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Recent emergence and popularity of mobile ad hoc networks in a host of

current-day applications has instigated a suite of research challenges, primarily in

routing and security issues for such networks. The ease and low cost of

deployment make this networking paradigm very convenient for group-oriented

applications like battlefield missions, business conference, virtual classroom, etc.

Such networks are characterized by wireless “links”, lack of any fixed network

infrastructure, rapidly changing topology and mobile hosts.

Security for these dynamic ad hoc networks presents many challenges in the

area of multicasting for group-oriented tactical missions, operating in a hostile

environment. Key-management and secure-routing have been the primary



research focus in this area. Source authentication for multicast is also a

fundamental problem that needs to be addressed.

In this work, we study some of the proposed source authentication schemes

for multicast group communication and evaluate one such scheme for a tactical

ad hoc set-up. We propose solutions that exploit the hierarchical nature of

tactical networks to achieve time synchronization pre-requisites that the

proposed schemes have.

We define metrics to evaluate the authentication scheme and present

simulation results for the authentication scheme evaluated with two different

time synchronization techniques. We find that our selected authentication

scheme is well suited for a mobile ad hoc network. We show that our solution for

time synchronization performs much better than conventional methods suggested

for the authentication scheme. We also discuss applications of our overlay

architecture for bootstrapping the authentication scheme with reduced

communication overhead.
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Chapter 1

Introduction

A mobile adhoc network (MANET) [1, 2, 3, 4, 5, 6] is a dynamically changing

multi-hop network created by a set of wireless mobile nodes that cooperatively

and spontaneously interact without any fixed infrastructure or centralized

authority. A node communicates directly with nodes within wireless transmission

range and indirectly with all other destinations using a dynamically-determined

multi-hop route, relying on other nodes to act as routers. These networks can be

formed, merged and partitioned on the fly.

MANETs can be of different kinds depending on the application. It is

possible to use very small and common devices as nodes. For example, an ad hoc

network can be formed in a conference room between PDAs, laptops and cellular

phones of the members. A completely different scenario could be a group of

soldiers, planes and tanks operating in a hostile environment. Tactical military

operations are by far the most widespread application of MANETs. Figure 1.1

shows a typical tactical MANET. These networks are hybrid and hierarchical in

nature. Still, much of the research in the area of ad hoc networks assumes a peer
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Figure 1.1: A tactical MANET: Soldiers, planes, copters and tanks operate in a

battlefield in a hierarchical fashion, forming groups at different levels

2



to peer setting.

Other potential applications of MANETs include disaster response, audio and

video conferencing, gaming applications and various forms of ubiquitous

computing.

The following are the salient features of a MANET –

• Dynamically changing topology

• Poor physical protection of nodes

• Bandwidth limitations

• Energy constrained nodes

• Wireless communication medium and mobile hosts

1.1 Ad hoc network security

Topology changes, bandwidth limitations and energy constraints pose various

problems in the absence of a fixed infrastructure in hybrid, dynamic ad hoc

wireless networks. Securing such MANETs is a particularly challenging task

because of the vulnerability of the wireless “links”, poor physical protection of

the nodes, the sporadic nature of connectivity and the dynamically changing

topology. The absence of a certifying authority and the lack of a fixed

infrastructure or a centralized management point make the task all the more

challenging [4].
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1.1.1 Threats and vulnerabilities

The threats and vulnerabilities of MANETs have been discussed in detail in

[1, 3, 4]. We summarize below the main challenges.

• Attacks due to vulnerability of wireless “links” –

These include passive eavesdropping, active impersonation, message replay,

message distortion, injection of erroneous messages, congestion or denial of

service, etc.

• Attacks due to compromised nodes –

Poor physical protection of nodes in a hostile environment results in a

non-negligible probability of a node being compromised. Attacks launched

from within the network by compromised nodes should be taken into

consideration. The security mechanisms should not be based on a central

entity to avoid single point(s) of failure in the network. It is also important

to ensure that the system fails gracefully. In general, the failure of a single

node should not jeopardize the security of the system as a whole.

• Attacks due to vulnerability of security mechanisms –

These include malicious replacement of public keys, compromise of keys,

etc. The security mechanisms should be resistant to both passive and

active adversaries. Recently, there have been a number of side-channel

attacks on many popular cryptosystems. These attacks do not break the

4



security mechanism as such, but use information like padding in messages,

key-strokes, power analysis, etc to recover the key. The key recovery is not

due to the weaknesses in the security mechanism. Examples include

electromagnetic and differential power analysis techniques to break

smart-card security and padding attacks on Cipher-block-chaining mode of

encryption.

• Denial of Service threats –

A Denial of Service (DoS) can be created by malicious nodes or by

unintentional failure of node(s) in the network. Forms of DoS vary from a

simple flooding of a resource to congesting parts of the network to

reconfiguration of routing protocol by malicious nodes leading to Byzantine

failures.

1.1.2 Security-related Requirements

The security requirements depend largely on the mission and operating

conditions of the MANET. For military applications, the requirements will be

stringent in terms of confidentiality and resistance to DoS attacks. For example,

we might have to ensure that wireless traffic does not reveal the location of a

target to the enemy in a military mobile ad hoc network while it is not necessary

to do so in a civilian ad hoc network. The following are the general security

requirements in a MANET [1, 3, 4]. Depending on the application, the

5



constraints and requirements would eliminate or make more critical one or more

of the following or have added restrictions.

• Authentication –

The receiver of a message must be able to verify the identity of the

originator of the message, thereby preventing an intruder from

masquerading as a legitimate source of the message.

• Integrity –

The receiver of a message should be able to check whether a message was

modified in transit. This is to avoid accepting packets that have been

modified by a hostile node, while in transit.

• Confidentiality –

Confidentiality is needed to ensure that certain information (like tactical

military information or routing information that might reveal the location

of the target) is never disclosed to unauthorized entities. Confidentiality is

required only when the message is to be kept secret.

• Non-repudiation –

The originator of the message cannot deny having sent the message.

Non-repudiation is useful for detection and isolation of compromised nodes.

• Availability –

Availability ensures functionality of network services despite DoS attacks.

6



The security mechanisms should not make any assumptions about the

availability of specific nodes at any given time. Nodes may be idle, shut

down for a while or could be compromised.

• Access Control –

Some systems may require that only certain nodes be entitled to perform

certain tasks, e.g posting certain messages (commands/orders), revoking a

certain policy / trust information, etc. Access control mechanisms must be

established to deal with these issues.

• Scalability –

Security mechanisms may be required to be scalable to handle a large

number of nodes, depending on the application.

• Adaptability to changes –

Frequent changes in topology and membership make the ad hoc network

dynamic. Trust relations among nodes also change with time and so does a

node’s affiliation with an administrative domain. The security mechanisms

should not have a static configuration and should be able to adapt to

changes on the fly.

• Key Management –

The only way to accurately enforce authentication, integrity and

non-repudiation is by using some form of cryptography, which requires the

7



distribution/exchange of encryption/authentication key information among

message senders and receivers. A key management module consists of a

trust model, a cryptosystem, key establishment module, a key storage and

key distribution service. Some group-oriented applications may require key

revocation services as well.

1.2 Multicast in MANETs

Multicast means being able to deliver a packet to a set of destinations. Multicast

communication enables one-to-many or many-to-many communication as

opposed one-to-one supported by unicast. A source can send the same packet

simultaneously to multiple destinations without any repetitive transmissions. In

IPv4, a multicast address is designed to enable the delivery of datagrams to a set

of hosts that have been configured as members of a multicast group across

various subnetworks [7, 8].

Multicasting allows a sender to transmit voice, video and text to multiple

receivers simultaneously. Broadcast is one-to-all communication and is a special

case of multicast. When sending the same packet to multiple receivers, multicast

improves bandwidth utilization and involves lesser host/router processing. The

typical applications of multicast are multi-party video or audio conferencing,

resource discovery, news feeds, online games, TV/video transmissions (Pay Per

View TV), etc. In most ad hoc networks, nodes work in groups to perform a

8



given task and hence multicast plays an important role. Several multicast routing

algorithms have been proposed for MANETs. These include MAODV[9],

ODMRP[10], MCEDAR[11], AMRoute[12], MOSPF[13] etc.

1.2.1 Multicast security

Multicast security issues and proposed solutions have been studied in [14, 15].

The primary objectives of a multicast security infrastructure are to maintain

secrecy and guarantee authentication for all group communication so that only

legitimate senders can multicast packets to the group and only packets sent by

legitimate group members are accepted. Other security concerns include

anonymity, non-repudiation, access control, trust issues, maintaining service

availability to protect the network from clogging attacks, etc. Security in

multicast is thus considerably more complicated than in the unicast case. Most

unicast solutions are prohibitively inefficient for multicast scenarios.

Factors affecting security [15] are group type, group size, member (node)

characteristics (power, storage, availability), membership dynamics, membership

control, number and type of senders, volume and type of traffic and routing

algorithm used. Attacks on routing mechanisms are becoming widespread. Thus

multicast security is a fairly complex multi-faceted, multi-layered problem. These

requirements are even more difficult to fulfil in ad hoc networks where

bandwidth, storage and energy constraints of the nodes pose additional problems
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when coupled with mobility and dynamically changing topology in the absence of

a centralized infrastructure.

