
ABSTRACT

Title of Dissertation: DYNAMICS of TCP CONGESTION

AVOIDANCE with RANDOM DROP

and RANDOM MARKING QUEUES

Archan Misra, Doctor of Philosophy, 2000

Directed by: Professor John S. Baras,

Department of Electrical and Computer Engineering

Development and deployment of newer congestion feedback measures such as

RED and ECN provides us a signi�cant opportunity for modifying TCP response

to congestion. E�ective utilization of such opportunities requires detailed analysis

of the behavior of congestion avoidance schemes with such randomized feedback

mechanisms.

In this dissertation, we consider the behavior of generalized TCP conges-

tion avoidance when subject to randomized congestion feedback, such as RED

and ECN. The window distribution of individual
ows under a variable packet

loss/marking probability is established and studied to demonstrate the desirability

of specifying a less drastic reduction in the window size in response to ECN-based

congestion feedback. A �xed-point based analysis is also presented to derive the

mean TCP window sizes (and throughputs) and the mean queue occupancy when

multiple such generalized TCP
ows interact with a single bottleneck queue per-

forming randomized congestion feedback. Recommendations on the use of memory

(use of weighted averages of the past queue occupancy) and on the use of `drop-

biasing' (minimum separation between consecutive drops) are provided to reduce

the variability of the queue occupancy. Finally, the interaction of TCP congestion

avoidance with randomized feedback is related to a framework for global optimiza-

tion of network costs. Such a relation is used to provide the theory behind the

shape of the marking (dropping) functions used in a randomized feedback bu�er.

DYNAMICS of TCP CONGESTION AVOIDANCE with

RANDOM DROP AND RANDOM MARKING QUEUES

by

Archan Misra

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

2000

Advisory Committee:

Professor John S. Baras, Chair

Professor Ashok Agrawala,

Professor Armand Makowski,

Professor Teunis J Ott,

Professor Leandros Tassiulas

c
 Copyright by

Archan Misra

2000

DEDICATION

To Ma and Baba, for a lifetime of love and support.

ii

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my advisor, Professor John S

Baras for his help and guidance throughout my academic and professional career.

I am extremely fortunate to associate with not just a successful researcher, but a

truly generous and warm-hearted human being.

I am also truly grateful to my other mentor, Teunis J Ott, for his unstinting

support and encouragement throughout the past two and a half years. I shall

always treasure his commitment to research and his willingness to patiently guide

me through this marathon endeavor.

I would also like to express my thanks to Professor Leandros Tassiulas for

providing me valuable advice and insightful comments throughout my dissertation,

and to Professors Agrawala and Makowski for kindly agreeing to serve on my

dissertation committee.

A debt of gratitude is also owed to my various Telcordia colleagues and super-

visors. Special mention must be made of both Susan Thomson and Ken Young,

who have always exhibited tremendous understanding and provided me an extraor-

dinarily supportive work environment. I can truly say that, but for their support

and cooperation, I would not have successfully completed this e�ort.

iii

Finally, I am truly pleased to acknowledge my debt to an extraordinarily large

number of friends and well-wishers at both Maryland and New Jersey: you have

literally fed and sheltered me with unbounded generosity. I am sure you all know

who you are!

