="Cost of the TV shall be less than 5000 USD" />

 </Requirement>
2.6 Requirement Traceability and Controlled Visualization

“In the requirement engineering context, traceability is about understanding how high-level requirements – objectives, goals, aims, aspirations, expectations, needs – are transformed into low-level requirements. It is therefore primarily concerned with the relationships between layers of information [20].”
Requirement traceability is the process of defining and identifying relationships between two requirements connected to each other at a higher and lower level respectively. This relationship is termed as the complying and defining relationship between the two requirements. A requirement at the higher level is termed as the defining requirement for a requirement it points to at the lower level. The lower level requirement is in turn named as the complying requirement. For example, in Figure 2.6 REQ.3.5 is the complying requirement of REQ.2.1 that, in turn becomes the defining requirement. Requirements can comply and define within same level as explained in the Figure 2.3. Requirement documents are huge in nature and with hundreds of requirements in place, often crossing across levels; it becomes very difficult to comprehend the structure of the requirement document. Some of the current generation system engineering tools like SLATE address this problem by representing requirements in a tree hierarchy (See Figure 2.4). The large size of the requirements document drives the need for visualizing a part of it. The underlying graph nature of the requirements leads to duplication of leaf nodes when viewed as trees. Also there is no mechanism by which the end user can specify the direction from a particular requirement node and the number of levels of interest.

Selective Visualization

In this work we propose the concept of a selective visualization of either the requirements document or the system architecture. By means of selective visualization we will provide users with the option of selecting a particular node in the requirement document or the system structure, and ask the question if he / she want to see the complying or defining or both type of requirements emanating from that particular node (Figure 2.6). Furthermore, an option of specifying the number of levels is provided to account for the fact that requirement hierarchies can be very deep and nested. This selective visualization provides a particular local viewpoint of the document. Users are provided the flexibility to make any changes, including addition and deletion of links, which could be merged with overall document to reflect the changes. The implementation approach to selective visualization is presented in Section 2.7. A working example and a screenshot of this feature is illustrated in Chapter 5.

2.7 RDQL Approach to Retrieve Nodes and Links

RDQL [26] is a query language designed for RDF in Jena [27] models. A meta-model specified in RDF consists of nodes (which could be either literals or resources) and directed edges. RDQL provides a way of specifying a graph pattern that is matched against the graph structure to yield a set of matches.

In this framework we have requirements (nodes in the RDF meta-model) that are connected by directed edges specifying the relationship of complying and defining requirements. When following an edge, the originating node of the link specifies a defining requirement and the terminating node defines a complying requirement.

[image: image11.wmf]REQ.1.1

REQ.1.2

REQ.3.1

REQ.2.2

REQ.2.1

REQ.3.5

REQ.4.10

REQ.1.1

REQ.1.2

REQ.2.2

REQ.2.1

REQ.2.1

REQ.3.5

REQ.1.1

REQ.1.2

REQ.2.2

REQ.2.1

REQ.3.5

Query: For REQ.2.1 show

1) One Level Complying Requirement

2) One Level Defining Requirement

3) One Level both Complying and Defining Requirement

Figure 2.6: Extraction and Visualization of "Complying" and "Defining" Requirements in a Requirement Neighborhood

The upper half of Figure 2.6 shows a graph of requirements organized into four layers. Complying and defining relationships are interleaved among the requirements. We want to see a controlled visualization of the complying and defining requirements with respect to REQ.2.1. Expected results are shown for the required query at the bottom in Figure 2.6. The equivalent RDF model for the entire requirement document is illustrated in Figure 2.7.

[image: image12.wmf]http://somewhere/REQ.1.1

http://somewhere/REQ.1.2

http://somewhere/REQ.3.1

http://somewhere/REQ.4.10

http://somewhere/REQ.3.5

http://somewhere/REQ.2.2

http://somewhere/REQ.2.1

vcard:Given

vcard:Given

vcard:Given

vcard.Given

vcard:Given

vcard:Given

vcard:Given

REQ.1.1

REQ.2.1

REQ.3.1

REQ.3.5

REQ.2.2

REQ.1.2

REQ.4.10

vcard:N

vcard:N

vcard:N

vcard:N

vcard:N

vcard:N

vcard:N

Figure 2.7: Equivalent RDF Model

RDQL works by executing the string queries, which are passed to a query engine. The query engine looks at the structure of the query and pattern of the query is matched against all the triplets in the RDF file on which the query is running. It returns an iterator of the result set which can be inspected to retrieve the desired result.

Query for Complying requirements One Level Down

Query string to see the complying requirement is as follows:

String queryString = "SELECT ?X "+

"WHERE(<http://somewhere/"+currentElement+">, <http://www.w3.org/2001/vcard-rdf/3.0#Given>, ?X)";

The Current element is REQ.2.1 from which we want to see the complying requirements. ?X represents a clause which returns the resources satisfying the given property.

Query for Defining requirements One Level Up

Query string to see the defining requirement is as follows:

String queryStringLevelUp = "SELECT ?X "+

"WHERE(?X, <http://www.w3.org/2001/vcard-rdf/3.0#Given>,<http://somewhere/"+currentElement+">)";

Query for both Complying and Defining requirements around one level

Query string to see both complying and defining requirements around one level is obtained by a combination of above two queries executed together.

Multiple level queries can be recursively executed on all the obtained results till it reaches the number of level or a leaf requirement, whichever occurs earlier. For a complete working example and screenshots of this utility please refer to Chapter 5.

3 Synthesis and Management of System-Level Architectures

As engineering systems become progressively more complex and multi-disciplinary, so does the need for a formal basis for describing and analyzing the architectural designs. Hence, our starting point assumes system architectures are defined by collections of components (having well-defined interfaces and functionality) and connections (describing the permissible interactions among components).

A simple example is illustrated in the Figure 3.1, where we have a system structure composed of two nodes and one edge. For the problem domain of electronic component assembly, these nodes can be candidate ports and the edge can be a defining cable, which is trying to connect these two ports. A key challenge addressed by this work is trying to understand how properties and functionality associated with the modules and connections can be used to construct rules that can guide and improve the synthesis of architectural designs. In Figure 3.1 for example, how can we ascertain that the cable is the right kind of cable and its jacks are compatible with the ports? How do we define rules that can guide synthesis of the system structure? We will study this problem by investigating a hierarchy of progressively complicated system models using:

· A formal language framework to model simple architectural connections

· Architectural connections guided by real time rule checking

To identify appropriate “primitives” for collections of system components and their enabling connectivity, and appropriate rule checking, a case study of a simple home theater system is illustrated in Chapter 5.

[image: image13.png]Rules for System Assembly

Synthesis

-k A

a b -]
= - J

Small collection of modules and connectors.

Simple System Assembly

Figure 3.1: System Architectures: Collections of Modules, Connections, and Rules for System Assembly

3.1 Visualization of System Level Architecture

For the design of complex engineering system, an essential requirement for effective visual communication is the ability to present many kinds of information in a wide variety of graphical forms. The implementation of appropriate graphical presentation programs or modules depends heavily on the data handled by the visualization system and the purpose of the presentation. While the presentation of numeric, business and scientific data has been studied extensively [28], much less work has been completed on appropriate models of the visualization of large and complex system architectures. The purpose of this work is to take the initial steps towards closing that gap.

In this work we view diagrams of system architectures as a language, in the sense that the architecture elements (e.g., nodes, edges and attachments) are connected and arranged under certain rules. The visualization process will be regarded as a translation (or visual mappings) from textual languages (i.e. XML/RDF markup) into two and three-dimensional visual languages composed of graphical objects, connection relationships, and geometric relationships. Various well-established strategies and algorithms for graphical layout and presentation can then be used to generate diagrams of the system architecture. The generation of aesthetically pleasing diagrams from the XML/RDF markup currently lies outside the scope of this work though.

3.2 Storing Visual Properties of System Objects (XML)

Every system object drawn in the graphical user interface has visual properties like dimension, color, associated hyperlinks, ID and so forth. An XML schema, such as the one outlined below, is proposed to store the properties of the system objects.

 <?xml version="1.0" encoding="UTF-8" ?>

- <Project>
- <Graph start="true">
- <Object ID="4337267591854790877" shape="PORT_PANEL" type="47">
 <Dimension>44 24 162 129</Dimension>

 </Object>
- <Object ID="7733796259543882762" shape="CABLE" type="46">
 <Dimension>156 70 374 70</Dimension>

 <Link fromID="5897562330078363886" toID="-930171862495999138" />

 </Object>

</Graph>

 </Project>
Every object has a unique ID reference, a type, such as CABLE or PORT_PANEL, and a graphical dimension. For the objects such as a cable of type edge, a LINK reference stores the ID’s of the connecting system objects. This information is stored in a file database to facilitate the importing and exporting of the system structure diagrams for later use. A Java parser constructs a DOM (Document Object Model) [29] tree in the memory, and exports and imports the XML document into the file system. We anticipate that over time objects will be added to the GUI. The XML file database will increase in size to accommodate the expanded capability.

3.3 RDF Approach to Store Objects Connectivity

The Resource Description Framework (RDF) defines a standard for specifying relationships between objects and classes in a general and simple way. An RDF statement contains triplets’ viz. subject, predicate and object. Within the semantic web layer cake, the RDF layer lies above the XML layer. It provides semantics to the encoded metadata and resolves the circular references, which is an inherent problem of the hierarchical structure of XML.

In the graphical user interface, it is easy to store the visual properties of the objects drawn on the screen in a XML file as outlined in Section 3.2. This works fine in the circumstance where we wish to only parse the XML file and retrieve information from it either sequentially (using a SAX parser [30]) or randomly (using a DOM Parser). But it does not provide a very clear picture of the objects and their connectivity with other objects in the system structure. Generally speaking, a UML diagram drawn in the user interface consists of nodes and edges. Not only can RDF represent these topological relationships in a natural way, but also APIs for parsing RDF documents provide powerful graph manipulation techniques such as intersection and union operations. An implementation approach to merge two different discipline specific viewpoints is mentioned in Section 3.5.

The need for RDF and XML models

One would like to ask a natural question here? Why would you like to have two models (RDF&XML) for storing the same type of information? While RDF is a powerful tool for manipulating the metadata it has its own problems. We are primarily using the RDF representation to manipulate the diagrams, as per the user’s requirement. RDF facilitates union, intersection and other graph operations in an easy manner. XML API’s provides no such capability. But RDF has the problem of poorly defined semantics, and so we must use the XML APIs to have a document with meaningful and customizable tags that can be used to extract information.