1.3 Motivation and Problem Definition

In group communications, establishment of a shared session key does not

“secure” communication within the group. If messages are encrypted with the

session key, then confidentiality (privacy) of the message is guaranteed. This

alone does not prevent a legitimate group member from masquerading as another

member. There are several routing-related attacks that any node (group member

in the context of multicast) can cause in the absence of authentication. These

have been discussed in [16]. These include, but are not limited to, injecting

erroneous routing messages, selectively forwarding only routing packets, creating

black holes, worm-holes , creating DoS attacks, causing a vertex cut or network

partition, etc. These attacks are however not specific to multicast settings. Even

if the multicast routing protocol is secure against all possible routing-related

attacks, there is nothing to prevent one group member from spoofing as another.

Hence, multicast security is not guaranteed by “securing” the routing and having

a “secure” group key management scheme. Source authentication is an important

security concern that needs to be addressed.

Authentication in a group can be of two types [14] – Group Authentication

and Source Authentication. Group authentication means that a group member

10



can distinguish the sender of the message as a group member or non-member.

Source authenticity means that a member can identify the purported sender of

the message within the group (or outside).

Our goal is to study existing source authentication schemes and explore if any of

the proposed schemes can be used to guarantee source authenticity for multicast

in a tactical MANET, modify or propose new schemes if necessary and to

quantify the candidate scheme by simulation in a realistic multicast setting in

wireless, mobile, ad hoc mode.

For example, in a tactical MANET, an enemy aircraft can spoof its identity

and try to join a group. If it is in the vicinity, it can eavesdrop on all

communication in range. If a node is compromised by the enemy, it can learn the

session key and the enemy can silently listen to and intercept all communication

and pose as a legitimate soldier/node. Worse still, it can give false “orders” (e.g

to dissolve the group and retreat, to lie in ambush in a different place, etc). All

these attacks can be prevented with source authentication. The problem of

detecting compromised nodes without any central authority is hard, especially in

a MANET and is beyond the scope of this work. We assert that our goal is to

propose a candidate algorithm for source authentication in multicast and

evaluate its performance.

11



1.4 Contributions

We propose a source authentication scheme, Tesla, suggested by Perrig et al

[17, 18] as a candidate for achieving source authentication for multicast in a

MANET. We define metrics to evaluate the scheme and measure the performance

by simulations in different scenarios for a MANET. Our results show that the

scheme is suitable for group communication in MANETs. We describe means to

achieve some strong assumptions that Tesla is based on. We use a combination of

µTesla [19] and extensions to the basic Tesla scheme [17, 18] with additional

support for tactical mobile ad hoc networks. We also define a framework which

helps achieve some pre-requisites for the authentication scheme and also helps in

bootstrapping the authentication process. We simulate the authentication

scheme in Network Simulator [20], version 2.1b9a.

1.5 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, some of the existing

multicast authentication schemes have been discussed. We propose one of these

schemes as a candidate source authentication scheme for multicast in MANETs.

However, this scheme requires loose clock synchronization among participating

nodes. Chapter 3 discusses the problem of time synchronization in a MANET.

We give details of the architecture proposed to efficiently bootstrap and

synchronize nodes in Chapter 4. Chapter 5 describes the simulation framework

12



and results. We present a brief qualitative security analysis along with the

conclusions in Chapter 6.
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Chapter 2

Related Work

As discussed in Section 1.3, source authentication involves authenticating the

purported sender (not necessarily a group member) of the message. Criteria for

judging source authentication solutions have been discussed in [14, 15]. These

include efficiency, reliability requirements, collusion-resistance, latency or delay in

authentication. In addition, non-repudiation, revocation, updating should be

feasible with minimal communication and computation overhead. Entity

authentication should provide for evaluation of the authenticity of an entity and

computation of trust values (opinions) conforming to the trust metrics.

Our goal is to develop a scheme that is a combination or improvement of one

or more of the existing schemes with additional support and modifications

needed for the ad hoc tactical set-up. In this work, we concentrate on schemes

for source authentication for group communication. We are not trying to secure

routing. Our scenario is a dynamic multicast group in a MANET, where

members join and leave on the fly. We assume the existence of a valid session key

(for data confidentiality) at any instant of time (it is updated as and when any

14



change in membership occurs in the group). Source authentication is still needed

for the messages sent within the group and for messages sent to the group by a

non-member. We assume message authentication in this case to be equivalent

source authentication. Each receiver needs to know the ”correct” identity of the

sender.

In the rest of the chapter, we briefly outline previous solutions for the

problem and discuss two recent schemes, Tesla and µTesla in detail.

2.1 Previous Solutions

Authentication may be provided in many forms with varying degrees of assurance

from simple passwords transmitted in the clear to digital signatures based on

public key cryptography. For the unicast case, authenticity and integrity can be

guaranteed by using keyed message authentication codes (MACs).

• Sender and receiver share a secret key K.

• Sender sends < data, MACK(data) >

• Receiver gets < data, c > and verifies if c = MACK(data)

In case of multiple receivers, the problem becomes much harder to solve because

a symmetric approach would allow anyone holding a key (that is, any receiver) to

forge packets. Several solutions have been proposed for the multicast case

15



[21, 22, 23, 24]. These have been reviewed in [14, 15, 25]. We briefly summarize

the proposed solutions.

• Sign each packet using public key signatures – Secure, but expensive in

terms of key generation and signature verification overhead.

• Stream signatures [23] – Only one regular signature is transmitted at the

beginning of the stream. Each packet contains a cryptographic hash of the

next packet. This scheme cannot tolerate packet loss. If the packet stream

being sent is not known apriori, the sender has to embed one-time keys and

signatures into the packet stream, resulting in a large overhead.

• Tree-based signatures [22, 24] and hybrid signature schemes [21] – Resistant

to collusion and packet loss, but size overhead is very large.

• Multiple MACs [15] – Sender maintains several keys, subsets of which are

shared amongst receivers in such a way that no subset of N receivers knows

all the keys known to any other receiver. This scheme is insecure when

there are more than N colluding parties. While N should be fairly large to

prevent collusion, a large number of MACs need to be concatenated to the

message, increasing the overhead on each packet.

The principal issues for a source authentication mechanism for multicast

[17, 18, 26] include loss tolerance, high efficiency, and no per-receiver state at the

sender. The problem is particularly hard in settings with high packet loss rates
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and where specific packets in the sequence that are lost are not retransmitted,

and where the receiver wants to authenticate every packet that it receives . With

many receivers, we typically have a high variance in the bandwidth of the

receivers, with high packet loss for the receivers with relatively low bandwidth.

Nevertheless, we want to assure source authentication to work even in the

presence of wide variation in bandwidth among nodes. In the following sections,

we describe two such schemes proposed by Perrig, et al [17, 18, 26], which satisfy

several of the above requirements.

2.2 Tesla

Tesla (Timed Efficient Stream Loss-tolerant Authentication) [17, 18, 26], uses

only symmetric cryptographic primitives such as pseudo-random functions

(PRFs) and message authentication codes (MACs), and is based on delayed

disclosure of keys by the sender. The sender and the receiver are required to be

loosely time synchronized. Bootstrapping is done through a regular data

authentication system. A digital signature algorithm is used for this purpose, in

which case the receiver is required to have an authentic copy of either the sender’s

public key certificate or a root key certificate in case of a PKI (public-key

infrastructure). The MAC and the PRF must be cryptographically secure.

The basic scheme works as follows. The sender issues a signed commitment to

a key Ki that is known only to itself. The sender then uses that key to compute

17



a Message Authentication code (MAC) on a packet Pi and later discloses the key

Ki in packet Pi+1, which enables the receiver to verify the commitment and the

MAC of packet Pi. If both verifications are successful, packet Pi is authenticated.

The commitment is realized via a pseudo-random function, F with collision

resistance. The MAC key is derived from the key revealed in the packet using

another PRF F ′. K ′
i = F ′(Ki) is the secret key used to compute the MAC of the

next packet, and F (Ki) commits to the key Ki without revealing it. The

functions F and F ′ are two different pseudo-random functions. Commitment

value F (Ki) is important for the authentication of the subsequent packet Pi. To

bootstrap this scheme, the first packet needs to be authenticated with a regular

digital signature scheme, for example RSA [27]. When receiver R receives Pi+1,

Ki is disclosed and R first verifies that Ki is correct by checking if F (Ki) and the

commitment sent in packet Pi match. R computes K ′
i = F ′(Ki) to check the

integrity of Pi by verifying the MAC in Pi. Similarly, Pi+1 is authenticated after

the receipt of Pi+2 and so on.

There are a number of problems with this scheme. First it is not resistant to

packet loss. If a subsequent packet is lost, then the previous packet cannot be

authenticated. Robustness to packet loss is achieved by using a one-way key chain

instead of using an independent key for each packet. The sender first chooses a

random key KN and computes Ki = F (Ki+1) for i = N − 1, · · · , 1, where N is the

length of the key chain. Ki = F N−i(KN) for i = 1 · · ·N − 1. It uses the keys in

reverse order, i.e. the key, K0 is used to authenticate the first packet so that
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P 1 P P 2 P 4 

K 1 = F(F(K 3 )) 

3 

Figure 2.1: Achieving robustness to packet loss: Use of a one-way key-chain enables

the receiver to authenticate packet P1, after receipt of P4 when P2 & P3 are lost.

when the next key, K1 is revealed, the key-authenticity can be verified by

checking if the hash (PRF) of the key revealed equals the key revealed in the

previous packet. Figure 2.1 shows an example to illustrate this concept. All

previous keys can be computed from a given key by repeated application of the

PRF F . This means that any key can be used to authenticate subsequent keys,

i.e. the receiver(s) can efficiently authenticate Kj given Ki(i < j) by verifying if

Ki = F j−i(Kj). It is infeasible to derive Kj from Ki for (j > i). These properties

of the one-way key chain make the scheme robust to missing values (packets).