iv

TABLE OF CONTENTS

List of Figures x

1 Introduction 1

1.1 Survey of Existing Research . 5

1.2 Major Contributions of Research 15

2 Window Distribution for Congestion Avoidance under State-dependent Loss 19

2.1 Process Re-scaling and Stochastic Behavior 22

2.1.1 Time and State-space Rescaling 22

2.1.2 Process Description . 25

2.1.3 Distribution in (Continuous) Ack Time 28

2.1.4 A Generalized Process . 29

2.2 The Kolmogorov Equation for Stationary Distribution 30

2.2.1 Solution of the Equation . 32

2.2.2 Numerical Solution Technique 33

2.2.3 Corrections for Lossless Evolution 34

2.3 Simulations and Results . 36

v

2.3.1 TCP with Simple State-Dependent Loss 37

2.3.2 TCPWindow Distribution under RandomDrop-based Bu�er

Management . 38

2.3.2.1 Relating the Loss Probability to Queue Occupancy 39

2.3.2.2 Experimental Results 40

2.3.3 Incorporating Delayed Acknowledgements 41

2.4 Extension of Analysis to Generalized Congestion Avoidance 44

2.4.1 Generalized Process Rescaling 45

2.5 Summary . 46

3 Mean Occupancy and Window Distributions for TCP Flows with Random

Drop Queues 48

3.1 Mathematical Model and Formulation 49

3.2 Mean Queue Occupancy and Window Sizes 52

3.2.1 The Fixed Point Equations 53

3.2.2 Existence and Solution of Fixed Point 55

3.2.3 Insights from above Analysis 57

3.2.4 Simulation Results for the Mean Window Sizes 59

3.3 Computation of Individual Window Distributions 62

3.3.1 Simulation Results for TCP Window Distributions 63

3.3.1.1 Negative Window Correlation and its Consequences 64

3.3.1.2 Illustrative Results 68

vi

3.4 Summary . 71

4 Reducing the Variability of Random Drop Queues 74

4.1 Models and Techniques under Investigation 77

4.1.1 Models for Random Drop-based Queuing 77

4.1.1.1 Past Memory in Drop Function 78

4.1.1.2 Inter-Drop Gap Determination Strategy 79

4.1.2 TCP Source Models . 83

4.1.3 Simulation Parameters . 84

4.1.4 Jitter Formulation . 85

4.2 E�ect of Memory in Random Drop Queues on Queue Occupancy

Variability . 86

4.2.1 Persistent TCP . 88

4.2.2 Web TCP . 91

4.2.3 Main Inferences . 91

4.3 E�ect of Drop-Biasing Techniques on Queue Occupancy Variability 94

4.3.1 Persistent TCP . 96

4.3.2 Web TCP . 99

4.3.3 Jitter Plots . 102

4.3.4 Main Inferences . 104

4.4 Summary . 106

5 Generalized ECN-aware TCP and the Assured Service Framework 108

vii

5.0.1 Motivation for Modi�cations in ECN-aware TCP 110

5.1 Mathematical Models . 113

5.1.1 Generalized TCP Window Evolution 113

5.1.2 Assured Service Framework 115

5.1.3 Router Marking Model . 116

5.2 Mean Window Sizes and Throughputs for Multiple Generalized TCPs118

5.2.1 Characterizing the Fixed Point 119

5.2.2 Solving the Fixed Point . 122

5.2.3 Simulations and Comparative Results 124

5.2.4 Salient Features of Analysis 131

5.3 Window Distribution and Analysis of a Generalized TCP Process

(� = 1) . 132

5.3.1 Formulating the Window Evolution Model 133

5.3.2 Results . 135

5.4 Simulation-based Sensitivity Studies of Generalized TCP 141

5.5 Summary . 145

6 A Theoretical Framework for ECN and TCP Window Adjustment 148

6.0.1 Previous Work and Applicability 149

6.1 ECN-based Generalized TCP and Optimization Objectives 154

6.1.1 Network Optimization Model 154

6.1.2 Generalized TCP Adaptation and ECN Marking Models . . 157

viii

6.1.2.1 TCPWindow Adaptation as an Iterative Algorithm

and Necessary Modi�cations Thereof 161

6.1.3 Generalized Window Adaptation and Fairness Objectives . . 164

6.1.4 Di�erentiated Services and Weighted Bandwidth Sharing . . 165

6.1.5 Rate Sensitivity and Probability Variation 168

6.2 Design of Marking Probabilities in ECN Routers 169

6.2.1 Marking Function under Poisson Arrival Assumption 171

6.3 Summary . 176

7 Conclusions 178

7.1 Future Research Directions . 181

A Proof of Convergence of H(x) . 184

B Di�erences between ERD and RED 185

C Proof that f(Q) is convex . 186

Bibliography 189

ix

LIST OF FIGURES

2.1 TCP Window Distribution with State-Dependent Loss 38

2.2 TCP Window Distribution with Early Random Drop (and External

Delay) . 42

2.3 TCP Window Distribution with Random Early Detection (with &

without external delay and delayed acks) 43

2.4 TCP Window Distribution with Delayed Ack and Early Random

Drop . 43

3.1 Typical Relationship between W and Q for Random Drop Queues . 56

3.2 Mean TCP Window Sizes and Queue Occupancy for 2 Identical

Connections . 60

3.3 Mean TCP Window Sizes and Queue Occupancy for 2 Dissimilar

Connections . 61

3.4 Variance Plots for TCP
ows over an ERD Queue 67

3.5 Coe�cient of Variation Behavior for TCP over an ERD Queue . . . 67

3.6 TCP Window Distribution for 2/5 Identical TCP Connections . . . 70

3.7 TCP Window Distribution for 2/5 Connections with Di�erent RTT 70

x

3.8 TCP Window Distribution for 2/5 Connections with Di�erent Segsizes 71

3.9 TCP Window Distribution for 2/5/10/15 Connections (Square-root