Example RDF Schema to Store a Node and an Edge

Refer to Figure 3.1 for a schematic UML document consisting of two nodes and one edge. A simple RDF schema to store the connectivity properties are specified as below:

<rdf:RDF

 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#'

 >

 <rdf:Description rdf:about='http://somewhere/A'>

 <vcard:N>A</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/B'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/B'>

 <vcard:N>B</vcard:N>

 </rdf:Description>

</rdf:RDF>

The first block of code defines XML namespaces that are utilized by the RDF statements (namespaces take care of name conflicts and enable shorthand notations for URIs). The xmlns:rdf namespace is the default RDF schema recommended by W3C. The xmlns:vcard is a simple RDF schema for properties about a person. This comes prepackaged with the vocabulary of the RDF API. For simple RDF models vcard schema can be utilized but as the model gets more complex, one needs to write his or her own schema and associated RDF API. Next two blocks contain statements about two objects A and B in the system structure. Their labels are stored through vcard:N property, and the connection between the A and B is stored by vcard:Given property. Again these two choices are made among a list of available properties in the vcard schema, which closely resembles the purpose for which it is used. Above schema of specifying the RDF structure contains following three triplets obtained from [31] in (subject, predicate, object) format:

1. (http://somewhere/A http://www.w3.org/vcard-rdf/3.0#N “A”)

2. (http://somewhere/A http://www.w3.org/vcard-rdf/3.0#Given http://somewhere/B)

3. (http://somewhere/B http://www.w3.org/vcard-rdf/3.0#N “B”)

The equivalent RDF graph representation is shown in Figure 3.2.

[image: image14.wmf]http://somewhere/A

http://somewhere/B

A

B

http://www.w3.org/

2001/vcard-rdf#Given

http://www.w3.org/2001/vcard-

rdf#N

http://www.w3.org/2001/vcard-

rdf#N

Figure 3.2: RDF Graph of the Data Model

3.4 System Views and Sub-System Diagrams

Today, development of a complex system entails interaction among multiple disciplines. In the NASA GPM project (the motivating case study application for this project), system development involves interaction among mechanical, thermal, aerospace, electrical, computer and communication engineers etc. With such diversity in the systems development, UML diagrams drawn for the system structure and behavior quickly grow in size and complexity, and it becomes almost impossible to comprehend the system in its entirety. Currently, there are two approaches to addressing this problem:

1. Everybody works on the same big centralized file of the system architecture with restricted and classified access assigned to each person interacting with the systems engineering tool. A configuration management tool working in the background keeps track of the changes made, and provides users with the feedback about the traces of the changes made in the system diagrams.

2. Engineers come with their own sub-system views, which need to be merged together in order to form a complete working system.

Both approaches have their strengths and weaknesses. The problem with the first approach is there is a scope of inconsistency, because a person specifying a particular design of the architecture will provide data based on the status of the system at that time. Any changes done to the assumption may remain undiscovered till a later point of time. Such inconsistencies detected later in the system life cycle development are proved to be very expensive, and difficult to correct [32].

The second approach avoids the inconsistency problem associated with the first approach. This occurs because responsibility of systems engineer to integrate the system from different sources will ensure that every engineer is working from a consistent set of assumptions. In a paradigm of team-based system development, each person is working towards the system goals and objectives and is aware of a set of interfaces and facilities it is exposed to. A system engineer validates such assumptions at the time of integration. The problem to identify here is the criteria of integration? Moving from a sub-system view to complete system by merging these views and then breaking the entire system again into sub-system views requires an iterative process. Present-day systems engineering tools lack such functionality.

In practice, the solution to promote development by teams in various areas of expertise lies in merging the two approaches. User specified the disciplines for each architectural element in the UML diagram that can be stored as XML tags in the visual properties of the objects. These tags can then be used to split the entire system diagram into discipline specific system diagrams. The RDQL approach specified for extracting the part of requirement tree outlined in Section 2.7 can then be used to selectively visualize and separate a discipline specific view. A preliminary approach for merging discipline specific modules is discussed next.

3.5 Merging of Discipline Specific System Views

The merging of system diagrams from different domains is associated with different questions and challenges that need to be answered (See Figure 3.3). We need to answer what types of rules are associated with merging of two different system architecture diagram obtained from two different sources. How the invalid parameters or invalid connections are identified? On what matching condition we should ascertain that two objects in different system architecture are one and the same thing, and therefore should be represented as one in the entire system view. A preliminary step is taken to achieve such merging by taking into consideration two things:

[image: image15.png]Domain 2

1
ia Tnvalid Pacameters
%
g
§
. =
Dormain | < i
i
]
)
S
lo— Technical |
Mappings Tntegeated view of system architecture

‘ with tealtime rule checking.

f

Domain-specific descriptions (e.g, UML, block diagrams)
of system content. l

i

System—Level Architecture and Performance Assesment

— Whatis the architecture of the integrated system?
— Can the system work?

— What will the system do?

— Which system opecations can operate concurcently?

— Can the system structure be simplified?

— Aretwo design alternatives logically equivalent?

— Is the system layout consistent with standards/design code requirements?

Back—end support for system—level architecture and performance assessment.

Figure 3.3: Integration of Application Specific Viewpoint of Engineering Systems

1. System objects, which have the same label (e.g., identifying name) in two different system views are considered as the same system objects and therefore merged together. An RDF approach to merging the two systems works really well here. The way the RDF formulation is done in this work, it points to same URI’s corresponding to system objects having the same label. This in turn ensures that when the two diagrams are merged together, those two system objects represent the same entity in the overall system diagram.

2. An ontology approach is defined to specify the rules, which will govern the system synthesis from the individual components. As a starting point, we define the ontology containing the ports and jacks and the relationships and rules of synthesis between them. These rules then guide the system synthesis. For details refer to Chapter 6. Since ontology can be extended to incorporate more facts and rules, this step will guide the assumption conditions, to tell us under which circumstances two objects can be considered as one and the same.

4 Bottom-up Approach to System Development

Bottom-up design (or synthesis) starts with low-level modules and subsystems and tries to combine them into higher-level entities. The main advantage of bottom-up design is its use of systems that have already been designed and tested (e.g. standard electrical components).

Here are some of the salient points worth noting in this context:

1. Reusable components reduce development costs and shorten the time-to-market.

2. As high-level requirements are decomposed into lower-level requirements, and models of system behavior and system structure, designers would like to “look down” into the “product library” to see what components are available

3. The key question, which arises here: “How do we describe the reusable component and its capabilities?”

4.1 Component Specification Library

A classical problem in the bottom-up development of system architecture is to identify the components from the available components library, which if deployed will meet the requirements of the system. The number and the type of specifications attached to a particular component can quickly grow as the component becomes more complex and encompasses more features (Figure 4.1). Earlier component specifications used to be stored in printed media and with the emergence of the web, now are kept online on the supplying vendors’ websites. Usually these specifications are stored in portable document format , which can be downloaded from the websites and printed out by the consumer for further manual processing.

[image: image16.png]Interface

'

Specification

Usage
—Cost.
— Reliability
Opezation
— Preconditions (... rules)
— Tnput (requitements)
— Ponts, types,

— Output (specification)
— Ponts, types,
— Postconditions
Simplfied Behavior
— Activity Diageam (.. UML)
— Finite State Machine (.. UML)
— Pecformance
— Aucibutes
— Production functiens
Simplfied Strucruce
— Class diagram (..UML)
— List of sub—system objects.
Geaphical Absicaction
— VO Teansformation (... ports, types).
— Clip A Rendering (.. SVG)

rules)

Figure 4.1: Elements of Object (or Component) - Specification Pair

The problem with such an approach is that it does not support the very concept of reusability of components across different system architectures, which is a key benefit of the bottom-up approach of system development. This happens because the portable document format in which the component specifications are stored lack the semantics associated with that particular component. So it’s the job of the systems engineer or designer of a particular component to ensure that the component meets all its requirements. Currently they do so by matching the specification against all the requirements one by one. This can be a Herculean task. To take a very simple example, consider a component having 20 specifications attached to it. There are 50 such components from different vendors, which you can use in the systems architecture. There are 20 leaf requirements mapped directly to this component, which it must satisfy. So in the extreme case scenario a person must check 20,000 cases to see which components could be reused. In real life case often to avoid this problem, engineers recourse to an easy way out. Instead of choosing from 50 components they choose from only 5 components. Unfortunately, this leads to a very narrow design, and may lead to the final system design, which is not optimized with respect to the component specifications.

The example illustrated above is a very simple scenario. Practically, it is of interest to know what all requirements are constraining and the design margins associated with the choice of each particular component. What happens if you relax or constrain a particular leaf requirement on a component? Which components do pass / fail the checks? These issues quickly increase the number of checks to be performed with respect to a single component.

4.2 Schema to Store the Component Specification

A big question naturally arises with the above discussion. If a portable document format for storing the component specification does not associate any semantics to it, then what form is appropriate? With the advent of the Semantic Web, one of the possible answers lies in the designing a XML schema specification for the each of the components by their vendors (Figure 4.2). We would like to create an interactive design environment where the specifications for components are found on the web.

[image: image17.png]Parually assembled system

@ ~— Power

wiww.panasonic.com

Product --
specifications.

www.jbl.com

Product
specifications.

Plasma Screen Display

www.sony.com /

000

Product
Textual description of tequirements.
Geaphical description of relationship
Extetnal Description of among requiremens.

Product Specifications

specifications.

Figure 4.2: Synthesis of System Architectures Supported by Product Descriptions on Web

In this work we propose a very simple XML schema for storing each of the individual component attributes such as one given below:

<Size Value=”32” Units=”inches” />

A more detailed discussion and a more complete example will be illustrated in the Home Theater development chapter. The above illustration simply specifies that the size of a particular component is 32 inches. This information can be extracted easily using a Java-XML parser and can be used to make useful inferences out of it as explained next.

4.3 Requirements Validation against the Component Specification

Requirements validation is all about checking a particular requirement to see if we are defining the right requirement and whether it is achievable by the means of the current technology. There are two aspects of the requirement validation:

· We have defined the requirement in a consistent format. By consistent format we mean the requirement is quantifiable and has a logical meaning. Current systems engineering tools do not support such a methodology. Once the requirements are defined on the basis of a template we can say with certainty that the requirements meet the basic criteria of quantification and non-complex nature.