Even now, the scheme is not secure. What if the receiver gets packet Pi+1

before packet Pi? What if a man-in-the-middle attack is launched by an

adversary? The adversary can hold on to Pi until it gets Pi+1. The key Ki is

revealed in Pi+1 and the adversary can modify the message and compute the

MAC using the key and send these two packets one by one to the receiver. Thus

it is clear that receiver should be able to verify that the key used to compute the

MAC of a packet it received has not been disclosed by the sender until the time
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of receipt. This is called the “security condition”. This is possible if the sender

and receiver are loosely clock synchronized and the receiver knows the sender’s

key disclosure schedule - i.e the time of disclosure for a particular key.

If each packet discloses the key corresponding to the MAC of the previous

packet, then all packets received after a delay greater than the sender’s

key-disclosure-delay will be dropped by the receiver(s) when they try to verify

the key-authenticity as described above. To make the scheme adaptive to

network delays, the key is disclosed after d packets. The key Ki used to compute

the MAC of packet Pi is disclosed in packet Pi+d.

The receiver(s) however need to know the exact sending schedule of the sender

since the key-usage and disclosure is on a per-packet basis. To accommodate

dynamic sending rates, a key is tied to a period in time (one time interval) and

the same key is used to compute the MAC for all packets sent in a given interval.

The key Ki is used to authenticate packets sent in interval i and is disclosed in

interval i+ d. Figure 2.2 illustrates the concept of using one key per time interval.

The length of the key chain is significantly reduced by using one key per interval.

The choice of the parameter d is critical. A small value will make remote

receivers drop the packet. A large value of d increases the time to authenticate a

packet, requiring large buffer storage at the receiver. Clearly, there is a trade-off.

Simultaneous use of multiple authentication chains with different disclosure

periods helps accommodate heterogeneous receivers across the network. This

enables each receiver to use the chain with minimal disclosure delay, sufficient to
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time 

Figure 2.2: Tolerating dynamic sending rates: The figure shows the one way key-

chain and packets being sent at the sender. In this example, K ′
1 derived from K1 is

used to authenticate packets P1 and P2 and is disclosed in packets P3, P4, P5 sent

in interval 3.

prevent spurious drops, which are caused if the security condition does not hold.

When operating in an environment with heterogeneous network delays for

different receivers, Tesla authenticates each packet using multiple keys, where the

different keys have different disclosure delays. This results in larger overhead,

both in processing time and in bandwidth. Using the same key chain for all

instances with a different key disclosure schedule for each instance reduces the

communication overhead. These extensions are discussed in detail in [17, 18, 26].

To summarize, Tesla has the following properties:

• Low computation overhead – The authentication involves typically only one

MAC function and one hash function computation per packet, for both
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sender and receiver.

• Low per-packet communication overhead – Overhead can be as low as 10-20

bytes per packet.

• Resistant to packet loss – Every packet that is received in time can be

authenticated.

• No sender-side buffering – every packet is sent as soon as it is ready.

• High guarantee of authenticity – The system provides strong authenticity.

By strong authenticity, we mean that the receiver has a high assurance of

authenticity, as long as the timing and cryptographic assumptions are

enforced.

Tesla is tailored for multicast. A new group member only needs to synchronize its

time with the sender and receive the sender’s key disclosure schedule along with

a commitment to the key chain. An initial authenticated packet is still required

to bootstrap the authentication process. Tesla uses a digital signature based

periodic broadcast scheme for this purpose. The sender periodically broadcasts

an interval specification message, digitally signed with its private key. The initial

authenticated packet contains the precise interval information (interval frequency

and the starting time of a specific interval) along with the key of a past interval.
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2.3 µTesla

µTesla [19] was used in sensor networks for authenticated broadcast. µTesla uses

only symmetric mechanisms to authenticate the initial packet unlike Tesla, which

uses digital signatures, which are too expensive for resource-constrained

environments. µTesla uses the node-to-Base station authenticated channel to

bootstrap the authenticated broadcast. The sender uses one key per epoch and

discloses the key in a separate key disclosure packet. A single key is used to

compute the MAC of all packets sent in a given interval. µTesla restricts the

number of authenticated senders. Loose time synchronization between the nodes

is assumed.

Two modes of communication are supported by µTesla.

1. Base station (BS) broadcasts authenticated packets to nodes (BS is the

Sender)

• Sender Set-up: BS chooses a random key and generates a one-way key

chain.

• Broadcasting authenticated packets: BS associates each key of the

key-chain with one time interval t. BS uses the current key Kt to

MAC packets sent in interval t. BS reveals the key Kt after a delay of

“key-disclosure-delay” intervals after the end of time interval t.

• Bootstrapping a new receiver: Receiver sends a nonce with its request
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to the sender (BS) who replies with its current time, a key Ki of the

key-chain, the key disclosure schedule (starting time of interval i,

duration of a time interval, the disclosure delay) along with a MAC

using the shared key between the node and the BS.

• Authenticating broadcasts: Receiver first verifies the security

condition when it receives a packet. It then authenticates the key and

finally verifies the MAC when it receives the disclosure packet

revealing the MAC key.

2. Nodes broadcast authenticated data (Any node is the sender)

• A node broadcasts data through the base station using the secure

channel between the node and the BS to send data in a reliable way to

the BS, which then broadcasts it.

• Alternatively, a node broadcasts the data while the BS keeps the

one-way key-chain and sends keys to the node as and when needed. To

conserve energy at the broadcasting node, the BS can also broadcast

the key disclosure packets and perform the initial bootstrapping.

The two schemes described in this chapter provide efficient means to

authenticate the source. They differ in their bootstrap mechanisms and

key-usage. However, loose clock synchronization among the participating nodes is

a pre-requisite for both. This is a very strong assumption. Some general
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solutions are outlined in [17, 19, 26]. Some of these solutions are not applicable

to a MANET. In the following chapter, we discuss time synchronization issues in

a MANET. We discuss the pros and cons of some of the proposed solutions and

suggest some for our tactical set-up.
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Chapter 3

Time Synchronization in a MANET

In Tesla and other applications like SPINS [19] and Ariadne[16], loose clock

synchronization between nodes is assumed at the start. Loose time

synchronization means that the synchronization does not need to be precise, but

that the receiver(s) must know an upper bound on the dispersion (the maximum

clock offset) between the sender’s clock and itself. The solutions outlined in

[17, 18, 16, 26] are not suitable for a MANET. In a tactical MANET, the

requirements and constraints are different.

In this chapter, we describe the requirements for achieving loose clock

synchronization in a MANET in order to implement Tesla. Next, we discuss

some of the common time synchronization schemes and reason why each of those

would not fare well in our case. We also mention some possible attacks that

should be taken into consideration for a tactical MANET. We then proceed to

exploit the hierarchical nature of present-day tactical networks and emphasize

that an overlay will help not only in time synchronization, but also in routing

and key distribution.
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3.1 Requirements and Related Work

All nodes in the MANET should be loosely clock synchronized, i.e. each node

should know a rough upper bound on the dispersion between its clock and that of

a sender from whom it receives data in the group. The receiver need not know

the real difference δ, between the sender and receiver’s time but only some �

that is guaranteed to be greater than or equal to δ [17, 18, 26]. Ideally, any time

synchronization scheme that is robust against active adversaries can be used.

Tesla supports two synchronization methods, direct and indirect synchronization.

In direct synchronization, the receiver synchronizes its time directly with the

data sender while in indirect synchronization both the sender and the receiver

synchronize their time with a common (external) time synchronization service.

In the basic protocol described in [17], the receiver sends a request to the

sender with a nonce (to prevent replay). The sender replies with its current time

tS along with its key disclosure schedule and an initial commitment to its

key-chain. This packet is signed with a regular signature scheme. The maximum

time discrepancy, dt is one Round Trip Time (RTT). This solution however does

not scale well. There is a bottleneck at the sender when there are a large number

of receivers.

Direct time synchronization has a few disadvantages over indirect time

synchronization in terms of communication overhead and the possibility of a

Denial of Service (DoS) attack at the sender. This is clearly avoided in indirect
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synchronization where the nodes synchronize their time with a common external

trusted time synchronization service.

An alternate solution using secure distributed time-servers is described in

[18]. Initially, the sender synchronizes its time with the time-server and computes

the maximum synchronization error. It then broadcasts the maximum

synchronization error periodically along with the interval information. Receivers

can independently synchronize their time with the synchronization server and

individually compute their maximum synchronization error. The receivers add up

all the synchronization error values to verify the security condition. A third

solution is proposed in [26] for the multicast scenario. Senders and receivers

synchronize their time with time-servers dispersed across the network after which

every node knows the time and the maximum synchronization error. The sender

periodically broadcasts a signed bootstrap packet along with its offset to the

server’s clock. A receiver waits for a bootstrap packet. It computes the

synchronization error between itself and the sender as the sum of the

synchronization errors of the sender and itself. This works if the sender and

receiver have a method to synchronize time and the receiver knows the upper

bound of the synchronization error. The time-servers distributed across the

network should be synchronized with each other.

The mobility and adhoc-ness involved in MANETs make each of the above

methods inefficient and practically un-scalable. This is tantamount to saying that

the difference in clocks between any two nodes should not be more than a
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threshold. Each node should know a rough upper bound of the maximum clock

difference that can be tolerated by the authentication scheme (or any other

application for that matter). Loss of a time synchronization packet should not

prevent other nodes from updating their timing information. This implies that

we cannot use a concept of “global” time, where nodes update their time based

on the clocks of their peers. This is not practical for MANETs.