vs. Perturbation Approach) . 72

4.1 Di�erent CDFs for the Inter-Drop Gap 82

4.2 RED Queue Dynamics vs. Weight with Persistent TCP 90

4.3 RED Queue Dynamics vs. Weight with Web TCP 93

4.4 Drop-Biasing in an ERD Queue with Persistent TCP 96

4.5 Drop-Biasing in a RED Queue with Persistent TCP 97

4.6 Drop Biasing in an ERD Queue with Web TCP 100

4.7 Conditional Statistics for an ERD Queue with Web TCP 101

4.8 Sample of ERD Queue Occupancy with Persistent TCP 103

4.9 Jitter Plots (250msec Interval) for an ERD Queue with Web TCP . 104

4.10 Jitter Plots (10s Interval) for an ERD Queue with Web TCP 105

5.1 Mean TCP Windows and Throughputs for Parameter Set 1 (Di�er-

ent Rate Pro�les) . 126

5.2 Mean TCP Windows and Throughputs for Parameter Set 2 (Di�er-

ent Rate Pro�les) . 127

5.3 Mean TCP Windows and Throughputs for Parameter Set 1 (Di�er-

ent RTT values) . 128

5.4 Mean TCP Windows and Throughputs for Parameter Set 2 (Di�er-

ent RTT values) . 128

xi

5.5 Ratio of Attained TCP Throughput for Di�erent Parameter Sets

(Di�erent Rate Pro�les) . 130

5.6 Ratio of Attained TCP Throughput for Di�erent Parameter Sets

(Di�erent RTT) . 131

5.7 Generalized TCP Window Statistics (and Distribution) with � . . . 137

5.8 Generalized TCP Window Statistics (and Distribution) with c1 . . . 139

5.9 Generalized TCP Window Statistics (and Distribution) with c2 . . . 140

5.10 Bandwidth Sharing for Di�erent Window Adaptation Parameters

(Varying Rate Pro�les) . 143

5.11 Bandwidth Sharing for Di�erent Window Adaptation Parameters

(Varying RTT) . 144

xii

Chapter 1

Introduction

This thesis analyzes the interaction of TCP's window adjustment mechanism with

queue management algorithms which provide randomized congestion feedback and,

which have been proposed for improved congestion management of adaptive Inter-

net tra�c. The bu�er management strategies under consideration employ either

randomized packet drop or randomized packet marking techniques to signal incip-

ient congestion to the TCP sources. From an abstract and idealized standpoint,

packet dropping and packet marking are equivalent- they are both simply conges-

tion indicators. There is, however, a signi�cant practical di�erence: since packet

losses lead to retransmissions and associated transient behavior (such as timeouts

and fast recovery), TCP exhibits acceptable performance over a much smaller range

of loss probabilities (as compared to a much wider range of marking probabilities).

Additionally, since packet marking provides a direct indicator of congestion (as

opposed to losses which are an indirect indication of congestion), TCP response to

the two feedback mechanisms can indeed be di�erent and need to be investigated

separately.

1

Several mechanisms to provide more e�ective and early congestion indication

to adaptive TCP
ows, such as RED [1] and ECN [2], have been proposed and

also recommended [3] for deployment in the Internet. Arguments for the adoption

of such randomized congestion feedback mechanisms are principally based on intu-

itive explanations and simulation studies; very little theoretical analyses exist that

analyze and predict the performance of such schemes. While implementations of

such bu�er management mechanisms provide individual network administrators a

variety of `tuning knobs', relatively little is understood about the e�ect of these pa-

rameters on individual and overall TCP performance. Furthermore, the proportion

of non-adaptive tra�c, often from real-time applications such as Voice-over-IP, on

the Internet is registering a rapid increase. Given the need for satisfying di�erent

QoS guarantees for di�erent tra�c types, it is necessary to not only develop a the-

oretical framework for analyzing the impact of such bu�er management schemes

on the performance of TCP tra�c, but also consider their secondary e�ect on

non-adaptive tra�c that might be bu�ered in the same queue.

Gaining a theoretical understanding of the behavior of the TCP window adap-

tation mechanism with bu�er management schemes such as random packet discard

(RED and variants) and random packet marking (ECN and variants) is thus an

important research goal. Given the closed-loop control present in the TCP adap-

tation scheme, an accurate analysis requires the modeling of the window evolution

of each TCP
ow explicitly as a Markovian stochastic process and the determina-

tion of the statistical behavior of the aggregate arrival process. In particular, we

2

shall show how the use of appropriate rescaled processes to derive the stationary

distribution of such Markovian processes will allow us to determine the congestion

window distribution (and bu�er occupancy) when multiple TCP
ows interact

with RED or ECN-enabled bu�ers; such analysis can be used to design better and

e�ective bu�er management strategies.