· Once the proper requirement is in place, the next question is whether that requirement can be achieved by the means of the available processes / components. This is very easy to explain in the light of the COTS (commercial off the shelf) components. If you decided a leaf level requirement, which says that, I want to have a RAM module, which is greater than 2GB. It’s not achievable. So that requirement is not valid and it needs to be relaxed. Similar concept can be extended to processes. In an era when micro level precision was not obtainable in the machining of a component, it is useless to specify a leaf level requirement, which mandates that level of tolerance on a machined component.

This second aspect of the requirement validation is manual currently. Once we have the component specification library schema files, and the requirements schema we can run a program to check the requirements against the available component specifications to determine whether a requirement is valid or not. If it is not, then what are the particular reasons for stating such a reason. It will also aid in the decision making process of building a component versus buying a component.

5 Development of a Home Theater System

5.1 Problem Statement

Our long-term research and development objective is methodologies and tools for the combined top-down decomposition and bottom-up synthesis and evaluation of systems that are likely to be deployed in NASA’s Global Precipitation Measurement (NASA GPM) project. As a first step, we are trying to understand the issues and develop prototype tools that will complement present-day commercial system engineering tools by studying the synthesis and evaluation of a home theater system.

5.2 System Structure

Putting together the components that build up the entire system architecture is not a small task as explained in the previous chapters. Here we take up the design of a home-theater system as an example, which essentially outlines the entire approach of this bottom-up development process, but in a familiar domain, understandable by a common person.

The system structure of a home theater system is illustrated in Figure 5.1. The GUI portrays the essential components assembly, complete with Port and Cable specification. A system object such as a TV is portrayed as a Port Panel consisting of several Audio and Video ports. Cables connect two ports. At this point user has the freedom to use any cable to connect a pair of ports.

[image: image18.png]=lolx

| Aty | o | Ot | Uso ose | stohor | s | Pt |
o oo | viea] Vo 0| coi or P

D oartutisack@sana)

D toortuttJackee3|
D oot ke
D oot sckgae:

Videoln

Video ot
D ottt ackges:
D) toottut. Jackega: Autio Out Audio Out
D ottt sackgen] Vigeon
D) tooliatut Objectab
D) oottt objectL o Audion
D sttt OvjctLan utoin
D) oot utt objectLab
Audoin
sudioin Home
meaer M spearerz
mp Audo O
Video Out | udo Out
Auio Out
oo
sudoin
Speatert

Figure 5.1: System Structure of the Home-Theater System

(Source: GUI developed by Natasha Kositsyna)

The equivalent XML schema to store the visual properties of the objects is illustrated in Appendix-A.

5.3 System Requirements

Even a simple system such a home theater can have a large number of requirements. For the purpose of illustration, we specify a small subset here with requirements arranged in hierarchies. Customer needs lies at the top of the hierarchy (Level 1). Requirements flow down to next higher-levels and they become more specific. At the bottom of this hierarchy are the requirements that we can assign to individual components. In practice, when this level is attained, a design team is made responsible for designing that particular component and therefore owns the requirements associated with the component.

Level 1 Requirements – Preliminary Agreement between Customer and Builder

REQ.1.1: I need to assemble a good home theater system from the market.

REQ.1.2: The total cost must be less than or equal to USD 8000.

Level 2 Requirements – Detailed Agreement between customer and Builder

REQ.2.1: The home theater shall have a large display screen.

REQ.2.2: The display should be able to be mounted on the wall.

REQ.2.3: The system shall have a high fidelity audio system.

REQ.2.4: All components will be bought from the market.

REQ.2.5: Components of the systems shall be connected to each other.

As mentioned earlier, requirements at each subsequent level are more refined. Also, we need to establish the complying and defining requirements relationships at this stage. As illustrated in Figure 5.2, REQ.1.1 is a defining requirement for all level two requirements, because all the requirements essentially defines, what is “good” for the customer (REQ.2.1 thru REQ.2.3 & REQ.2.5) and the fact that user wants to assemble the system from the components bought from “market” (REQ.2.4). The cost requirement (REQ.1.2) is a defining requirement for REQ.2.1 thru REQ.2.3 because the user is constrained by the budget and so he cannot buy whatever is the best in the market. As mentioned in section 2.3, requirements can comply and define at the same level, REQ.2.1 thru REQ.2.3 are complying requirements of REQ.2.4 because the components need to be bought from the market. For example, in the era of mono aural audio signals, a high-fidelity system can’t mean a surround sound system because such systems were unavailable in the market.

Level 3 Requirements – Component Requirements

REQ.3.1: Size of the TV shall be at least 32 inches.

REQ.3.2: Thickness of the TV shall not be greater than 6 inches.

REQ.3.3: Cost of the TV shall be less than 5000 USD.

REQ.3.4: Cost of the Amplifier shall be less than 600 USD.

REQ.3.5: Output of the speaker shall lie within 200 watts and 350 watts.

REQ.3.6: The AudioOut Port of TV shall connect to AudioIn port of Amplifier.

REQ.3.7: The AudioOut Port of VCR shall connect to AudioIn Port of Amplifier.

REQ.3.8: The AudioOut Port of DVD shall connect to AudioIn Port of Amplifier.

REQ.3.9: The VideoOut Port of VCR shall connect to VideoIn Port of TV.

REQ.3.10: The AudioOut Port of Amplifier shall connect to AudioIn Port of Speakers.

Relationships between the requirements at this level can be reasoned in a similar way. For example, REQ.3.6 through REQ.3.10 is the complying interface requirements of REQ.2.5. It has to be kept in mind that the relationship between two requirements is not unique and it depends on the perspective of the engineer designing the system. These links and relationships keep on changing as the system design evolves. The requirements document is illustrated in Figure 5.2.

[image: image19.png]Requirement | Link | System Object

[——
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink
D toolktati Reatink

o S

(C:My Documentstthesis.xmiis opened

Figure 5.2: Requirements Document Structure

The RDF representation of the above requirement hierarchy is illustrated in Appendix-B.

5.4 Requirement Template Structure

As discussed in Section 2.4 quantifiable component-level requirements can be represented using templates to provide a formal structure to the requirement input. Figure 5.3 illustrates the process of attaining REQ.3.1 input, which says Size of TV shall be at least 32 inches. Other attributes of the requirements like Name, Rationale, Description and Revision are also illustrated. The user input is translated to a requirement XML property file illustrated in Appendix-C.

[image: image20.png]File Graph View Project

Requirement | Link | System Object

I3 toolki utl Requremda]
D tookituti Requirrn

D) toolkituti Reatinkl

D) tooktuti Reatinkl

D) tooktuti Reatinkl

D) tooktuti Reatinkl
D tookituti Requirern
D) toolkituti Reatinkl
D) tooktuti Reatinkl
D) tooktuti Reatinkl
[toolktati Reatinkl
[toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
D) toolkituti Reatinkl
[tookituti Reatinkl
D) tookituti Reainkal|

Requirements

size

v

NAME size or TV

RATIONALE |reen requirernent] shallbe atfeast

MARPED_TO [TV 32

TEMPLATE [3

DESCRIPTION ft least 32 inches| [inches

REVISION :33:39 EDT 2003

cancel

Documents'thesis.xmi is apened

Figure 5.3: Requirement Template Input Dialog

5.5 Requirements Traceability and Controlled Visualization

As we can see the requirements hierarchy shown in Figure 5.2 reflect a complex requirement structure, with requirements linking each other within and across levels. Requirement traceability is illustrated in Figure 5.4, Figure 5.5 and Figure 5.6. It provides screenshots of complying, defining and both type of relationships based on the user input of root element (REQ.2.3) and number of levels (1) in the traceability options dialog (shown along).

[image: image21.png]File Graph View Projec

ct

Acthity.

it it et i

ro] o swinare [oeision] contoiw ot o conatan

0 toortat Reatink
0 toolktati Retink
D toolktati Reatink
[tookituti Requirern
D toolktati Reatink
[tookituti Requirern
D toolktati Reatink
3 tookituti Reguirern
Grapn3

[toolkitti Requirrn
D toolktati Retink
O toolktati Reatink
D tookituti Requrerniz|

(G e ot
|
Direction
bownour o
o] [[cancet |

Figure 5.4: Complying Requirements (1-Level) w.r.to REQ.2.3

[image: image22.png]& Toolkit

File Graph View Project

i tte et o s pcision] contot e et i iconsont |

0 toolktati Reatink
0 tooktati Retink
0 toolktati Reatink
D toolktati Retink
0 toolktati Retink
0 tooktati Retink
0 toolktati Reatink
D toolktati Retink
0 toolktati Retink
0 toolktati Retink
0 toolktati Retink
) toolktati Retink
0 toolktati Retink
[tookitti Requirern
Granz

Number of levels.

R]

Direction
PN -

o] [coner|

Figure 5.5: Defining Requirements (1-Level) w.r.to REQ.2.3

[image: image23.png]File Graph View Project

Acthity.

ittt et s | St ecison] contot o ot e contont Ao st

0 toortat Reatink
0 toolktati Retink
D toolktati Reatink
[tookituti Requirern
D toolktati Reatink
[tookituti Requirern
D toolktati Reatink
3 tookituti Reguirern
Grapn3

[toolkitti Requirern
D toolktati Retink
0 toolktati Reatink
) toolkituti Requirern
0 toolktti Retink

Number of levels.

]

Direction

BOTH ~

o] [cocel |

Figure 5.6: Complying and Defining Requirements (1-Level) w.r.to REQ.2.3

5.6 Merging Two Requirement Trees

Requirement trees or system structure diagrams consist of nodes and edges. Consideration of mobile and geographically separated integrated product teams may lead to separate development of parts of the system. These discipline specific viewpoints need to be stitched together to see the complete system architecture and requirements graph. Figure 5.7 represents two requirement hierarchies obtained from two different sources. These need to be merged together on the basis of the common objects (as a first step, the merging criterion is the label identifying common objects) via a merge operation to yield Figure 5.8.