For each multicast group, an associated group leader maintains the tree in case of

MAODV and other tree-based protocols. The group leader could send out

beacons containing timing information periodically. The receiver need not

contact the sender in this case. It just waits for a beacon from the group leader.

This method is not resistant to packet loss. A major discrepancy arises if a node

is a member of two groups at the same time whose senders have a huge clock

difference. The group leader itself is likely to change with dynamic changes in

topology. When a non-member sends a packet to the group, this method fails

and one needs to revert to the aforementioned methods.

Many time synchronization services for sensor networks use Reference Broadcast

Service (RBS) [28] as a means to achieve time synchronization. All these

methods involve message exchanges between the receivers. This is not efficient

and scalable for a MANET. [29] discusses time synchronization techniques for ad

hoc networks.

Taking all the issues discussed in this section into consideration, we arrive at

the following set of requirements:
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• All nodes should be loosely time synchronized with each other, since any

node can be a sender.

• No message exchanges – A node should not have to send a message to the

time-server or sender for synchronization.

• A node should not depend on “many” other nodes for updating its clock.

• Timing information should be refreshed periodically if necessary.

• The time synchronization packet should be reliable - needs source

authentication and integrity guarantee. Confidentiality is not required.

• Congestion and collision should not pose major problems.

3.2 Threats

We also need to keep in mind the possible attacks on such a time synchronization

service. [30] examines the security requirements of accurate time services and

analyses the security of NTP [31]. The following are the common attacks on a

time-synchronization service, as discussed in [30].

• Masquerade – An attacker can try to impersonate the time-server.

• Tamper – Attacker can modify the packet containing timing information.

• Replay – Attacker can replay (re-send) old messages.
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• Denial of Service (DoS) – The attacker can intercept the time-server’s

messages and delete them. The attacker can flood the network with

spurious packets or intercepted packets.

• Delay – The attacker can intercept and hold on to these packets and release

them after sometime, introducing long and often unacceptable transmission

delays.

3.3 Solutions

Current day solutions for time synchronization in computer networks [32]

include: Terrestrial communication systems like TV and telephone (modems),

Direct radio broadcasts (WWV, WWVH), Navigation systems like GPS,

Loran-C, Satellite Communication Systems like Two-Way Satellite Time Transfer

(TWSTT), etc. We briefly discuss some of these with their pros and cons.

3.3.1 Satellite

Suppose we have a satellite that periodically broadcasts the timing information

to all the nodes of the MANET. In a typical battlefield scenario, a MANET

would range over 25Km X 25km. A single satellite can cover this area and can

broadcast timing data in a bandwidth-effective and cost-effective manner.

Satellites have been effectively used for Internet applications. The benefits of

using satellite via Internet include [33] high bandwidth, untethered
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communication, simple network topology, more manageable network

performance, and broadcast/multicast capability. The only disadvantage is the

communication latency between two nodes connected by a satellite. We do not

need two-way links with the satellite for time synchronization.

The time synchronization information needs to be authenticated. A simple MAC

using a shared key could serve the purpose. Encryption or signature with a

private key can also be used.

The following are the prime issues that need to be taken care of:

• The communication latency

• The cost of having a receiving antenna in each MANET node

• Weather disturbances that render the system inoperable.

If on the other hand, we had an intermediate network between the satellite and

the MANET, then the cost of a receiving antenna as well as the probability of

failure due to weather conditions might be reduced.

3.3.2 GPS

The GPS satellite system consists of 24 satellites in 10,000-mile orbits, each

circling the earth twice a day and broadcasting radio navigation signals. GPS

provides specially coded satellite signals that can be processed in a GPS receiver,

enabling the receiver to compute position, velocity and time. Four GPS satellite
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signals are used to compute positions in three dimensions and the time offset in

the receiver clock. GPS provides timing accuracy in the 300ns range. Some

well-designed GPS clocks can remain accurate with only one satellite in view.

GPSClock-200 is a GPS receiver, which is optimized for computing the exact

time. It can keep time accurate to a few milliseconds of a second [34, 32].

Benefits – The benefits of GPS include high accuracy, high reliability, worldwide

access, precise time worldwide (system wide), reduced calibration cost,

small size, low power, low installation cost and low unit cost.

Issues – The satellite transmission for GPS requires a line of sight between the

receiver and the satellite. In fact, any bounced signals would just cause

erroneous readings, as the signal will be delayed by the additional distance

it has to travel, and the delay will throw off subsequent computations.

Noise, bias and blunders are other issues to be taken into consideration.

Weather conditions also affect the availability of the service. Installing a

GPS unit in some of the small, low power devices commonly used in

MANETs could be expensive in terms of cost of the natenna and GPS unit.

3.3.3 Overlay of Unmanned Aerial Vehicles

Tactical MANETs are inherently hierarchical and hybrid in nature. In order to

minimize the cost of having a uni-directional link with a satellite, we could

exploit the underlying hierarchy of tactical MANETs to our advantage. In a
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tactical set-up, it is common to deploy one or more Unmanned Aerial

Vehicles(UAVs) above the MANET as an overlay depending on the area covered

by each UAV. The UAVs are high-power, high memory nodes. All nodes in the

MANET are equipped with receiving antennas. Thus, we can use distributed and

secure timeservers (UAVs) to perform the required loose clock synchronization by

indirect methods. The hierarchy of synchronization servers (overlay network)

ensures that only the maximum errors need to propagate. This is somewhat

analogous to the base stations in µTesla. This scheme is thus scalable and

suitable for multicast, enabling easy joining-member time synchronization

without the new member (receiver) needing to send any messages to the sender.

For most cases, a single UAV can cover the entire MANET area. If need be,

one can deploy more UAVs to span the entire network, in which case, the routing

between the UAVs is bi-directional. The number of UAVs is small (usually one or

two), and the mobility of UAVs is not very high. Hence, routing between UAVs

can be done effectively by using a pro-active protocol that is efficient for a small

set of nodes. We make the following assumptions about the UAVs. They have

high storage, high energy and high computational power. Routing between UAVs

is bi-directional and effective. The UAVs are trusted entities and do not turn

malicious. We also assume that these vehicles are monitored and that their

compromise is detected. The communication between UAVs is secure. Each UAV

has a common key for all the valid nodes of the MANET. This common key is

needed for UAV authentication. We assume that the UAVs are synchronized at
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Current Time, UAV−ID, MAC(common (shared) Key, Current Time | UAV−ID)

Figure 3.1: Format of UAV Broadcast

all times with each other by a satellite or GPS or other means. The UAVs send

timing information in the format shown in Figure 3.1. The MANET nodes can

authenticate the packet by verifying the MAC with the UAVs’ key, common to

all nodes. It is easier to have a common key shared with all the nodes so that the

UAV can broadcast the timing information in one go in a bandwidth effective

manner. There are no added issues when a node moves from the footprint of one

UAV to another. Since it shares the same key with all the UAVs, it will be able

to authenticate the next timing broadcast that it receives from its current UAV.

Alternatively, the UAV can append its signature computed using its secret

key to the packet. Any node in the UAVs footprint can verify the signature using

the UAVs’ key. An adversary cannot masquerade as a UAV.

We can use GPS for time synchronization in the overlay network. The

accuracy achieved here is many orders more than what is required for the

authentication scheme. Hence, the MANET nodes can synchronize themselves

with the timing information received from the overlay network. The frequency of

overlay broadcast should be adjusted so as keep the time synchronization error

between two receivers lesser than that tolerated by the authentication scheme. All

the nodes need not have GPS-enabled receiving antennas. The cost is also lesser.
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The overlay of UAVs can be used to bootstrap the MANET nodes in an effective

manner. This is discussed in the next chapter.
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Chapter 4

Applying Tesla/µTesla to the overlay equipped

tactical MANET

We propose Tesla and µTesla as candidate algorithms for the MANET. In this

work, we evaluate the basic Tesla scheme along with some modifications

incorporated from µTesla. In this chapter, we discuss the assumptions made,

describe bootstrapping in the presence of overlay network and the tasks that the

sender and receiver have to perform. The next chapter discusses the simulation

details and experimental results.

4.1 Assumptions

We make the following network assumptions. We assume the presence and

availability of an overlay network of Unmanned Aerial vehicles (UAVs). Most

tactical networks are hierarchical in nature. The overlay node need not

necessarily be a UAV. For example. tanks can also act as overlay nodes. Since

tactical MANETs are hierarchical and have overlays, we are not specially
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deploying an overlay network just for time synchronization purposes. We also

assume that the UAVs are equipped with highly accurate GPS clocks. The

number of UAVs is decided based on the network area and on the footprint area

of the UAV. In most cases, a single UAV can span the entire network area. We

assume high storage and computation facilities in the UAV, in particular - we

assume that a UAV can store a symmetric key for every other node in the

MANET. The overlay node(s) shares a symmetric secret key individually with

each mobile node. The overlay node also has a single common key that it shares

with all the MANET nodes.