Although TCP's well known congestion avoidance [4] algorithm has supported

cooperative and end-to-end congestion control on the Internet quite well over the

last decade, it was primarily designed for operation in an environment where packet

loss was the only available indicator of network congestion, and where queues em-

ployed the drop-tail strategy. The advent of more sophisticated congestion indi-

cators (such as ECN) provides us a signi�cant opportunity to modify the existing

TCP response to remove certain drawbacks associated with the current window

adaptation algorithm. To that extent, it is important to consider a more general-

ized form of TCP window adaptation [5] and to understand how possible changes

in the window adaptation parameters might a�ect the performance of the TCP

ows.

Practical implementations of RED and ECN-enabled bu�ers currently use a lin-

ear marking (dropping) scheme, whereby the marking (dropping) probability is a

linearly increasing function of the queue occupancy. This is really an ad-hoc choice

with little theoretical motivation. By placing the interaction between end-to-end

TCP congestion control and marking (dropping) functions in router bu�ers in the

context of a global network optimization problem, we can provide a theoretical

3

foundation for the shape and characteristics of the marking (dropping) function in

routers. Such a speci�cation can provide a sound theoretical framework for an inte-

grated design of the bu�er management algorithm and the corresponding response

of the TCP source. Such an analysis would also provide a clear understanding of

how possible changes to the TCP window adaptation parameters might a�ect the

global bandwidth sharing paradigm.

Motivated by the considerations mentioned in this introductory section, we

concentrate on and investigate the following problems in this dissertation:

� Develop an analytical technique to derive the congestion window distribu-

tions (and other statistics) when multiple TCP
ows interact with RED or

ECN-enabled bu�ers. Such a technique will require solving for the window

distribution of a single TCP
ow, subject to congestion indication with a

variable but state-dependent probability. We shall use such techniques to

understand how changes in TCP window adaptation or bu�er management

parameters would a�ect the resultant queue occupancy and TCP through-

puts.

� Motivate changes in the design and parameter settings of random drop and

random marking algorithms and provide the theoretical underpinning behind

recommended changes.

� Understand possible implications of changing the parametric behavior of the

TCP window adjustment algorithm and indicate the relative priority of sug-

4

gested changes.

� Relate the interaction of TCP window adjustment in a network of ECN (or

RED) enabled routers to a theoretical optimization framework, and provide a

theoretical basis for the determination of marking functions and TCP adap-

tation parameters. We shall also use the framework to derive the changes

required to the TCP window adaptation scheme to attain conformance to

certain fairness objectives.

1.1 Survey of Existing Research

In this section, we present an overview of the existing research results for the vari-

ous problems outlined in the previous section. Additional details on the individual

research problems will be presented whenever we discuss the speci�c problem later

in the thesis.

The TCP `congestion avoidance' algorithm was presented by Van Jacobson and

M Karels in [4]. Neglecting transients, the window evolution can be abstracted by

a Markov process (Wn)
1
n=1 with the following state-transitions

Wn+1 = Wn +
1

Wn

if acknowledgement indicates no congestion

Wn=1 =
Wn

2
if acknowledgement indicates congestion

where W refers to the window size in MSSs. The above algorithm was proposed

at a time when packet loss was the only available congestion indicator and was

5

always interpreted as a sign for the source to reduce its sending rate. Under the

end-to-end
ow control strategy employed in the Internet, a TCP
ow would go on

increasing its window (and thus its e�ective sending rate) until over
ow occurred

in the intermediate bu�ers. This window-based congestion control scheme has

several desirable properties, of which perhaps the most important was that it is

self-clocking: since a new packet is sent only on the receipt of an acknowledgement

(which is an implicit indication that another packet has reached the receiver node),

TCP is able to regulate its sending rate and adapt to the available bandwidth over

a wide variety of link speeds, from O(Kbps) serial links to O(Gbps) �ber channels.