[image: image24.png]File Graph View Project

Requirements |
Requirement | Link | System Object

ot = =
orant

) toolkitti Requirern
3 tookituti Requirern
) toolkitti Requirern
[toolituti ReaLink]
[tooltuti ReaLinkl
Granz

2y

File Graph View Project

Requirements

Requirement | Link | System Object
e

orapnt
T
[tookitti Reguirern
) toolkitti Requirern
[toolktati Reatink
D) toolktuti ReaLinkl
ranz

[tookitati Requirern
) tookitti Requirrn
D toolkituti Requirrn
[tookitti Requirrn
D) toolktuti ReaLink}
D tookitti ReaLin

Graph2

Figure 5.7: Two Different Requirement Hierarchies Prior to Merging Operation

[image: image25.png]File Graph View Project

Requirement | Link | System Object

ot
orapnt

[toolktti Requirern
[tookituti Requirern
) tookituti Requirern
D) toolktuti ReaLink)
D) toolktati Reatinkl
ran2

T p——
[tookituti Requirern
D tookituti Requirern
[tookituti Requirrn
[toolktuti ReaLnk}
[toolktuti Reatinkl

Requirements

tents of twographs.xml are merged

Figure 5.8: Requirements Graph after the Merging Operation

5.7 Collapsing Requirement Tree with Duplications

Section 2.3 specifies the underlying graph structure of requirements, which when represented as tree yields duplicate nodes Figure 2.4. Since in this work, a RDF approach is followed to specify the relationships between the nodes and edges, a collapse operation can be performed on trees with duplicate nodes to bring out the underlying graph structure. This functionality is especially useful in bigger project contexts (such as NASA-GPM) having hundreds of requirements. Figure 5.9 and Figure 5.10 represent the requirements structure before and after the collapsing operations respectively.

[image: image26.png]File Graph View Project

Requirement | Link | System Object

Requirements

ect
rant
T p——
[tookituti Requirrm
[toolkituti Requirern
[toolkitti Requirrm
D toolktati Retink
0 toolktati Reatink
O toolktati Retink
0 tookituti Requirern
D tookituti Requirern
[tookituti Requirrm
) tookituti Requirern
D toolktati Retink

[Grapht | Grapha |

Figure 5.9: Requirements Tree Prior to Collapsing Operation

[image: image27.png]File Graph View Project

Requirements

Requirement | Link | System Object

ect
orapnt
T p——
) tookitti Requirrm
D) tookituti Requirern
[toolituti Requirrm
D toolktati Reatink
0 toolktti Reatink
D toolktati Reatink
[tookituti Requirern
D) toolkituti Requirern
[tookituti Requirern
D toolituti Requirern
O toolktati Reatink

[Grapht | Graph2 |

‘ResearchiprojecticollapsegraphGraph .rdf is opened

Figure 5.10: Requirements Graph After Collapsing Operation

5.8 Components Library

The specifications of the components are stored in an XML database comprised of individual components and their associated specifications lists. Component level requirements (Level 3 in this case) are checked against the specifications to validate the usability of a particular component to be used in the system structure. In the present example a very simple schema for storing the specification of a particular TV is shown as below:

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Specification of the TV -->

<Object Name="TV">

 <Size Value="27" Unit="inches" />

 <Brand Value="Sony" />

 <Cost Value="1400" Units="USD" />

 <Type Value="Plasma" />

 <Mass Value="50" Unit="lbs" />

 <Thickness Value=”5” Unit=”inches” />

</Object>

This is by no means the complete specification. This serves to illustrate the schema and includes a few specifications. As outlined in the Chapter 4 this schema file will be stored on vendor web sites and will be downloaded on the fly. Better still there could be domain ontology with the relevant properties which could be utilized by a reasoning engine such as Jess to come up with a quick answer to the requirement validation query.

5.9 Low-Level Validation of Requirements

When we see the above specification file and compare this particular instance of a TV with the requirements we specified, we see that this TV clears the requirements on the cost and thickness, but fails on the screen size. In the toolkit when we invoke the command to check the requirements against the specification file we get a dialog box (see Figure 5.11), signaling user to take corrective action.
[image: image28.png]@ Requirement REQ.3.1 failed against Size for TV

oK

Figure 5.11: Error Dialog thrown during Leaf Requirement Validation against Object Specification
6 Architecture Validation using Facts and Rules

The use of ontology provides a very powerful way to describe objects and their relationships to other objects. Ontology is “a set of knowledge terms, including the vocabulary, the semantic interconnections, and some simple rules of inference and logic for some particular topic [17], [18].”

While the exact picture of ontology is unclear, the problems ontology needs to overcome are agreed upon. They are to facilitate communication among people, among machines, and between humans and machines. To do this, ontology needs to describe a formal conceptualization within a particular domain, which does three things:

1. Provides a semantic representation of each entity and its relationships to other entities;

2. Provides constraints and rules that permit reasoning within the ontology;

3. Describes behavior associated with stated or inferred facts.

6.1 Schematic Model Checking Procedure

In this work, we propose to develop a Port Jack Ontology to describe the relationships between the port and jack connectivity in the system architecture. This ontology describes the constraining relationship between the ports and jacks and specifies what type of connections is allowed in the form of domain restrictions. We start with an Ontology having only an audio cable and the associated ports. The pathway of this ontology development and validation of system architecture is illustrated in Figure 6.1.
[image: image29.wmf]Creation of

Port-Jack

Ontology using

Protege editor

Conversion

from Protege

format to DAML

Jess Fact Base

Component

Assembly in

Paladin

Generate

Instances of

Port and Jack

Classes

Generation of

Rules

(Asking

Questions)

Execution of RETE

Algorithm

Confirmed

SRI Plugin

DAMLJessKB

DAMLJessKB

Feasibility of System

Architecutre?

Not Valid

With

Reasons

Figure 6.1: Overall Schema for Ontology-Enabled Model Checking

In the above schematic, there are two parallel paths namely Ontology development and its integration with the Paladin GUI to achieve model checking. Classes and the constraining relationships in the form of domain restrictions are defined on the right hand side. This Ontology in turn is used to validate the system architecture developed in the Paladin GUI and the steps are shown on the left hand side of the diagram. The Paladin GUI generates the instances of classes defined in the ontology along with the connectivity between the ports and the jacks in form of constraints as specified by the user. The constraints defined by the user and the constraints defined in the ontology need to be true simultaneously to conclude that system architecture is consistent with ontology definitions.

In the real world, the right hand side of the above schematic will come from the manufacturers who will define the ontologies for their product lines and store them on their respective web sites. These ontologies will be imported at the time of system architecture validation into the GUI dynamically and will determine if it is consistent with the manufacturer intentions of using that particular component. All the above steps in the schematic are discussed in detail next.

6.2 Class Relationships in Port Jack Ontology

DAML+OIL (Darpa Agent Markup Language) [14] and the OWL (Web Ontology Language) [33] are two different syntaxes with which one can create ontology. DAML+OIL is built on the top of RDF but provides much richer semantics and schema. For the purpose of illustration we will take a simple example here. In this example we have only one cable and associated ports and their definitions stored in the ontology. This cable is a typical Audio cable containing two jacks namely Audio Out jack and Audio In jack. The corresponding ports are the Audio Out Ports and the Audio In Ports. The definition of the cable includes what type of port and jack connections are allowed and what type of jacks a cable can have at its two ends. Figure 6.2 illustrates the class definitions and the relations between the instances as defined in the Ontology.

[image: image30.wmf]PORT

AudioInPort

AudioOutPort

JACK

AudioInJack

AudioOutJack

connects_to

connects_to

connects_to

converts_to

Figure 6.2: Class Relationship in the Port-Jack Ontology

The converts_to relationship signifies the fact that an audio cable has two different types of audio ports at two ends. Enforcing the rule in a logic engine, which will validate the connection of the cable as explained later, can enforce this. The point to note here is that Ontologies are not unique in the sense that it depends largely on the creator’s perspective. Various classes and the relationships can be defined in many ways. For example one might think to make a certain thing attribute of the class instead of making it a different class. Another person might think in a different way.

6.3 Equivalent DAML Representation of the Ontology

Once the class and the various relationships are thought upon we need to create an equivalent DAML representation of the same. There are two ways to achieve this:

· The DAML representation can be hard coded in a text file by writing the classes and their relationships manually.

· With the evolution of ontology there are many graphical user interfaces that have evolved to avoid the approach outlined in the first method. These graphical user interfaces take in the classes and their relationships and then generate the DAML or other representation as needed.

[image: image31.png]Project Window Help

HEERSE

lasses

retatonsi[Swore-.~| V] G 2

DTHING A
© (0):5YSTEN-CLASS A
XMLSchemazanyTyne
© ontology
dami_oilThing
©Jack

(©) Audiolntack

(© AudionPort
AudiooutPort

Superclasses +] -

[Svack

[© AudioinJack _(type=Class)

Name.

comment

o ack ‘

damiProperties

Narne

[S]connects_to

8] converts_to
[S]:NamE
|S]:DOCUMENTATION

classes={Jack}

Restriction

onFroperty type

comverts_to ioClass

connects_to ioClass

QualifiedRestriction

onFroperty hasClassQ

Logicaldefinition v

type

Figure 6.3: A Screenshot of Protégé GUI Illustrating Class Properties of AudioInJack

We will take this second approach as the first approach is not very intuitive and often results into the definition of the ontology, which is not consistent. The tool we have used for defining the Ontology is Protégé [34] developed in Stanford University with a plugin to generate the DAML file from SRI [35]. Figure 6.3 and Figure 6.4 provide snap shots of the tool in action to define the class AudioOutJack and the slot converts_to. A slot in Protégé maps to domain restriction in DAML. For a description and examples on domain restriction, slots and the subclass relationship the reader is referred to [36].

[image: image32.png]Project Window Help

HEERSE

converts to__(tye=ObjectPraperty)

[c]x]

[5] clsval
comment
[8]connected_by
connects_io
[S] converts_to
equivalentTo
[Slhasclassa
imports
[S]imverssot
[Sl1abel
logicaldefnition
8] onProperty
QualifiedRestriction
Sl restriction
sameClassas
[S] samePropertyas
TransitveProperty
[S] UnambiguousProperty
UnigueProperty
[S]value
[S]versioninfo
[S] ANNOTATED-INSTANCE
[S]:ANNOTATION-TEXT

Classes

sots SIGE,

[© Jack

Name.

comment

converts_to

rangeType

Instance

Allowed Classes

other

) vack

[Transitive

EquivalentTo

(] Unambiguous

[l Unique

VICl+

~ | SamePropertyas

s atribute refers to the fact that cable has two
jacks at ts ends. A Jack at one end converts to
jack atthe other end

Template Values

Iverseof.

Figure 6.4: A Screenshot of Protege GUI Illustrating Slot Properties of converts_to
The Ontology created using this software can be exported in the HTML format, which can be browsed (Figure 6.5) in a web browser such as Netscape [37]. It facilitates the documenting of the Ontology, as the class relationships and the properties associated with each are stored in the HTML format suitable for browsing.