In order to provide effective time synchronization service to the MANET and

to fully exploit the power, memory and other facilities available to the

UAV-overlay, there should be a return path from a node in the MANET to the

UAV. We need some nodes (super-nodes) with two-way links that can send to

and receive from the UAVs. We can deploy one or more high power nodes that

have two-way links. This way, the ordinary nodes can contact the UAVs through

the high-power super-nodes when they need some information. However, for the

purposes of time synchronization, we do not need such nodes. Their presence will

help us exploit the overlay for other purposes.
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4.2 Sender Setup

The sender set up is exactly the same as in [26]. The sender splits time into

intervals of length Tint, the first interval I0, starting at time T0. The sender

determines the sending duration and the length of the key chain, N . Each sender

first generates a sequence of secret keys (key chain) by choosing the last key Kn

randomly. It generates the remaining keys by successively applying a one-way,

collision resistant, strong cryptographic hash function, F . Thus,

Ki = F (Ki+1) for i = 1 . . . N

Ki = F N−i(KN) where F i(x) = F i−1(F (x)) and F 0(x) = x

The sender associates each key of the key chain with one time interval and

discloses the current key after a delay of the order of a few time intervals after

the end of the current time interval. For all packets sent in a given interval, i, the

sender uses key K ′
i = F ′(Ki) for computing the MAC of the data in the packet.

This is done to avoid using the same key for commitment and MAC

computation. Key chain extensions and use of multiple authentication chains

have been discussed in detail in [17, 18, 26]. The sender now needs to bootstrap

its receivers in an authenticated manner.
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4.3 Bootstrapping

Each receiver needs to be bootstrapped and given one authentic key of the

one-way key chain as a commitment to the entire key chain for a particular

sender. The receiver also needs to know the key disclosure schedule of the sender.

Methods for bootstrapping have been discussed in [17, 18, 26]. Since ad hoc

networks are conceived on the fly and the senders are not likely to be known

apriori, pre-loading bootstrap information is not appropriate for ad hoc networks.

We thus have to resort to secret key or signature based schemes for

bootstrapping.

Tesla uses a regular signature scheme to sign the bootstrap information. This

is very expensive for resource constrained nodes. µTesla (SPINS) [19] uses the

node-to-base-station authenticated channel to bootstrap the authenticated

broadcast. The expensive signature is avoided, but it totally relies on the layer

above for bootstrapping. It also involves two-way communication between every

node and BS. In Ariadne [16], each node is assumed to have a secret key for

every other node in the network. The receiver sends a nonce with a request to

the sender. Sender replies with its current time, a key of its key chain, the

starting time of the interval, the duration of an interval and the disclosure delay.

Since confidentiality is not required, there is no need to encrypt the data. The

sender replies with the key disclosure schedule, a key chain commitment value

and a MAC of these values using the secret key that it shares with the requester
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(receiver). This scheme involves exchanges between the sender and the receiver.

It is also based on a very strong node assumption about keys. When many

receivers try to get bootstrapped to the same sender, there is a bottleneck at the

sender and the method does not scale well. In another method in Ariadne, a

trusted KDC is used and each node is assumed to share secret keys with the

KDC. An alternate protocol given in [16] can do without each node having every

other node’s key, but involves encrypted message exchange with the KDC. [26]

also gives the details of a similar exchange based method.

4.3.1 Solutions

Schemes involving exchanges between the sender and receiver are likely to have a

bottleneck at the sender when many receivers try to bootstrap to the same

sender and hence do not scale well. Schemes where the sender can multicast the

bootstrap packet in an authenticated manner will be efficient in terms of

communication overhead. The sender must use a digital signature or keyed MAC

for authentication. Digital signatures are expensive in terms of computation and

data-overhead. For keyed MACs, the sender needs to use a key that is common

to a set of receivers, which is not secure since any receiver can forge packets.

Thus, it is evident that the sender and the receiver should share a secret key in

order to authenticate the bootstrap packet.

The overlay network can be used to reduce the bottleneck at the sender. As
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discussed in Section 4.1 we can often deploy one or more high power nodes

(super-nodes) with two-way links to the overlay to aid the bootstrap process. In a

typical tactical MANET (Figure 1.1), it is common to have such special nodes in

the network. The sender should first find a back channel to its parent UAV. This

can be “learnt” from the routing information like Hellos and reverse route entries

in the routing table. Otherwise, the sender must initiate a “request” and learn

the path to the super-node. It can now route the bootstrap packet to the UAV

which would then send it to the members of the multicast group by a direct

broadcast (if multiple UAVs are present (unlikely), the packet must be sent to

other UAVs to reach the receivers that are not in current UAV’s footprint). Once

the sender registers an initial bootstrap packet with the overlay network, new

receivers can be bootstrapped easily by the overlay. Significant work has been

done in [35] for hierarchical physical networks and for unidirectional routing.

For authentication, we assume (Section 4.1) that each node in the overlay has

a unique shared secret key for every node in the MANET. Since a single UAV

can cover the entire MANET area in most cases, we assume that the overlay

network consists of a single UAV. Extending it to many UAVs if required is

trivial. The sender should use the secret key, KS−UAV that it shares with the

UAV to compute the MAC in the bootstrap packet. The UAV can verify the

MAC and authenticate the sender since KS−UAV is known only to the sender and

the UAV. However, a malicious super-node M could change the sender’s identity

to its own ID and replace the original sender S’s MAC with a new MAC
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computed using the key KM−UAV . There is no way the UAV can tell that this

packet was tampered with. The new MAC verifies correctly. A keyed MAC

would suffice only when all super-nodes are trusted at all times. To circumvent

this situation, the sender can encrypt its bootstrap packet with the secret key

(that it shares with the overlay nodes) and route it to the overlay through the

nearest super-node. The UAV can decrypt the packet and can be assured of the

fact that only the node associated with that key could have sent the packet. This

method guarantees confidentiality and integrity.

The UAV now needs to broadcast the bootstrap information to the MANET

nodes. It uses the common key that it shares with all the MANET nodes to

compute the MAC. The UAV then broadcasts this packet to the MANET nodes.

If necessary, it can make sure that only the group members can read the contents

of the the packet by encrypting it using the associated group’s session key. This

is somewhat similar to the base station based authenticated broadcast described

in [19]. However, any super-node can masquerade as a UAV since it knows the

common key and can transmit at the same frequency range as the UAV. The

UAV must append a signature computed on the hash of the message before

broadcasting it. All the nodes can verify the signature with the UAV’s public

key. Signature verification is not very heavy on computation as opposed to

signature generation. The MANET nodes only need to verify the signatures

generated by the high power UAVs. The signature guarantees sender authenticity

and unforgeability. All the nodes in a UAV’s footprint will be able to
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authenticate the packet.

• S −→ UAV: EKS,UAV
(Bootstrap data), where E(.) is the encryption module

• UAV decrypts packet to get data D

• UAV computes SignSK(hash(D)), where Sign(.) is the signature, SK is

the UAV’s secret key

• UAV broadcasts data along with signature

• Ground node verifies signature

The receivers can wait for an authenticated broadcast from the overlay before

contacting the sender. On the other hand, if the sender is unable to find a path

to the super-node and route the bootstrap packet to the overlay, the receivers

will not get an authenticated broadcast of the bootstrap packet within the

wait-period. The receivers can contact the sender and get the bootstrap packet in

the conventional way, i.e. the signature based authentication as described in

Tesla or if it is not too expensive for each node to have a shared key with every

other node, the nonce-based exchange as used in SPINS. Using the overlay for

bootstrapping receivers thus makes the bootstrapping scheme adaptive and more

flexible. Once a sender registers an initial bootstrap packet with the overlay

network, subsequent receivers can be bootstrapped easily by the UAVs. If the

receiver already has a route to the nearest super-node, it can send a request to

the UAV through the super-node instead of sending a request to the sender. If, on
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the other hand, the receiver has a route to the sender, (or if the route to sender is

shorter than route to super-node in case it has routes to both sender and a

super-node), it can send a request to the sender in the conventional way. We

stress that if sufficient super-nodes are deployed, we need not use the nonce-based

exchange or the signature based authentication at all, thus overcoming the

shortcomings of bootstrapping mechanisms using in both Tesla and SPINS.

There are other added advantages of having an overlay network. The

public-private key pair can be used to send information (like routing information

or keys) to a specific node in the network. The UAV acts as a cluster-head with

additional memory and storage capabilities. Overlay can be made to detect

partitions and provide information to the nodes accordingly.

4.3.1.1 Locating the super-node

Every node should keep a log of the nearest super-node that has the power to

contact a UAV. Such super-nodes should broadcast ”Hellos” periodically and also

as and when they move. The other nodes should keep updating their

nearest-super-node info. Forward paths and reverse routes should be set-up to

the super-nodes. This has been discussed in detail in [35].
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4.4 Receiver tasks

When a node receives a bootstrap packet for a sender, it stores the packet in its

buffer after verifying the MAC using the common UAV key or the shared key

between the node and the sender, depending on who it receives the bootstrap

packet from. The receiver computes the synchronization error with the

information in the bootstrap packet. As in Tesla [17, 18, 26], the receiver first

verifies the security condition (4.1) for each incoming packet.