Several versions of TCP have been proposed that combine this basic `conges-

tion avoidance' paradigm with additional modi�cations for initial transients and

responses to packet losses. In all the popular versions, TCP window evolution

goes through an initial `slow-start' phase, where the window is increased by 1 on

the reception of every acknowledgement. Such a window increase scheme leads to

an exponential increase in the TCP window (and hence, the sending rate); under

slow-start, the window e�ectively doubles every round-trip time (the term `slow-

start' is a misnomer). The TCP versions di�er chie
y in the transient behavior

after a packet loss. In the 4.3 BSD Tahoe [6] version, a packet loss is detected

primarily through timeouts and causes TCP to instantaneously reduce its window

to 1 and initiate a period of slow-start until the window reaches half its size at the

instant of the packet loss, at which point the window evolution enters congestion

avoidance again. In the TCP Reno [7] algorithm, packet loss is primarily detected

6

through the receipt of (usually 3) duplicate acknowledgements. The TCP window

then performs `fast recovery', whereby it transmits one packet for every 2 duplicate

acks, thus e�ectively reducing its window to half its value before the detection of

packet losses. In contrast to TCP Tahoe, TCP Reno does not normally reduce its

window to 1 (segment) and undergo slow-start after a packet loss; under condi-

tions of moderate and randomly distributed packet losses, TCP Reno exhibits a

much smoother window variation and a higher average throughput. Another TCP

version, TCP Vegas, was proposed in [8] and contains modi�cations to obtain a

better estimate of ssthresh (the value at which TCP switches from slow-start to

congestion avoidance), and also to ensure that the TCP window does not halve

repeatedly due to multiple losses within a single window. The decision to avoid

multiple window decreases due to multiple TCP packet losses in a single window is

based on the observation that losses in conventional tail-drop bu�ers (which drop

packets only when the bu�er is empty) often occur in bursts (due to synchroniza-

tion e�ects, which we cover shortly); accordingly a burst of packet losses within the

same sliding window typically represents a single congestion event. Such a modi�-

cation is also appropriate for links with bursty and correlated loss characteristics,

such as wireless channels.

All of the above algorithms provide reasonably high TCP throughput when

the packet loss rate is relatively low. All of these TCP versions, however, inte-

grate loss recovery (for reliable transport) with
ow control: the interaction of

TCP's inherent cumulative acknowledgement mechanism with the transients as-

7

sociated with loss recovery leads to retransmission timeouts and a sharp drop in

throughput for even moderately large loss rates (typically larger than � 1� 2%).

A partial step towards improving TCP resilience at higher loss rates was taken

with the speci�cation of the Selective Acknowledgement (SACK) mechanism [9];

as mechanisms such as SACK become widely deployed, the role of the congestion

avoidance algorithm in regulating the tra�c rate of the TCP sender will become

more dominant over a wider range of packet loss probabilities. Also, as explicit

congestion noti�cation mechanisms become more prevalent, the incidence of con-

gestive packet losses will be reduced. As a consequence, the transients associated

with TCP response to packet losses will also diminish in frequency and the role of

congestion avoidance as the primary congestion control mechanism will be further

reinforced.

Several studies have analyzed the behavior of the TCP congestion window (and

in particular, the e�ect on the long-term throughput) as a function of the packet

loss rate p. [10] used a drift-analysis based argument to show that, for a low and

constant packet drop probability, the mean TCP window (and the TCP through-

put) under congestion avoidance varies inversely proportional to the square-root of

the loss probability (proportional to
q

1
p
). This result, known as the ` square-root

formula' was also derived using alternative approximate analyses in [11] and [12];

while [11] established that the TCP window algorithm results in lower throughout

for connections traversing multiple congested links, [12] provided an approximate

analysis for the throughput of multiple TCP connections with di�erent round-trip

8

times. [13] considered the behavior of TCP congestion avoidance when the re-

verse path (for return of acknowledgements) was also bottlenecked; the analysis

showed how the proportionality constant in the square-root formula is modi�ed

by the ratio of the transmission time of data packets in the forward link to the

transmission time for acknowledgement packets in the reverse link. [14] considered

the window behavior with congestion avoidance, under a constant loss probability,

in much greater detail and presented not only a more accurate expression for the

constant of proportionality but also derived the stationary distribution of the con-

gestion window. [14] also showed how the `square-root' formula can be modi�ed

to account for delayed acknowledgements.

Results have also been reported that consider, not just the congestion avoidance

phase, but also the e�ect of transients such as timeouts and fast recovery on

the performance of a TCP process subject to a constant packet loss rate. For

example, [15] considered the e�ect of TCP timeouts on the throughput of a TCP

connection under a constant loss rate; the analysis shows that, while the `square-

root' model is appropriate for low loss probabilities, the TCP throughput decreases

more sharply (roughly proportional to 1
p
) at higher loss rates. A more detailed

analysis of the e�ect of packet losses on the throughput achieved by di�erent TCP

versions was presented in [16], which established why TCP Reno performance

may degrade below that of TCP Tahoe at higher loss probabilities. Note however

that all available results assume a constant loss rate and also ignore any possible

variations in the round-trip time arising out of
uctuations in the queuing delay.