The DAML plugin used along with Protégé generates the DAML file (Appendix-D) corresponding to this Ontology. A small snippet of the DAML generated is as follows:

<daml_oil:Class rdf:ID="AudioOutJack">

 <rdfs:subClassOf>

 <daml_oil:Restriction>

 <daml_oil:toClass rdf:resource="#AudioInJack"/>

 <daml_oil:onProperty rdf:resource="#converts_to"/>

 </daml_oil:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Jack"/>

</daml_oil:Class>

[image: image33.png][€XeISI=X¢]

S fl://C:AwINDOWS/Desklop/Thesislack bt

o] & HEE

&[S Protege-2000 Class Jack Documentat.

Project: SinpleOntology

Class Jack

Concrete Class Extends

daml oilThing

Direct Instances:

Mone

Direct Subclasses:
1. AudiolnTack
2. AudioOutlack

Template Slots E
Slot name | Documentation Type é':l"‘:“;z?cmm Cardinality | Default
converts_to Instance | Tack 0:1000
connects_to Instance | Port 0:1000
Own Slots
Slot name | Documentation Type Value Cardinality
QualifiedRestriction Instance
logicaldefinition Instance
sameClassds Instance
equivalentTo Instance
restriction Instance

Return to class hierarchy

Figure 6.5: Screenshot of the Exported Ontology Documentation in HTML

An equivalent graphical representation as obtained from the W3C RDF Validation service [31] is illustrated in Figure 6.6.

Line 1 specifies that AudioOutJack belongs to class schema of daml_oil. Line 2-7 specifies that the coverts_to property of an instance of AudioOutJack should have an instance of AudioInJack as a value. Line 8 enforces the subclass relationship between the AudioOutJack and the Jack. It means that an instance of AudioOutJack is also an instance of a Jack

[image: image34.wmf]http://www.isr.umd.edu/~vmayank/

SimpleOntology.daml#AudioOutJack

http://www.daml.org/2001/03/

daml+oil#Class

genid:ARP443632

http://www.isr.umd.edu/~vmayank/

SimpleOntology.daml#Jack

http://www.daml.org/2001/03/

daml+oil#Restriction

http://www.isr.umd.edu/~vmayank/

SimpleOntology.daml#AudioInJack

http://www.isr.umd.edu/~vmayank/

SimpleOntology.daml#converts_to

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/2000/01/rdf-

schema#subClassOf

http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.daml.org/2001/03/

daml+oil#toClass

http://www.daml.org/2001/03/daml+oil#onProperty

Figure 6.6: Equivalent RDF Graph of the Port-Jack Ontology

6.4 Conversion of DAML Representation to Jess Facts

The instances of the classes defined in the Ontology are created in our graphical user interface. We can use the above Ontology to check the validity of a particular cable and port connection defined by the user in the structure diagram of the system. To do this we need to use a rule engine such as Jess [38] to convert the Ontology definitions and relations into a series of assertions or known facts. This is achieved by using the DAMLJessKB [39] converter developed at Drexel University [40]. It defines a set of Java API’s and packages, which takes the DAML representation of the ontology as input. It streams the underlying DAML model into a series of triples and converts it to Jess assertions. A particular assertion in Jess language looks like:

assert ((PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Port

http://www.daml.org/2001/03/daml+oil#Class))

6.5 Addition of Rules and Execution of Rete Algorithm

Rules are then generated using the Java API of DAMLJessKB to enforce the ontology relationships. An example rule to enforce a jack and a port connection looks like:

(defrule allowed-jacka-porta-config

(PropertyValue

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon

http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#toClass

?anon

file:/D:/forte/j2sdk1.4.1/jre/lib/ext/SimpleOntology.daml#JackA)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#onProperty

?anon

file:/D:/forte/j2sdk1.4.1/jre/lib/ext/SimpleOntology.daml#connects_to)

(PropertyValue

http://www.w3.org/2000/01/rdf-schema#subClassOf

file:/D:/forte/j2sdk1.4.1/jre/lib/ext/SimpleOntology.daml#PortA

?anon)

=>

(printout t "Jack A consistent with Port A as per ontology definition" crlf)

) ; end defrule construct

Jack A and port A instances are generated programmatically from the GUI as per the user input and fed into this defrule construct of Jess. For a complete listing of the Jess facts and the generated rules refers to Appendix-E.

This DAMLJessKB API invokes the core Rete [41] algorithm of Jess to evoke the set of rules against the known facts and checks the specified instances. After execution it determines whether the Jacks and Ports are connected properly as per the Ontology definitions or not. It illustrates reasons for the non-conforming architecture.
7 Conclusions and Future Work

7.1 Conclusions

Large and complex multi-disciplinary systems development approach is moving towards bottom-up development paradigm. With vendors specializing in particular products, this approach emphasizes reuse of components and outsourcing wherever possible. The need to address and facilitate such development has been attempted in this work. We see overall system development as a confluence of top-down and bottom-up approach. An analysis of present-day techniques to develop systems starting from abstract concepts and refining them (top-down) has been presented. In this process we identified the problem faced by the current systems engineers and provide a solution to some of them in the form of a software prototype Paladin.

With the evolution of semantic web technologies, computing paradigm is shifting towards utilization of web-based contents with associated semantics. A primitive step is taken to analyze the ontology based computing and its relation to validate the systems architecture. RDF and XML based computing infrastructure have been employed extensively to create and query the database and analyze the connectivity relationships between the objects. This approach has leveraged the graph operations and simplified it to answer some of problems associated with controlled visualization and discipline specific system viewpoints.

7.2 Future Work

This work opens up a whole new domain of areas that could be worked upon in order for the development of a complete Systems Engineering tool to aid the current practices in the field. Some of the relevant work (but not limited to) in this context is illustrated next.

1. A key idea in this XML encoding is to make the requirements document compatible with the AP233 [42], [43], [44] standard of data exchange. AP233 is under development for providing a method of data interchange between various tools such as SLATE, DOORS, Rational Requisite PRO, and CORE [45] etc so that these tools can understand the data represented in other tools. With the basic infrastructure already in place, the XML encoding of requirements can be readily converted to make it consistent with the AP233 format once it is fully developed and adapted by various vendors. This capability will enhance the ability of the tools to import data from other tools and represent it in our GUI.

2. As the semantic web drives the storage of the component specification onto the web, there will be a pressing need for a specification builder GUI, which will be used to provide the necessary data input and export it into a standard component specification schema agreed upon the world wide community of the product vendors.

3. Once the requirements are elicited correctly from the use cases and scenarios, the next step is to generate the system architecture alternatives and do the trade-off and optimization. A limited capability of importing various components manually from the components library is already in place. It will be beneficial to have a framework that will allow the user to analyze the entire database of components and provide the designer with the critical feedback on the design margins based on the imported components specification. A framework for integrating the presented graphical user interface with optimization tools such as CPLEX needs to carry out linear and non-linear optimization to generate the tradeoff surface and inferior solutions.

4. Present work is based solely on the requirements representation, system structure and mapping between them. Although a framework for building and exporting the behavior diagram of the system (such as state charts, functional flow block diagrams), the semantics associated with them is still missing. This tool could be integrated with simulation tools such as Arena and finite state automata to carry out simulations and verification of the system.

5. A simple Jack and Port ontology is presented as part of this work to analyze the connection between components and check the feasibility of the system architecture. This ontology can be extended to define the entire domain of the graphical user interface to make it more intelligent and will not allow users to make the mistakes.

6. Use cases are the building blocks of the system architecture as they provide subtle hints for the candidate system objects. The process of generating the system design involves iterative translation from the use cases to scenarios to requirements to system architecture (see Figure 7.1). These all processes need to be consistent. There is a need for a tool, which will allow users to generate the activity diagrams automatically based on the description of use cases. An initiative along this direction has already been taken [46]. [image: image35.png]Use Case Diagram

d)9\ —— UseCasel

Sequences of fasks

scenario 1
— scenario 2

)9\ —— UseCase2

— scenario 3

Tndividual Use Cases

and Scen:\rins+

Req L.

Req2.

‘High—Level Requirements.

Sequence of messages
between objects.

 ccenatio 4 \ Activity Diageams

»~

i

Sequence Diagrams

Y

Models of System Behavior

and Systemn Structure.

Figure 7.1: Pathway from Use Cases to Scenarios and High-Level Requirements

7. Last but not the least, the visualization of systems architecture needs to be polished, as the diagrams should look aesthetically pleasant. An integration of graph drawing algorithms [47], [48], [49] with possible import of packages from existing sources [50], [51], [52] could be integrated into the tool to provide the automatic graph layout as per the specified algorithm.
Appendix-A XML Representation of the Home Theater Structure

This data file represents the schema for storing the visual properties of the objects / requirements created in the Paladin toolkit. Some of the Visual information, which is needed to redraw the component on the screen, includes its dimension, type of the object, its ID and separate graphs in a particular view. These all information is stored in a hierarchy of corresponding tags inside the object.