IntervalID(tR + Skewclk
S−R) ≤ IntervalID(tS) + d (4.1)

Here IntervalID(.) is a function that assigns the index of the interval (for the

keying operation) corresponding to the time argument, tR is the packet arrival

time at the receiver, tS is the packet transmission time at the sender, d is the

disclosure delay (intervals) used in the scheme, and Skew clk
S−R is the

synchronization difference between the sender and receiver clocks. Only packets

that satisfy the security condition are buffered. For every key disclosure packet,

irrespective of whether the security condition is satisfied or not, the receiver

checks the key authenticity using function F , updates the key commitment and

IntervalID corresponding to the latest known key in Tesla. It authenticates all

packets sent between the Interval-IDs of the last key disclosure packet and the

current key disclosure packet after verifying the MAC. Keys for intermediate

intervals are computed by repeated application of the pseudo-random function, F

on the latest key.
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Figure 4.1: Flowchart showing tasks performed at the receiver on receipt of a

bootstrap packet: After updating the key-commitment and sending schedule of

the sender, the receiver authenticates all packets waiting for keys at least as old as

that disclosed.
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Figure 4.2: Flowchart showing tasks performed at the receiver on receipt of a Tesla

packet.
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If on joining a group, a receiver receives packets being sent to the group but is

unable to authenticate them due to lack of bootstrap info, it must buffer the

packets and establish a return path to the current UAV through the nearest

super-node and request the UAV to supply bootstrap packets for the sender(s)

whose data it wishes to authenticate. If the receiver does not get any bootstrap

packets within a certain timeout interval, it must contact the sender S. If the

receiver still does not get any bootstrap packet for a certain reasonably large

maximum wait time (usually of the order of buffer-timeout), it retries sending

requests to the sender(or UAV). After trying for a predetermined number of

times, it simply discards packets from its buffer for the corresponding sender.
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Chapter 5

Performance Evaluation

5.1 Simulation Framework

We used ns-2 [20] discrete event simulator with the CMU wireless extensions [36]

for our simulations. The IEEE 802.11 Distributed Coordination Function (DCF)

[37] as implemented in ns-2 was used as the Medium Access Control protocol.

The radio propagation distance at the physical layer was set to 200m for each

node. The channel capacity was 1Mbps. The communication medium is

broadcast and nodes have bi-directional connectivity. Our model does not

support radio capture [38] and packets are dropped in case of collisions. The

Two-Ray Ground Propagation Model [39] was used as the underlying propagation

model in the physical layer. According to this model,

Pr =
(Pt · Gt · Gr · h2

t · h2
r)

(d4)
(5.1)

where Pt is the transmission power, Pr is the reception power, Gt is the

transmitter antenna gain, Gr is the receiver antenna gain, ht is the height of the

transmitter antenna, hr is the height of the receiver antenna and D is the
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MANET Area 1000m x 1000m TSYN TIMEOUT 0.5 seconds

Node Tx Range 200m MAX TSYN TRIALS 10

Group Size 50 nodes Signature Generation Time 10 ms

MAX WAIT TIME 5.0 seconds Signature Verification Time 1 ms

Table 5.1: Simulation Set-Up

distance between the receiver and transmitter. Nodes were randomly placed in

an area of 1000m × 1000m. Since nodes were randomly placed, network

partitions can exist irrespective of the denseness of the network. For all our

simulations, we have one multicast group of fifty nodes.

We used MAODV [9] as the multicast routing protocol. The agent was

implemented as an application above the network layer so that the data packets

with a multicast address as the destination use MAODV as the routing protocol

and the unicast packets use the AODV [40] unicast route table. We used the

reference implementation of [41]. The MAODV-agent is a derived class of

AODV-agent class. We modified the forwarding routines in the code to support

broadcast instead of doing multiple unicasts to all activated next-hops in the

multicast routing table. The MAODV draft [42] mentions two ways of doing the

forward – multiple activated next-hop unicasts or a single broadcast. The

implementation in [41] had the former and we modified the code to support

broadcast-based forwarding. In a wireless, ad hoc environment, it does not make

sense to unicast a packet to each of the activated next-hops. The source becomes
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a bottleneck with high sending rates. To effectively test and measure the

performance of Tesla, we choose higher sending rates than usual. In a broadcast

setting, all nodes in range receive the packet and those that are tree members

forward the packet.

Each run simulates two methods to synchronize time – direct time

synchronization (DTS) and Indirect time synchronization (UAV-based).

• For the DTS case, each node sends a unicast request along with a nonce to the

source (sender) of the data packet. The sender returns a packet with its sending

schedule, key commitment and timing information. The sender signs its reply

using its secret key. The receiver verifies the signature and gets time

synchronization information. The dispersion is estimated as the difference

between the time of arrival of time synchronization request at the sender and the

time of despatch of request at the receiver (requester). After sending a request,

the receiver sets a timer and waits for TSYN TIMEOUT period. If it does not

receive a reply before this timer expires, it sends another request to the sender

and resets the timer. Sequence numbers are used to detect replays. A receiver

sends up to MAX TSYN REQUESTS to the sender.

• For the UAV case, we assume that all the nodes have bootstrap information

and that the UAV periodically broadcasts accurate time. We did so for ease of

implementation. This is an ideal case. For both the DTS and the UAV case, the

MANET nodes are modeled to have a clock drift of the order of 1 µ-second. The

UAV latency is of the order of 40 µ-seconds for current-day UAVs. Thus, the
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dispersion with the UAV’s GPS-clock is negligible for the purpose of our

simulations. So, we modeled the node to have a clock with a dispersion of the

order of 1 ms from the system clock. This is a pessimistic estimate. Also, in the

current simulations, all nodes join the group by the time the sender(s) start

multicasting data packets. So, in essence, all nodes wait for the same time for the

UAV broadcast. Thus without loss of generality, we can assume that the time at

a node is system time, add or subtract a uniformly distributed random value less

than 0.001 seconds.

Tesla was implemented above the network layer with both the direct and

indirect time synchronization schemes. Each sender is a CBR-generator attached

to a UDP-agent. The sender sends a fixed number of packets per second. On

receipt of a new data packet, irrespective of whether or not it has time

synchronization information, the receiver removes all packets that have waited for

more than MAX WAIT TIME. The MAX WAIT TIME is set to a reasonably

high value and packets that receive the key after this time are not delivered to

the application layer anyway. The values of specific variables, the MANET area

and other specifications of the simulation set-up are given in Table 5.1.

The authentication header of the data payload consists of the key disclosure

bit, interval-ID, sequence number and the MAC of the header and the data in the

packet. The packet header for DTS request packet consists of the source address

and nonce (or sequence number). The reply packet consists of the source and

destination addresses, sending time, reply sequence number and signature.
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Figure 5.1: Data Structure for Implementing Buffer at Receiver Side

A receiver maintains a buffer to store unauthenticated data packets while

waiting for the key. The authentication buffer has a structure called minibuff for

each sender. Each minibuff entry has a sender-id, a flag indicating availability of

bootstrap information, the last known key for the sender, the interval schedule of

the sender consisting of the first interval’s id, the starting time of this interval,

the Tesla time interval and disclosure delay of the sender, and most importantly,

the dispersion between the sender’s clock and its own. There is a pointer, interval

list head to the head of the interval list – a linked list containing the interval-id, a

pointer to a list of packet arrival times, and a pointer to the next entry

corresponding to the next interval in which packets were received. The packet-list

contains the arrival times of incoming packets. The structure is as shown in the
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Figure 5.1.

For the direct synchronization scheme, the receiver has another buffer where

it buffers packets until it gets time synchronization and bootstrap information.

When a receiver gets the required information, all packets in this buffer are first

validated and moved to the main buffer if the security condition (4.1) is satisfied,

otherwise they are dropped. Also packets that have waited in the buffer for more

than MAX WAIT TIME are dropped. By purging the buffer every

MAX WAIT TIME seconds, we thus maintain a buffer whose dimension is

limited by time instead of memory space. In a period of MAX WAIT TIME

seconds, a node can receive at most (SendingRate × MAX WAIT TIME)

packets.

The Tesla time interval and disclosure delay were varied as simulation

parameters. We performed simulations for both static and mobile scenarios. The

simulation parameters were different for both the cases.

• For the static case, we varied packet size, packet generation rate, number of

senders (sources). Details of the simulations for the static case are discussed in

Section 5.3. Since in the static case, the multicast tree once established, remains

stable, our network consisted of 50 nodes, all of which were group members. We

did so for the sake of simplicity and to reduce the random seeds involved in our

experiments.

• While for the mobile case, we had a fixed packet size, a fixed sending rate and

one source. Our network consisted of 75 nodes, 50 of which were randomly chosen
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as group members. We used the random way-point mobility model [5]. The details

of the model as well as other simulation parameters are described in Section 5.4.

5.2 Performance Metrics

We define the following metrics to evaluate the performance of the source

authentication scheme.

• Percentage Buffered (%Buffered) – is defined as the ratio of the number of

packets received by the group members (receivers) that are buffered. As

described in Section 4.4, each receiver checks the security condition (4.1).

The packet is dropped if the security condition is violated. Else, it is

buffered and waits for the key. %Buff is thus a measure of the fraction of

incoming packets that satisfy the security condition. This mainly depends

on the routing delay and availability of bootstrap information.

• Percentage Authenticated (%Authenticated) – is defined as the percentage

of the number of packets received by the group members (receivers) that

are authenticated and delivered to the application. On receipt of a packet

that discloses a key, irrespective of whether or not it satisfies the security

condition, the receiver checks if the key revealed is fresher (newer, i.e.

interval id corresponding to the disclosed key is greater) than the last

known key for the associated sender. If the key revealed is fresher, the

receiver first verifies the authenticity of the key by repeated application of
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the pseudo-random function, F as many times as the difference in interval

id’s between the last known key and the newly disclosed key. It then checks

the buffer for packets waiting on this key and authenticates or drops them

depending on the outcome of the MAC-check. %Authenticated is thus a

measure of the fraction of incoming packets that are delivered to the

application. This mainly depends on the network conditions. Apart from

routing delays, packets can be dropped due to non-availability of bootstrap

information. Request implosion at sender could also affect the MAODV

good-put.

• Percentage Dropped (%Dropped) – is defined as the percentage of packets

received that are dropped. Packets are dropped in three cases – when the

security condition is violated on receipt, when the packet has been in the

buffer for MAX WAIT TIME and when the MAC does not verify correctly.