9

As stated earlier, tail-drop queuing in the Internet was observed to result in

correlated losses for competing TCP
ows. Bu�er over
ow would lead to bursts

of packet losses for all competing connections; such
ows would then time-out and

re-initiate transmission in a synchronized fashion. [1] showed that such synchro-

nization leads to oscillatory behavior in the queue occupancy and a signi�cant drop

in link utilization, primarily because the TCP sources are subject to bursty and

synchronized packet drops, only when the bu�er is completely full and the link

is signi�cantly overloaded. To overcome this, [1] proposed RED (Random Early

Detection) as a bu�er management scheme. Unlike tail-drop, RED performs ran-

domized packet drops before the bu�er is completely full. By performing drops

early, RED attempts to provide an early warning of congestion to TCP
ows and

thus prevent the burst of losses that typically occur in tail-drop queues. Also, by

randomizing the losses, RED attempts to prevent synchronized window evolution

among competing TCP connections, and reduces the oscillatory queue behavior

often observed in tail-drop queues. Random losses also have the additional bene�t

of preventing phase-synchronization e�ects, such as reported in [17]. The RED

algorithm has attracted considerable interest in the research and commercial com-

munity over the past 3 � 4 years. While the basic RED algorithm is speci�ed in

terms of a set of con�gurable parameters, few results exist on the recommended

parameter settings or on the dependence of TCP tra�c performance on varia-

tions in these parameters. It should be noted that RED has also been modi�ed

for speci�c link-layer technologies such as ATM [18]. As stated earlier, analyses of

10

TCP performance under packet losses assume a constant and randomly distributed

packet loss model (i:i:d losses); such analyses are more applicable to RED queues

which provide randomized packet drops.

While RED provides for better link utilization than tail-drop queues for TCP

tra�c, signi�cant performance limitations of RED have been reported. These limi-

tations can be traced to the non-adaptive nature of the RED parameters; since the

algorithm does not provide for automated adjustment of various thresholds with

changes in the tra�c load on the link, the bene�ts of RED are obtained over a rela-

tively small range of the o�ered TCP tra�c load. This problem was investigated in

[19] and [20]; while [19] proposed the SRED mechanism that adjusts the maximum

drop probability based on an estimate of the number of active
ows, [20] presented

BLUE, a class of adaptive RED algorithms that adjust the RED parameters based

on estimates of the average link utilization and the bu�er occupancy statistics.

Since packet drops can occur due to causes other than congestion, and also

a�ect the reliability of the data transfer, signi�cant limitations exist on the degree

of congestion control that can be achieved through packet drops alone. Firstly,

media such as wireless and satellite link often have high channel error rates; in

such environments, TCP can mis-interpret packet drops due to link errors as an

indicator of network congestion and reduce its sending rate well below the available

bandwidth, even when the link utilization is very low. Secondly, as stated earlier,

TCP performance degrades rapidly at loss rates higher than a few (� 1�2)percent.

This degradation limits the degree to which congestion feedback can be achieved

11

through packet losses without causing a catastrophic decrease in the TCP sending

rate. Explicit Congestion Noti�cation (ECN) has thus been proposed ([2]) to pro-

vide a more direct indication of network congestion. This scheme has its genesis

in earlier congestion control schemes such as the single-bit feedback mechanisms

proposed in [21] and the EFCI (Explicit Forward Congestion Indication) mecha-

nism proposed for ATM. Under the proposed scheme, a single bit is reserved in the

packet header for marking by intermediate routers experiencing congestion; ECN

is thus a binary feedback mechanism. Downstream routers can only set this bit

but cannot reset it; a TCP receiver echoes this bit back in the acknowledgement

packet. On reception of this feedback, the TCP sender reduces its sending rate if

the acknowledgement packet indicates that the ECN bit on the forward path had

been set. Since the feedback is routed via the TCP receiver back to the sender, it

is clear that there can be a signi�cant delay between the onset of congestion at a

router and the reception of congestion noti�cation at the sender.