 <?xml version="1.0" encoding="UTF-8" ?>

- <Project>
- <Graph start="true">
- <Object ID="4337267591854790877" shape="PORT_PANEL" type="47">
 <Dimension>44 24 162 129</Dimension>

 </Object>
- <Object ID="7733796259543882762" shape="CABLE" type="46">
 <Dimension>156 70 374 70</Dimension>

 <Link fromID="5897562330078363886" toID="-930171862495999138" />

 </Object>
- <Object ID="-4227801706294106407" shape="CABLE" type="46">
 <Dimension>257 211 131 126</Dimension>

 <Link fromID="-2400144836664991188" toID="-357089398145097484" />

 </Object>
- <Object ID="-212117402712482581" shape="CABLE" type="46">
 <Dimension>342 277 462 277</Dimension>

 <Link fromID="-3941780722503364518" toID="-349280628884105229" />

 </Object>
- <Object ID="6823559814550310809" shape="CABLE" type="46">
 <Dimension>213 282 171 349</Dimension>

 <Link fromID="9127970985135915536" toID="5040508452007293263" />

 </Object>
- <Object ID="-5116623924643214452" shape="PORT_PANEL" type="47">
 <Dimension>458 246 556 313</Dimension>

 </Object>
- <Object ID="6425550699874130311" shape="CABLE" type="46">
 <Dimension>419 103 321 212</Dimension>

 <Link fromID="-8041419687310972460" toID="8674520345213607480" />

 </Object>
- <Object ID="9179454190841196613" shape="CABLE" type="46">
 <Dimension>100 126 100 348</Dimension>

 <Link fromID="7619911316542097551" toID="1945471842619664061" />

 </Object>
- <Object ID="-5505813272925557232" shape="PORT_PANEL" type="47">
 <Dimension>212 213 346 327</Dimension>

 </Object>
- <Object ID="-3941780722503364518" shape="PORT" type="48">
 <Dimension>332 267 352 287</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="-349280628884105229" shape="PORT" type="48">
 <Dimension>452 267 472 287</Dimension>

 <Link toID="-5116623924643214452" />

 </Object>
- <Object ID="5040508452007293263" shape="PORT" type="48">
 <Dimension>161 339 181 359</Dimension>

 <Link toID="-6056953104219719173" />

 </Object>
- <Object ID="9127970985135915536" shape="PORT" type="48">
 <Dimension>203 272 223 292</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="-8631530153037221977" shape="PORT" type="48">
 <Dimension>272 317 292 337</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="1945471842619664061" shape="PORT" type="48">
 <Dimension>90 338 110 358</Dimension>

 <Link toID="-6056953104219719173" />

 </Object>
- <Object ID="-930171862495999138" shape="PORT" type="48">
 <Dimension>364 60 384 80</Dimension>

 <Link toID="-6397728818364024033" />

 </Object>
- <Object ID="-8041419687310972460" shape="PORT" type="48">
 <Dimension>409 93 429 113</Dimension>

 <Link toID="-6397728818364024033" />

 </Object>
- <Object ID="-2400144836664991188" shape="PORT" type="48">
 <Dimension>247 201 267 221</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="8674520345213607480" shape="PORT" type="48">
 <Dimension>311 202 331 222</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="-357089398145097484" shape="PORT" type="48">
 <Dimension>121 116 141 136</Dimension>

 <Link toID="4337267591854790877" />

 </Object>
- <Object ID="7619911316542097551" shape="PORT" type="48">
 <Text>A</Text>

 <Dimension>90 116 110 136</Dimension>

 <Link toID="4337267591854790877" />

 </Object>
- <Object ID="5897562330078363886" shape="PORT" type="48">
 <Dimension>146 60 166 80</Dimension>

 <Link toID="4337267591854790877" />

 </Object>
- <Object ID="5888226028590857221" shape="LABEL" type="40">
 <Text>TV</Text>

 <Dimension>91 46 111 68</Dimension>

 <Link toID="4337267591854790877" />

 </Object>
- <Object ID="-3464995602672494238" shape="LABEL" type="40">
 <Text>Home<nl>Theater<nl>Amp</Text>

 <Dimension>260 254 308 308</Dimension>

 <Link toID="-5505813272925557232" />

 </Object>
- <Object ID="5766306240200143317" shape="LABEL" type="40">
 <Text>DVD</Text>

 <Dimension>97 364 128 386</Dimension>

 <Link toID="-6056953104219719173" />

 </Object>
- <Object ID="-1125144154021993343" shape="LABEL" type="40">
 <Text>Speaker 2</Text>

 <Dimension>482 268 544 290</Dimension>

 <Link toID="-5116623924643214452" />

 </Object>
- <Object ID="-2548812202442281956" shape="LABEL" type="40">
 <Text>Audio Out</Text>

 <Dimension>352 289 411 311</Dimension>

 <Link toID="-3941780722503364518" />

 </Object>
- <Object ID="-8080414068675241044" shape="LABEL" type="40">
 <Text>Audio In</Text>

 <Dimension>404 242 454 264</Dimension>

 <Link toID="-349280628884105229" />

 </Object>
- <Object ID="5307719630104561260" shape="LABEL" type="40">
 <Text>Speaker 1</Text>

 <Dimension>264 436 326 458</Dimension>

 <Link toID="-7075534318685230158" />

 </Object>
- <Object ID="-7072323418332330746" shape="LABEL" type="40">
 <Text>Video In</Text>

 <Dimension>32 135 82 157</Dimension>

 <Link toID="7619911316542097551" />

 </Object>
- <Object ID="1702425072755131235" shape="LABEL" type="40">
 <Text>Audio In</Text>

 <Dimension>157 247 207 269</Dimension>

 <Link toID="9127970985135915536" />

 </Object>
- <Object ID="-8447650783263509459" shape="LABEL" type="40">
 <Text>Audio Out</Text>

 <Dimension>170 120 229 142</Dimension>

 <Link toID="-357089398145097484" />

 </Object>
- <Object ID="-566334250751855220" shape="CABLE" type="46">
 <Dimension>282 327 282 420</Dimension>

 <Link fromID="-8631530153037221977" toID="-8831546525121722840" />

 </Object>
- <Object ID="-8831546525121722840" shape="PORT" type="48">
 <Dimension>272 410 292 430</Dimension>

 <Link toID="-7075534318685230158" />

 </Object>
- <Object ID="-6397728818364024033" shape="PORT_PANEL" type="47">
 <Dimension>373 45 522 105</Dimension>

 </Object>
- <Object ID="-6056953104219719173" shape="PORT_PANEL" type="47">
 <Dimension>55 347 205 393</Dimension>

 </Object>
- <Object ID="-3960374134036905440" shape="LABEL" type="40">
 <Text>Audio Out</Text>

 <Dimension>120 305 179 327</Dimension>

 <Link toID="5040508452007293263" />

 </Object>
- <Object ID="4268930084446139984" shape="LABEL" type="40">
 <Text>Video Out</Text>

 <Dimension>32 305 91 327</Dimension>

 <Link toID="1945471842619664061" />

 </Object>
- <Object ID="7722487328336319391" shape="LABEL" type="40">
 <Text>Audio In</Text>

 <Dimension>239 169 289 191</Dimension>

 <Link toID="-2400144836664991188" />

 </Object>
- <Object ID="-4131231084681303988" shape="LABEL" type="40">
 <Text>Video In</Text>

 <Dimension>173 37 223 59</Dimension>

 <Link toID="5897562330078363886" />

 </Object>
- <Object ID="-8708940313658193746" shape="LABEL" type="40">
 <Text>Video Out</Text>

 <Dimension>305 81 364 103</Dimension>

 <Link toID="-930171862495999138" />

 </Object>
- <Object ID="-1380059460790430106" shape="LABEL" type="40">
 <Text>Audio In</Text>

 <Dimension>350 200 400 222</Dimension>

 <Link toID="8674520345213607480" />

 </Object>
- <Object ID="600277411624340355" shape="LABEL" type="40">
 <Text>VCR</Text>

 <Dimension>445 65 476 87</Dimension>

 <Link toID="-6397728818364024033" />

 </Object>
- <Object ID="-5640294704235571447" shape="LABEL" type="40">
 <Text>Audio Out</Text>

 <Dimension>428 120 487 142</Dimension>

 <Link toID="-8041419687310972460" />

 </Object>
- <Object ID="-7075534318685230158" shape="PORT_PANEL" type="47">
 <Dimension>251 417 344 476</Dimension>

 </Object>
- <Object ID="2386762432953440281" shape="LABEL" type="40">
 <Text>Audio Out</Text>

 <Dimension>302 332 361 354</Dimension>

 <Link toID="-8631530153037221977" />

 </Object>
- <Object ID="648612592363060694" shape="LABEL" type="40">
 <Text>Audio In</Text>

 <Dimension>302 386 352 408</Dimension>

 <Link toID="-8831546525121722840" />

 </Object>
 </Graph>
 </Project>
Appendix-B RDF Representation of the Requirement Structure

This data file outlines a schema to store the connectivity information of the requirement objects created in the Paladin toolkit in the RDF. All requirements correspond to a resource, which have their ID’s as the Name attribute, and connectivity to other requirement objects are specified through the VCARD:Given property.

<rdf:RDF

 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#'

 >

 <rdf:Description rdf:about='http://somewhere/REQ.3.1'>

 <vcard:N>REQ.3.1</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.5'>

 <vcard:N>REQ.3.5</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.9'>

 <vcard:N>REQ.3.9</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.2.5'>

 <vcard:N>REQ.2.5</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.6'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.7'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.8'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.9'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.10'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.6'>

 <vcard:N>REQ.3.6</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.2.2'>

 <vcard:N>REQ.2.2</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.2'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.3'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.10'>

 <vcard:N>REQ.3.10</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.3'>

 <vcard:N>REQ.3.3</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.2'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.1.1'>

 <vcard:N>REQ.1.1</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.1'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.2'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.5'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.3'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.4'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.2.1'>

 <vcard:N>REQ.2.1</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.1'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.2'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.3'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.2.4'>

 <vcard:N>REQ.2.4</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.3'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.2'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.1'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.7'>

 <vcard:N>REQ.3.7</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.2'>

 <vcard:N>REQ.3.2</vcard:N>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.1.2'>

 <vcard:N>REQ.1.2</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.1'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.2'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.3'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.2.4'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.4'>

 <vcard:N>REQ.3.4</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.5'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.2.3'>

 <vcard:N>REQ.2.3</vcard:N>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.4'/>

 <vcard:Given rdf:resource='http://somewhere/REQ.3.5'/>

 </rdf:Description>

 <rdf:Description rdf:about='http://somewhere/REQ.3.8'>

 <vcard:N>REQ.3.8</vcard:N>

 </rdf:Description>

</rdf:RDF>

Appendix-C Requirements Property XML File

This XML schema stores the properties of the individual requirements.