%Dropped = 100 − %Authenticated. This metric does not give any

additional information, but is convenient to compare and contrast in many

cases.

• Average Buffer Time or Authentication Delay – is the delay prior to

authentication. The time elapsed from the time of receipt of the packet to

the time of delivery to upper layer is the authentication delay. Only packets

that are delivered to the application layer after authentication count for

this measure.
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5.3 Simulation Results for static case

In this section, we present the results from various simulations performed with

static scenarios. We first studied the performance of Tesla on a static scenario.

In what we call the “ base runs”, our network consisted of a single group of 50

nodes with one Constant Bit Rate (CBR) source. The size of each data packet

was varied as a simulation parameter for the static case (64,128,256 bytes). The

number of such packets generated by each source was also varied (5,10,20 packets

per second). Source nodes start generating data at random instants of time. The

CBR source sends data packets to the multicast group address. This was done to

get a feel of the data delivery rate and routing delay associated with MAODV

and to assess the performance of Tesla in such settings. In our model, when a

source initially wants to send data, it instructs the routing algorithm to establish

the route to the multicast group address. The number of sources was one for the

base-runs. We also performed simulations with multiple sources (1, 2, 3, 4, 5)

and compared the performance in each case. While performing simulations for

multiple sources, the sources generate 64-byte packets at the rate of ten packets

per second (5.12 Kbps). Each simulation was run for 250 seconds. For each tuple

(packet size, data rate @ sender), simulations were run for time intervals of

0.5, 0.1, 0.25, 0.5 seconds and disclosure delays of 1, 2, 3, 4, 5 intervals. Table 5.2

summarizes the simulation parameters for the static case.

On each graph, UAV denotes the indirect time synchronization scheme and
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Simulation Time 250 seconds

Packet Size: 64,128,256 bytes

Sending Rate: 5,10,20 pkts/sec

No. of Senders: 1,2,3,4,5

Time Interval: 0.05, 0.1, 0.25, 0.5 sec

Disclosure Delay: 1,2,3,4,5 intervals

Table 5.2: Simulation Parameters for Static Case

DTS denotes the direct time synchronization scheme. Both schemes were

simulated as described in Section 5.1.

5.3.1 Simulations with Single Source

The plots in Figure 5.2 for 64-byte packets sent at the rate of 5 packets/sec show

the %Authenticated, %Buffered, %Dropped and the Average Buffer Time vs.

Disclosure Delay for different values of the Tesla time interval for both the UAV

and the DTS-cases. The bigger the time interval, the longer it takes to

authenticate the packet and hence greater the buffer time or the authentication

delay. It also means that the probability of the security condition being violated

decreases as the interval size increases. When the disclosure delay is 1, no packet

satisfies the security condition on receipt if the end-to-end delay is greater than

the time interval. This happens when the time interval is 0.05 and 0.1 seconds.

Also, since only 5 packets are sent every second and the idea is to use the same
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Figure 5.2: Performance Evaluation for 50 nodes, 1 source, packet size 64 bytes,

data rate 5 packets/sec
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key to authenticate multiple packets (in one time interval), time interval values

lower than the sending rate are not “practical” from a key-usage and

buffer-maintenance point of view. The UAV case performs better in all cases

than the DTS cases. The performance is about 30% more on an average. With a

sending rate of 5 packets/sec in a static scenario, the throughput of MAODV is

high and almost all packets that are buffered get authenticated as well. This is

an indication of the fact that most key-disclosure packets are received by the

group members.

The plots in Figure 5.3, Figure 5.4 show the performance metrics for 64-byte

packets sent at the rate of 10 and 20 packets/sec respectively. As in the previous

case, the bigger the time interval, the longer it takes to authenticate the packet

and hence lesser packet drops due to violation of security condition (4.1) and a

larger buffer time. When the Disclosure delay is 1, no packet satisfies the security

condition on receipt if the end-to-end delay is greater than the time interval. As

before, the UAV case performs better in all cases than the DTS cases. With a

sending rate of 10 or 20 packets/sec in a static scenario, the traffic is heavy and

the congestion is high. The packets get delayed and hence the number of packets

that get buffered after validating the security condition drops slightly. The three

sets of graphs for different sending rates are rather similar in nature and nothing

concrete can be concluded about the effect of the variation in sending rates on

the performance metrics. The average buffer time is almost linear with disclosure

delay for a specific value on time interval. The buffer time actually depends on
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Figure 5.3: Performance Evaluation for 50 nodes, 1 source, packet size 64 bytes,

data rate 10 packets/sec
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Figure 5.4: Performance Evaluation for 50 nodes, 1 source, packet size 64 bytes,

data rate 20 packets/sec
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the product of the time interval and disclosure delay.

Figure 5.5, Figure 5.6, Figure 5.7 show the variation of the four metrics with

disclosure delay for different time intervals with a packet size of 128-bytes and

sending rates of 5, 10, 20 packets per second respectively. The percentage of

packets authenticated drops as compared to the previous case where the packet

size was 64-bytes. As mentioned before, the time interval value of 0.05 seconds

has no practical significance when the sending rate is less than 20-packets/sec.

Similarly, 0.1-second time interval is not relevant for sending rates less than 10

packets per second and so on for other values. There is no fixed pattern among

the metrics that vary for all values of the time interval.

Figure 5.8, Figure 5.9, Figure 5.10 show the performance of the

authentication scheme for packet size of 256 − bytes. When compared to the set

of graphs for 64-byte packets, the performance is significantly poorer in this case.

The Percentage of packets buffered and authenticated is lesser and the number

dropped is higher. The buffer time remains roughly the same as it depends

primarily on the d × Tint product, i.e. the absolute time of key-release after

sending the packet.

5.3.2 Simulations with Multiple Sources

In the second phase of our simulations, we evaluated the authentication scheme

coupled with the time synchronization methods on a 50-node group with
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Figure 5.5: Performance Evaluation for 50 nodes, 1 source, packet size 128 bytes,

data rate 5 packets/sec
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Figure 5.6: Performance Evaluation for 50 nodes, 1 source, packet size 128 bytes,

data rate 10 packets/sec
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Figure 5.7: Performance Evaluation for 50 nodes, 1 source, packet size 128 bytes,

data rate 20 packets/sec
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Figure 5.8: Performance Evaluation for 50 nodes, 1 source, packet size 256 bytes,

data rate 5 packets/sec
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Figure 5.9: Performance Evaluation for 50 nodes, 1 source, packet size 256 bytes,

data rate 10 packets/sec
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Figure 5.10: Performance Evaluation for 50 nodes, 1 source, packet size 256 bytes,

data rate 20 packets/sec
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1, 2, 3, 4 & 5 senders. Here, the packet size is set to 64 bytes and the senders send

packets at the rate of 10-packets/sec. The radio transmission range of a node is

200-meters. The average node degree is about 6.8. The average number of hops

from one end of the rectangular area to another is thus 7 hops.

As observed in the earlier plots, the variation of the metrics with the product

of time interval and disclosure delay is more starked than with just time interval

or disclosure delay. In Figure 5.11, the %Authenticated, %Buffered, %Dropped,

Average Buffer time are plotted against the absolute time lag in key-disclosure on

the sender side, i.e the d × Tint product.

For both the UAV and the DTS schemes, the percentage of packets received

that are buffered drops with an increase in number of senders. The congestion in

the network increases with an increase in number of senders. The degradation is

very obvious for the DTS scheme since the receivers are now trying to find

unicast routes to each of the senders and need to get replies back. Due to

congestion, a number of these requests and replies get dropped and some

receivers may even fail to get synchronized. The overlay network authenticates

about 75% more packets than the exchange-based scheme. The average buffer

time is roughly the same as the product of disclosure delay and time interval, as

predicted from the previous plots.

Figure 5.12 shows the MAODV delay and the average clock offset between

nodes. In DTS, the dispersion depends on the one-way propagation time of the

request from the sender to the receiver. In the presence of an overlay with
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Figure 5.11: Performance Evaluation for 50 nodes, Variable no. of sources, packet

size 64 bytes, data rate 10 packets/sec, 200m range
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Figure 5.12: MAODV Delay and Clock Dispersion for a multi-hop 50-node group

accurate GPS-clock, near perfect clock synchronization is achieved at the cost of

an extra receiver antenna and the overlay network.

The average end-to-end MAODV delay for the multicast data payload

increases steadily with number of sources for both the overlay and the message

exchange-based time synchronization schemes. When the number of senders is 5,

there is a lot of congestion in the network since each of the 5 sources send 64-byte

packets at the rate of 10 packets per second. Hence the increase in delay.

However, in the DTS case, the delay is comparable to that of the UAV case for a

single sender scenario. As the number of senders increases, the number of time

synchronization requests and replies in the network increases exponentially in the

order of the group size. This explains the steep increase in delay for the DTS

case. This shows that the direct time synchronization schemes involving message

exchanges between the sender and receiver do not scale well and cause delays in

routing. The overlay-to-MANET communication is at a different frequency and

hence its a separate channel and there is no added contention. For better
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performance, it is thus advisable to employ such off-channel methods of

bootstrapping and time synchronization.

5.4 Simulation Results for Mobile Scenarios

In this experiment,the mobility speed was varied between 0 and 10 m/s

(0.15, 1, 2, 3, 4, 5, 10). The model consisted of 75 nodes randomly placed in the

network. 50 multicast group members were randomly chosen from these 75

nodes. We performed our simulations with a single source. The source generated

64-byte packets at the rate of 10 packets/sec.