The deployment of ECN also permits us to modify the current congestion avoid-

ance algorithm of TCP, at least in response to ECN feedback. While the current

congestion avoidance algorithm has prevented congestion collapse on the Internet

quite adequately, it has associated drawbacks. For example, the current policy of

halving the window in response to congestion gives rise to large
uctuations in the

short-term TCP sending rate; such
uctuations also make it harder to predict the

e�ect of a packet drop on the queue occupancy. Recent research has revived the

possibility of modifying TCP's current window adjustment algorithm to derive the

12

bene�ts from the enhanced congestion indication provided by ECN. [5], for exam-

ple, indicates why a mechanism similar to slow start (with smaller increase and

decrease coe�cients) may be more suitable as a candidate for TCP response to

ECN feedback. Such work is also motivated by results in [22] which establish why

an additive-increase, multiplicative-decrease (AIMD) rate-adjustment algorithm is

optimal from the standpoint of e�ciency and fairness. There have however been

no detailed studies that analyze the impact of possible or suggested changes in the

TCP window adaptation scheme, especially with regard to the resultant window

distribution and bandwidth sharing achieved among competing connections.

Another approach for evaluating Internet congestion control algorithms treats

end-to-end congestion control as a distributed scheme for global optimization of

network cost objectives. [23] showed how a class of Internet congestion control

algorithms could be considered as iterative gradient-based techniques for optimiz-

ing a linear network cost objective. In this approach, each
ow (user) is assumed

to possess a dis-satisfaction function es(rs) of the achieved throughput rs, while

each link is associated with a link congestion cost gl(cl), which is an increasing

function of the link load cl. The optimization objective is to allocate the individ-

ual rates such that it minimizes a linear sum of the user dis-satisfaction costs and

the link congestion costs. The paper shows how a modi�ed version of the TCP

algorithm is a special class of such rate allocation algorithms, provided individual

routers can explicitly signal their congestion measures. Such a scheme, of course,

requires the use of multiple bits to allow individual routers to signal their indi-

13

vidual congestion measures. The paper also explores how ECN interaction with

TCP, where a single bit is used to convey congestion feedback, can be considered

to be a coarse version of the optimization procedure. Similar analyses, from the

viewpoint of pricing-based bandwidth control, were used in [24] to show that an

additive-increase, multiplicative-decrease rate-based adaptation scheme converges

to the proportional fairness criterion, when each link on a
ow path provides in-

formation about its shadow cost. Construction of appropriate Lyapunov functions

was used to establish the stability and convergence of such adaptation schemes,

under the assumption of no delay in the feedback loop. [25] argues how the use

of ECN to mark packets randomly at overloaded bu�ers can be used to provide

incentives to the end-users to cooperate and ensure e�ective utilization of network

resources. [26] studied TCP-like adaptation in a similar context and developed the

Random Early Marking (REM) scheme, whereby individual routers would set the

ECN bit with a probability that is an exponential function of the shadow link cost.

Convergence in the case of arbitrary delay in the feedback loop was established

[27] only when, unlike TCP, the sender adjusts its window (and sending rate) not

on the reception of every acknowledgement but only periodically (after su�cient

acknowledgements have been received to accurately estimate the end-to-end mark-

ing probability). Additionally, the marking probability in the router bu�ers in this

scheme is not an explicit function of the instantaneous bu�er occupancy alone (as

is typical of Internet router bu�ers) but is computed using an average of the bu�er

occupancy over a speci�ed time-period. We shall extend this approach by explicitly

14

considering TCP adaptation (where the window is updated on the receipt of every

acknowledgement) with ECN-based feedback. Such an analysis will also provide a

theoretical basis for determining the shape and properties of the packet marking

(dropping) function in ECN (RED) queues.

1.2 Major Contributions of Research

This section presents the signi�cant results and contributions of this thesis.

In chapter 2, we consider the dynamics of a single TCP
ow performing conges-

tion avoidance and subject to a variable but state-dependent packet loss probability.

We use a combined analytical-numerical technique to derive the window distribu-

tion of a TCP
ow in such a scenario (in contrast to current analyses that assume

a constant drop probability) and provide a proof of convergence of the iterative

technique. Simulations are presented to verify the accuracy of our analysis. In

particular, the analysis is used to derive a detailed and accurate model of TCP

interaction with a random-drop bottleneck bu�er; the model explicitly captures

the variation of the round-trip time with changes in the queue occupancy. To

study the window distribution under possible modi�cations to TCP congestion

avoidance, we extend the analysis to obtain the distribution for a
ow perform-

ing generalized TCP congestion avoidance [5] (where the window is increased by

c1W
� in the absence of congestion and decreased by c2W

� on detecting conges-

tion). Such a generalized analysis is used in chapter 5 to study the implications

15

of proposed changes to the current TCP congestion avoidance algorithm in the

context of ECN-based congestion noti�cation.