 <?xml version="1.0" encoding="UTF-8" ?>

- <Project file="HomeTheater.xml">
- <Requirement ID="REQ.1.1">
 <Name Value="Overall System Requirement" />

 <Rationale Value="System Objective" />

 <Verification Value="Experimental" />

 <Comment Value="Preliminary Agreement between customer and builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Home Theater Amplifier" />

 <Template NO="0" />

 <Description Value="I need to assemble a good home theater system from the market" />

 </Requirement>
- <Requirement ID="REQ.1.2">
 <Name Value="Overall Cost Requirement" />

 <Rationale Value="Cost limit to be imposed on the components" />

 <Verification Value="Analytical" />

 <Comment Value="Preliminary agreement between customer and builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Home Theater Amplifier" />

 <Template NO="0" />

 <Description Value="The total cost must be less than or equal to 8000 USD" />

 </Requirement>
- <Requirement ID="REQ.2.1">
 <Name Value="Display Requirement" />

 <Rationale Value="Need to watch movies on large screen" />

 <Verification Value="Demonstration" />

 <Comment Value="Detailed agreement beween the customer and builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="0" />

 <Description Value="The Home Theater shall have a large display screen" />

 </Requirement>
- <Requirement ID="REQ.2.2">
 <Name Value="Wall mountability" />

 <Rationale Value="Space saving need" />

 <Verification Value="Experimental" />

 <Comment Value="Detailed agreement between the cutomer and builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="0" />

 <Description Value="The display should be able to be mounted on the wall" />

 </Requirement>
- <Requirement ID="REQ.2.3">
 <Name Value="High fidelity sound" />

 <Rationale Value="Theater experience needs surround sound capabilities" />

 <Verification Value="Demonstration" />

 <Comment Value="Detailed agreement between the customer and the builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Speaker" />

 <Template NO="0" />

 <Description Value="The system shall have a high fidelity audio system" />

 </Requirement>
- <Requirement ID="REQ.2.4">
 <Name Value="COTS Requirement" />

 <Rationale Value="User should be able to go to market and buy components" />

 <Verification Value="Experimental" />

 <Comment Value="Detailed agreement between the customer and the builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Home Theater Amplifier" />

 <Template NO="0" />

 <Description Value="All components will be bought from the market" />

 </Requirement>
- <Requirement ID="REQ.2.5">
 <Name Value="Connectivity Requirement" />

 <Rationale Value="If user buys something from the market he should be able to connect things together" />

 <Verification Value="Demonstration" />

 <Comment Value="Detailed agreement between the customer and the builder" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Home Theater Amplifier" />

 <Template NO="0" />

 <Description Value="Components of the system shall be connected to each other" />

 </Requirement>
- <Requirement ID="REQ.3.1">
 <Name Value="Size Requirement on TV" />

 <Rationale Value="User definition of Large Display" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="3" OBJECT="TV" SPECIFICATION="Size" SPECLINK="tv1.xml" VALUE1="32" UNITS="inches" />

 <Description Value="Size of the TV shall be atleast 32 inches" />

 </Requirement>
- <Requirement ID="REQ.3.2">
 <Name Value="Thickness of TV" />

 <Rationale Value="Comes from Wall mountable display screen" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tv1.xml" VALUE1="6" UNITS="inches" />

 <Description Value="Thickness of the TV shall not exceed 6 inches" />

 </Requirement>
- <Requirement ID="REQ.3.2">
 <Name Value="Cost of TV" />

 <Rationale Value="Splitting of overall Cost of the System" />

 <Verification Value="Analytical" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="TV" />

 <Template NO="2" OBJECT="TV" SPECIFICATION="Cost" SPECLINK="tv1.xml" VALUE1="5000" UNITS="USD" />

 <Description Value="Cost of the TV shall be less than 5000 USD" />

 </Requirement>
- <Requirement ID="REQ.3.4">
 <Name Value="Cost of the amplifier" />

 <Rationale Value="Splitting of overall cost of the system" />

 <Verification Value="Analytical" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Amplifier" />

 <Template NO="0" />

 <Description Value="Cost of the Amplifier shall be less than 600 USD" />

 </Requirement>
- <Requirement ID="REQ.3.5">
 <Name Value="Output of the speakers" />

 <Rationale Value="Definition of high fidelity sound system" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="Speaker" />

 <Template NO="5" OBJECT="Speaker" SPECIFICATION="Output" SPECLINK="speaker1.xml" VALUE1="200" VALUE2="350" UNIS="WATTS" />

 <Description Value="Output of the Speaker shall lie within 200 watts and 350 watts" />

 </Requirement>
- <Requirement ID="REQ.3.6">
 <Name Value="Audio Connectivity of TV" />

 <Rationale Value="Sending sound output to the amplifier" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="n/a" />

 <Template NO="8" PORT1="AudioOut" OBJECT1="TV" PORT2="AudioIn" OBJECT2="Amplifier" />

 <Description Value="The AudioOut port of TV shall connect to AudioIn Port of Amplifier" />

 </Requirement>
- <Requirement ID="REQ.3.7">
 <Name Value="Audio Connectivity of VCR" />

 <Rationale Value="Sending sound output to the amplifier" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="n/a" />

 <Template NO="8" PORT1="AudioOut" OBJECT1="VCR" PORT2="AudioIn" OBJECT2="Amplifier" />

 <Description Value="The AudioOut port of VCR shall connect to AudioIn Port of Amplifier" />

 </Requirement>
- <Requirement ID="REQ.3.8">
 <Name Value="Audio Connectivity of DVD Player" />

 <Rationale Value="Sending sound output to the amplifier" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="n/a" />

 <Template NO="8" PORT1="AudioOut" OBJECT1="DVD" PORT2="AudioIn" OBJECT2="Amplifier" />

 <Description Value="The AudioOut port of DVD shall connect to AudioIn Port of Amplifier" />

 </Requirement>
- <Requirement ID="REQ.3.9">
 <Name Value="Video Connectivity of VCR" />

 <Rationale Value="Sending Video Feed to Television" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="n/a" />

 <Template NO="8" PORT1="VideoOut" OBJECT1="VCR" PORT2="VideoIn" OBJECT2="TV" />

 <Description Value="The VideoOut port of VCR shall connect to VideoIn Port of TV" />

 </Requirement>
- <Requirement ID="REQ.3.10">
 <Name Value="Audio Connectivity of Amplifier" />

 <Rationale Value="Sending sound output to the speakers" />

 <Verification Value="Demonstration" />

 <Comment Value="Component Level Requirement" />

 <REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

 <MAPPED_TO Value="n/a" />

 <Template NO="8" PORT1="AudioOut" OBJECT1="Amplifier" PORT2="AudioIn" OBJECT2="Speaker" />

 <Description Value="The AudioOut port of Amplifier shall connect to AudioIn Port of Speaker" />

 </Requirement>
 </Project>
Appendix-D DAML Representation of the Cable-Port Ontology

This is the Ontology exported by the Protégé environment using a DAML plugin. This ontology contains information about a simple cable, its end jacks and the associated ports. It defines domain restriction on the allowed Jack and Ports connection through properties converts_to and connects_to.

<rdf:RDF

 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:daml_oil ="http://www.daml.org/2001/03/daml+oil#"

 xmlns:ontology="http://www.isr.umd.edu/~vmayank#"

 xmlns:rdfs ="http://www.w3.org/2000/01/rdf-schema#"

 xmlns ="http://www.isr.umd.edu/~vmayank/ontology#"

 >

<daml_oil:Class rdf:ID="Port">

</daml_oil:Class>

<daml_oil:Class rdf:ID="AudioOutJack">

 <rdfs:subClassOf>

 <daml_oil:Restriction>

 <daml_oil:toClass rdf:resource="#AudioInJack"/>

 <daml_oil:onProperty rdf:resource="#converts_to"/>

 </daml_oil:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Jack"/>

</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="converts_to">

 <daml_oil:domain rdf:resource="#Jack"/>

 <daml_oil:range rdf:resource="#Jack"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="Jack">

</daml_oil:Class>

<daml_oil:Class rdf:ID="AudioInPort">

 <rdfs:subClassOf>

 <daml_oil:Restriction>

 <daml_oil:toClass rdf:resource="#AudioInJack"/>

 <daml_oil:onProperty rdf:resource="#connects_to"/>

 </daml_oil:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Port"/>

</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="connects_to">

 <daml_oil:range rdf:resource="#Jack"/>

 <daml_oil:domain rdf:resource="#Port"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="AudioOutPort">

 <rdfs:subClassOf>

 <daml_oil:Restriction>

 <daml_oil:toClass rdf:resource="#AudioOutJack"/>

 <daml_oil:onProperty rdf:resource="#connects_to"/>

 </daml_oil:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Port"/>

</daml_oil:Class>

<daml_oil:Ontology rdf:ID="">

</daml_oil:Ontology>

<daml_oil:Class rdf:ID="AudioInJack">

 <rdfs:subClassOf>

 <daml_oil:Restriction>

 <daml_oil:toClass rdf:resource="#AudioOutJack"/>

 <daml_oil:onProperty rdf:resource="#converts_to"/>

 </daml_oil:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Jack"/>

</daml_oil:Class>

</rdf:RDF>

Appendix-E Jess Data Input for the Cable-Port Ontology

Here is the Jess input file, which is generated using the DAMLJessKB plugin to covert the Ontology into a set of facts (collection of RDF triplets prefixed by the PropertyValue key), and a set of rules, generated from the instances created in the GUI. When Rete algorithm is run on the provided set of facts, it checks the cable configuration and comes out with an assertion whether the cable jacks and associated ports are consistent as per the ontology definitions or not, and produces an output informing the results.

;; ==

;; ************** Define Initial Facts ****************

;; ==

(deffacts iniial-condition-from-ontology

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Port

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon2

http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon2

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon2

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon2)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to

http://www.daml.org/2001/03/daml+oil#ObjectProperty)

(PropertyValue http://www.daml.org/2001/03/daml+oil#domain

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#range

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInPort

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon11

http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon11

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon11

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInPort

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon11)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInPort

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Port)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to

http://www.daml.org/2001/03/daml+oil#ObjectProperty)

(PropertyValue http://www.daml.org/2001/03/daml+oil#range

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#domain

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Port)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutPort

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon19

http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon19

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon19

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutPort

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon19)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutPort

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Port)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack

http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon24

http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon24

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon24

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#anon24)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#Jack)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml

http://www.daml.org/2001/03/daml+oil#Ontology)
)

;; ==

;; ************* Reset the known facts ****************

;; ==

(reset)

;; ==

;; Rule 1: This rule if fired accounts for the fact

;; that the cable has correct jacks at its two ends and

;; produces such an output

;; ==

(defrule allowed-jack-config

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Jack B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack

?anon)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

=>

(printout t "Cable jacks are consistent with ontology definition" crlf)

) ;; end defrule construct

;; ==

;; Rule 2: This rule if fired accounts for the fact

;; that the cable does not have correct jacks at its

;; two ends as per the Ontology definition and produces

;; such an Output

;; ==

(defrule not-allowed-jack-config

(not (and

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#converts_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Jack B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack

?anon)

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

))

=>

(printout t "Cable jacks not consistent with ontology definition" crlf)

) ; end defrule construct

;; ==

;; Rule 3: This rule if fired accounts for the fact

;; that the Jack A is properly Connected to Port A as

;; per the Ontology definition

;; ==

(defrule allowed-jacka-porta-config

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Port A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutPort

?anon)

=>

(printout t "Jack A consistent with Port A as per ontology definition" crlf)