We used the random way-point model [5] to generate the movement files for our

simulations. In this model, each node selects a random destination in the

1000m × 1000m space and moves to that destination at a speed uniformly

distributed between a minimum speed and some maximum speed, vmax. Upon

reaching that destination, the node pauses for pause time, pt seconds, selects

another destination and moves towards the destination as described above,

repeating this pattern of movement for the entire duration of the simulation.

Thus, the nodes are free to move to any location in the network area. The

continuous movement of the nodes ensures continuous change in the topology.

This highly dynamic network is ideal to test the tenacity of the

message-exchange based time synchronization scheme. We discard the first 3600

seconds while generating the movement scenario files. This is done to “warm-up”

74



the simulation and avoid some drawbacks of the Random Way-point model.

Each simulation was run for 500 seconds. We generated three movement files for

each chosen speed. For each of the three scenarios, we collected data over five

sets of group selections. The numbers reported are averaged over these 15 runs in

order to effectively capture the random choice of group members and movement

scenarios. We use a pause time of 50 seconds for our simulations.

MANET Size 75

Group Size 50

Duration 500s

Packet Size: 64 bytes

Sending Rate: 10 pkts/sec

No. of Senders: 1

Time Interval: 0.1, 0.25 seconds

Disclosure Delay: 2,3 intervals

Node Mobility 0.15,1,2,3,4,5,10 m/sec

Table 5.3: Simulation Parameters for Mobile Set-up

Figure 5.13 shows the plots of percentage of packets authenticated, buffered,

dropped and the average time spent in the buffer prior to authentication against

mobility speed. The UAV case clearly outperforms the DTS method of time

synchronization. For the DTS case, there is a slight increase in the percentage of

packets authenticated as the d × Tint product increases, where d is the Tesla
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Figure 5.13: Performance Evaluation for a single source, 50-node group with Mo-

bility Speed (0-10 m/s)
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disclosure delay and Tint is the Tesla time interval. We ran simulations for Tesla

time intervals of 0.1, 0.25 seconds and disclosure delays of 2 and 3 intervals for

each case. A similar trend can be seen in the curves in Figure 5.13(b) and

Figure 5.13(c). There is no steady decrease in the figures as the speed increases.

This is because of probable network partitions and the use of random seeds to

generate the movement patterns and also to select the group members among the

MANET nodes. These choices vary for different cases and the numbers shown are

averaged over 15 runs as explained above. Our goal is to compare the

performance of Tesla for the DTS and UAV case rather than performing

sensitivity studies of the metric with respect to mobility speed.

The average buffer time depends primarily on the d× Tint product. The delay

for the DTS case is marginally higher than the UAV case. This is because of the

packets stored in the temporary packet buffer until time synchronization

information in available. The packet arrival time is noted and these packets are

buffered. The security condition is evaluated only after the time synchronization

and bootstrap information are available. This extra time to get the required

information is reflected by an additional delay for the packets in the temporary

buffer.

Figure 5.14(a) shows the average receiver-to-sender clock dispersion as

calculated by the DTS method. The dispersion for the UAV case is the

pessimistic estimate of 0.001 seconds, as explained in Section 5.1 in the beginning

of this chapter. The dispersion for the DTS case is significantly higher. The
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Figure 5.14: MAODV Delay and Clock Dispersion

receiver has to find a route (unicast) to the sender and get the time

synchronization information. The scenarios used have an average of 6 to 7 hops.

There is no fixed trend with increase in mobility. There may be a partition in the

network at a lower speed and none at a higher speed. We use the random

way-point model and network conditions may vary from one speed to another.

However, it is evident that the high dispersion in the DTS case causes the

security condition to be violated more often and hence the poor performance

metrics, as shown in Figure 5.13. Figure 5.13(b) shows the average end to end

delay for a multicast packet. The delay again does not follow any trend with

increasing mobility due to reasons explained above. The delay is more for the

DTS case because of increase in CBR traffic in the network due to the flooding of

time synchronization requests and replies.

Tesla performs well even in mobile scenarios for the UAV case. Thus, it is
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clear that the authentication scheme is suitable for multicast settings in

MANETs. The DTS scheme delays the authentication process and causes a lot of

packet drops due to violation of security condition and non-availability of time

synchronization information. Whereas use of UAV for the same guarantees high

performance and operability in all scenarios irrespective of topology changes and

node movement.
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Chapter 6

Conclusions and Future Work

In this chapter, we first present a brief qualitative security analysis of the chosen

authentication scheme. This is followed by the conclusions drawn from

simulation results presented in the previous chapter. In the last section, we

briefly outline the future work and the motivation for performing the

comparisons listed under future work.

6.1 Security Analysis

Tesla guarantees source authentication and message integrity in the following

ways:

1. All messages that do not satisfy the security condition at the receiver are

discarded. The security condition (4.1) makes sure that the key used to

compute the MAC of a packet’s data portion is known only to the sender at

the time of arrival at the receiver. This guarantees that only messages sent

by the purported sender are accepted.
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2. Packets that satisfy the security condition are buffered and on receipt of

the key, the MAC is verified by the receiver. Packets whose MAC does not

verify are discarded. This guarantees the integrity of accepted messages.

The security condition thus prevents a packet that was modified in transit from

being authenticated. It also prevents an intermediate node from masquerading as

the sender. However, a malicious node can copy the “data” portion of the packet

and replace the MAC with a MAC using its key. The scheme thus does not

provide non-repudiation.

Indirect time synchronization wards off Denial of Service (DoS) attacks at the

sender. Our overlay architecture prevents a DoS attack at the sender. However, if

the overlay is used for bootstrapping, there is a possibility of the UAV(s) getting

overwhelmed by requests from MANET nodes. Firstly, since MANET nodes have

to pass through some special nodes (super-nodes) to pass on a bootstrap-request

to the UAV, checks could be added in such nodes to prevent a bottleneck at the

UAV. There is a possibility of DoS in these super-nodes. Since UAVs are

powerful nodes, monitoring and policing can be done with ease. Secondly, as

described in Section 4.3, the bootstrapping mechanism is made adaptive by the

overlay network. If a node fails to get the required bootstrap information from

the overlay, it sends a request to the sender in the conventional way. Thirdly,

communication with the UAVs takes place at a different frequency from the

MANET communication and hence will not directly affect the network since this
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is a separate channel.

DoS at the receiver side can be created in many ways and has been analyzed

in detail in [18]. Delayed packets will violate the security condition. Replay

packets do not do much harm since a duplicated packet is accepted by the

receiver only within a very short time period as the security condition is violated.

Receivers reject packets if a malicious node tries to create a DoS attack by

sending packets marked as being from an interval in the future as the security

condition will be violated. Replay can be prevented by adding sequence numbers

in the MAC.

However, the scheme cannot prevent a legitimate member from turning

malicious and stop forwarding packets. It cannot detect a compromised node.

Neither does it prevent a node from generating a false route error message. It

does not prevent all DoS attacks. Worm-hole detection is also not a problem

addressed by the authentication scheme. All these are problems that the routing

protocol must handle. We stress that although these routing attacks can affect

communication in the system, it will not breach the security of the

authentication scheme, i.e. it will not force spurious packets to be authenticated.

The security is not compromised. However, the performance is affected since the

authentication scheme depends on the timely arrival of the key disclosure

packets, bootstrap and time synchronization information, all of which heavily

depend on proper functioning of the routing protocol.

We summarize the key points discussed above.
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• Authentication, Integrity are guaranteed.

• Confidentiality can be achieved if needed.

• Non-repudiation is not provided.

• DoS at sender is eliminated in the UAV case.

DoS at the receiver is kept in check by using sequence numbers.

There is a possibility of DoS at the UAV and super-node if the overlay is

used for bootstrapping.

6.2 Conclusions

From the simulation results presented in the previous chapter, it is evident that

Tesla is well-suited for a tactical MANET. Tesla is resistant to collusion and has

very low communication and data overhead. It is also resistant to packet loss and

can operate in conjunction with any unreliable transport protocol. Generating

the authentication information is inexpensive and the overhead is as low as 20

bytes per packet. We also showed that indirect methods of time synchronization

fare much better than direct, exchange-based methods. In particular, we

compared the performance of the nonce-based query-response method and the

overlay-based indirect time synchronization method. It is clear that the

UAV-based method is many orders of magnitude more efficient than the direct

time synchronization scheme. The DTS scheme degrades the performance of
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Tesla in mobile scenarios. The traffic generated by the requests and replies also

affect the MAODV end-to-end propagation delay and lesser number of packets

are received and authenticated on time. In Chapter 4, we also outlined the other

added benefits of the overlay network.

6.3 Future Work

The performance of the authentication scheme is not directly related to the

routing protocol used. The performance however depends on timely arrival of

packets. A multicast routing protocol that has less delay and communication

overhead is likely to enhance the performance of Tesla. We used MAODV, a

tree-based on-demand multicast routing protocol for our simulations. Any link

breakage triggers actions to repair the tree, making it very sensitive to node

mobility.

ODMRP [10] is a popular mesh-based routing protocol that uses a forwarding

group to maintain multiple routes between nodes in the multicast group. A link

failure need not necessarily mean reconfiguration as in the case of MAODV since

there are alternate paths between nodes [43]. ODMRP however does not scale

well. Thus, depending on the application, one should first choose the routing

scheme for multicast and then tailor the key establishment and authentication

mechanisms to perform well in conjunction with the multicast routing protocol.

As future work, we plan to study the performance of Tesla on ODMRP. We also
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plan to simulate the super-nodes and UAVs for bootstrapping the authentication

scheme.
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