) ;; end defrule construct

;; ==

;; Rule 4: This rule if fired accounts for the fact

;; that the Jack A is not properly Connected to Port A

;; as per the Ontology definition and produces the

;; error message

;; ==

(defrule not-allowed-jacka-porta-config

(not (and

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue

http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Port A instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioOutPort

?anon)

))

=>

(printout t crlf "Jack A not consistent with Port A as per ontology definition" crlf)

(printout t "If you are sure that cable is compatible with the port try reversing the cable" crlf)

) ;; end defrule construct

;; ==

;; Rule 5: This rule if fired accounts for the fact

;; that the Jack B is properly Connected to Port B as

;; per the Ontology definition and produces a message

;; ==

(defrule allowed-jackb-portb-config

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Port B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInPort

?anon)

=>

(printout t "Jack B consistent with Port B as per ontology definition" crlf)

) ;; end defrule construct

;; ==

;; Rule 6: This rule if fired accounts for the fact

;; that the Jack B is not properly Connected to Port B

;; as per the Ontology definition and produces an error

;; message

;; ==

(defrule not-allowed-jackb-portb-config

(not (and

(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type

?anon http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#toClass

?anon

;; ==

;; This Jack B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#onProperty

?anon http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#connects_to)

(PropertyValue http://www.w3.org/2000/01/rdf-schema#subClassOf

;; ==

;; This Port B instance is generated programmatically

;; using the Java API

;; =========+==

http://www.isr.umd.edu/~vmayank/SimpleOntology.daml#AudioInPort

?anon)

))

=>

(printout t crlf "Jack B not consistent with Port B as per ontology definition" crlf)

(printout t "If you are sure that cable is compatible with the port try reversing the cable" crlf)

) ;; end defrule construct

;; run the Rete on the above facts and rules

(run)

REFERENCES
[1] Unified Modeling Language (UML). (2003, Aug.). [Online]. Available: http://www.omg.org/uml
[2] H. Lykins. S. Friedenthal. and A. Meilich. (2001, Oct.).Adapting UML for an Object Oriented Systems Engineering Method (OOSEM). Presented at 2001 Incose Chesapeake Chapter Meeting. [Online]. Available: http://www.incose.org/chesapek/meetings/Adapting_UML_for_an_OOSEM.doc
[3] J. Adams. (2003, Apr). Global Precipitation Measurement [Online]. Available: http://gpm.gsfc.nasa.gov/index.html
[4] Microsoft Visio. (2003, July). [Online]. Available: http://www.microsoft.com/office/visio/
[5] Rational Rose. (2003, July). [Online]. Available: http://www.rational.com/ products/rose/
[6] EDS Slate. (2003, July). [Online]. Available: http://www.eds.com/products/ plm/teamcenter/slate/
[7] Telelogic Doors. (2003, July). [Online]. Available: http://www.telelogic.com/products/doorsers/doors/
[8] Ilog Cplex. (2003, July). [Online]. Available: http://www.cplex.com
[9] Mathworks Matlab. (2003, July). [Online]. Available: http://www.mathworks.com/products/matlab/
[10] Arena. (2003, July). [Online]. Available: http://www.arenasimulation.com/
[11] K. Kronlog, Method Integration: Concepts and Case Studies. John-Wiley and Sons, 1993

[12] S. Melnik. and S. Decker. (2000, Sep). A Layered Approach to Information Modeling and Interoperability on the Web. Presented at Proc. ECDL'00 Workshop on the Semantic Web, Lisbon, Portugal. [Online] Available: http://www-db.stanford.edu/~melnik/pub/sw00
[13] W3C Resource Description Framework (RDF). (2003, July). [Online]. Available: http://www.w3.org/RDF
[14] Darpa Agent Markup Language (DAML). (2003, July). [Online]. Available: http://www.daml.org
[15] T. Berners-Lee, J. Hendler, and O.Lassila, “The Semantic Web,” Scientific American, pp 35-43, May. 2001.
[16] J. Hendler, “Agents and the Semantic Web,” IEEE Intelligent Systems, vol. 16(2), pp. 30-37, Mar. /Apr. 2001.

[17] D. Fensel, F. van Harmele, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider, “OIL: An Ontology Infrastructure for the Semantic Web,” IEEE Intelligent Systems, vol. 16(2), pp. 38-45, Mar. /Apr. 2001.

[18] M. Gruniger and J. Lee, “Ontology Applications and Design,” Communications of the ACM, vol. 45(2), pp. 39-41, Feb. 2002.
[19] S. A. Selberg. and M. A. Austin. (2003, Apr.). Requirements Engineering and the Semantic Web. ISR. University of Maryland. College Park. MD. [Online]. Available: http://techreports.isr.umd.edu/TechReports/ISR/2003/ TR_2003-20/TR_2003-20.phtml
[20] M. E. C. Hull, K. Jackson, and A. J. J. Dick, Requirements Engineering. Springer 2002

[21] Microsoft Word. (2003, July). [Online]. Available: http://www.microsoft.com/office/word
[22] W3C Extensible Markup Language (XML). (2003, July). [Online]. Available: http://www.w3.org/XML/

[23] W3C Extensible Stylesheet Language Family (XSLT). (2003, July). [Online]. Available: http://www.w3.org/Style/XSL
[24] Sun Microsystems Java. (2003, July). [Online]. Available: http://java.sun.com
[25] The Apache XML Project Xerces. (2003, July). [Online]. Available: http://xml.apache.org
[26] Hewlett-Packard RDQL – RDF Data Query Language. (2003, July). [Online]. Available: http://www.hpl.hp.com/semweb/rdql.htm
[27] Hewlett-Packard Jena – A Java API for RDF. (2003, Apr.). [Online]. Available: http://www.hpl.hp.com/semweb/
[28] T. Kamada and S. Kawai, “A General Framework for Visualizing Abstract Objects an Relations,” ACM Transaction on Graphics, vol. 10(1), pp. 1-39, Jan. 1991.
[29] W3C DOM – Document Object Model. (2003, July). [Online]. Available: http://www.w3.org/DOM/
[30] D. Megginson. Simple API for XML (SAX). (2003, July). [Online]. Available: http://www.saxproject.org
[31] W3C RDF Validation Service. (2003, July). [Online]. Available: http://www.w3.org/RDF/Validator
[32] M. A. Austin and B. A. Frankpitt, “Systems Engineering Principles,” class notes for ENSE 621 and ENPM 641, University of Maryland, College Park, MD, Fall 2001
[33] W3C Web Ontology Language (OWL). (2003, July). [Online]. Available: http://www.w3.org/TR/owl-ref/
[34] Stanford Medical Informatics Protégé Ontology Editor and Knowledge Acquisition System. (2003, June). [Online]. Available: http://protege.stanford.edu
[35] SRI International DAML+OIL Plugin for Protégé 2000. (2003, July). [Online]. Available: http://www.ai.sri.com/daml/DAML+OIL-plugin/ index.htm
[36] Annotated DAML+OIL Ontology Markup. (2001, Mar.). [Online]. Available: http://www.daml.org/2001/03/daml+oil-walkthru.html
[37] Netscape. (2003, July). [Online]. Available: http://www.netscape.com
[38] Sandia National Laboratories Jess – The Expert System Shell for the Java Platform. (2003, July). [Online]. Available: http://herzberg.ca.sandia.gov/ jess/
[39] Drexel University DAMLJessKB. (2003, June). [Online]. Available: http://edge.mcs.drexel.edu/assemblies/software/damljesskb/damljesskb.html
[40] J. Kopena and W. C. Regli, “DAMLJessKB: A Tool for Reasoning with the Semantic Web,” IEEE Intelligent Systems, vol. 18(3), pp. 74-77, May / June 2003.
[41] C. L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem,” Artificial Intelligence, vol. 19, pp. 17-37, 1982
[42] H. P. Frisch. AP 233 Systems Engineering (2003, May). [Online] Available: http://step.jpl.nasa.gov/AP233/
[43] D. Oliver, “AP233 – INCOSE Status Report,” in Incose Insight, vol. 5(3), Oct. 2002.

[44] D. Muller. Requirements Engineering Knowledge Management based on STEP AP233. (2003, July). [Online]. Available: http://www.sgi.co.kr/ solutions/catia/download/immersive/step2000_seminor/step_ap233.pdf
[45] Vitech Corp CORE. (2003, July). [Online]. Available: http://www.vitechcorp.com/productline.html
[46] M. A. Austin. Summer Systems Engineering Project. (2003, July). [Online]. Available: http://www.isr.umd.edu/~austin/summer-se-project.html
[47] P. Eades and R. Tamassia, “Algorithms for Drawing Graphs: An Annotated Bibliography,” Department of Computer Science, Brown University, Providence, RI Tech. Rep. CS-89-09, Feb. 1989.
[48] R. Tamassaia, G. Battista, and C. Batini, “Automatic Graph Drawing and Readability of Diagrams,” IEEE Transactions on Systems, Machines and Cybernetics, vol. 18(1), pp. 61-79, Jan. 1988.

[49] I. Herman, “Graph Visualization and Navigation in Information Visualization: A Survey,” IEEE Transactions on Visualization and Computer Graphics, vol. 6(1), pp. 24-43, Jan.-Mar. 2000.
[50] Jgraph. (2003, July). [Online]. Available: http://jgraph.sourceforge.net
[51] C. Mccreary. Drawing Graphs with VGJ, Department of Computer Science and Software Engineering. (1998, Apr.). [Online]. Available: http://www.eng.auburn.edu/department/cse/research/graph_drawing/graph_drawing.html
[52] ILOG Views Graph Layout. (2003, July). [Online]. Available: http://www.ilog.com/products/views/graphlayout/

PAGE
vi

_1119298738

_1119302026

_1119302708

_1120562498.vsd

_1121261735.vsd
Adjust the width of the box to change the paragraph width. Box's height adjusts according to text.�

text�

Paladin�

Component Assembly�

System Structure�

System Behavior�

Requirement
Representation &
Management�

Import / Export
Visual Properties
to
XML�

Mapped to�

�

Store Connectivity
Information of Objects
in RDF�

Merging Two
Requirement Trees�

Collapsing Requirement Hierarchy
with Duplicates into a
Graph�

Requirement
Template Structure�

�

Requirement Validation
against Component
Specification�

Requirement Traceability &
Controlled Visualization�

Validation of
System
Architecture�

_1120561698.vsd

_1118746169.vsd

_1119189000.vsd

_1118744202.vsd

_1118413696.vsd