In chapter 3, we develop a �xed-point based analytical technique for esti-

mating the mean queue occupancy, and the average throughputs, when multiple

TCP connections interact with a bu�er performing congestion management using

algorithms such as RED or ECN. This is the �rst analytical method to explicitly

determine the statistical behavior of multiple TCP
ows bu�ered at a bottleneck

link. This technique enables us to study how changes in the RED/ECN parame-

ter settings or in the TCP window parameters a�ect the sharing of the bandwidth

among multiple connections. By utilizing the theory for the window distribution of

a single
ow (from chapter 2 and from [14]), we are also able to predict the window

distributions of the individual TCP
ows in this case with reasonable accuracy.

In chapters 3 and 4, we present simulation-based studies to demonstrate

how bu�ers performing random drop or random marking can lead to negative

correlation among the congestion windows of the bu�ered TCP
ows. Negative

correlation causes the TCP
ows to be `out-of-phase', and can reduce the variability

in the queue occupancy, which in turn reduces the queuing jitter. In chapter 4,

we demonstrate how the use of memory in RED's determination of the average

queue length (exponential smoothing) can decrease this negative correlation and

signi�cantly increase the variance of the queue occupancy. We also establish why

enforcing a minimum gap between successive packet drops increases the negative

correlation and signi�cantly reduces the queue variance. Both the above results are

16

of practical signi�cance in the design and parameter setting of RED-like algorithms,

especially to reduce the jitter experienced by real-time tra�c.

In chapter 5, we consider the generalized TCP window adaptation algorithm

[5] and extend the analytical technique presented in chapter 3 to determine the

throughputs achieved when multiple such generalized TCP
ows are regulated in

the Assured Service [28] model. We establish how an AIMD adaptation scheme

provides for more proportional sharing of excess bandwidth than a correspond-

ing `sub-additive increase, multiplicative decrease' (SAIMD) adaptation algorithm.

The importance of a less drastic response (using a smaller constant c2 in the mul-

tiplicative decrease algorithm than the current practice of halving the TCP win-

dow) to congestion is established by showing how such a modi�ed response leads

to greater agreement with theoretically predicted throughput values and a closer

conformance to the proportional sharing of excess bandwidth.

Finally, in chapter 6, the relation between generalized TCP adaptation in an

ECN-aware network environment and the general framework of congestion control

as a global network optimization scheme is rigorously established. We prove that

the current TCP congestion avoidance algorithm (with a minor correction to in-

corporate the estimate of the round-trip time in the window increase procedure)

achieves the minimum potential delay fairness objective, which is intermediate be-

tween max-min and proportional fairness. We also use the optimization framework

to establish why the marking probability should, in general, be an exponentially

increasing function of the bu�er occupancy. As a special case, we establish that,

17

under the assumption of Poisson tra�c arrival at a queue, the marking probability

f(Q) is given by f(Q) = 1� e��Q
2

(� a scalar), where Q is the bu�er occupancy.

A few �nal words on the equivalency of packet drops and packet marks in our

analysis is in order. In chapters 2 and 3, we shall analyze the behavior of TCP

congestion avoidance when the
ows are subject to random packet loss. It should

be noted that the analysis is exactly applicable to situations when the packets are

marked rather than dropped. Similarly, when chapter 4 outlines recommendations

for random dropping queues, the reader should bear in mind that the recommenda-

tions are also equally applicable for random marking queues. Also, while we shall

consider generalized TCP adaptation in an ECN-enabled environment in chapters

5 and 6, we should realize that the framework is also applicable to networks where

queues perform random packet drops. (However, as stated earlier, we are primarily

interested in modifying TCP response to ECN-based feedback and do not envis-

age changes in TCP response to packet losses). As stated earlier, the only major

di�erence between marking and dropping is in the practically acceptable ranges of

marking/dropping probabilities; since marking does not, in general, lead to unde-

sirable transients, the marking probabilities can be much larger than corresponding

randomized dropping probabilities. Hence, while the simulation parameters for the

graphs presented in various chapters may need to be altered when packet dropping

is replaced by packet marking (or vice versa), the essential results of the analysis

will remain unchanged.

18

Chapter 2

Window Distribution for Congestion Avoidance

under State-dependent Loss

In this chapter, we present an analytical-cum-numerical technique to derive the sta-

tionary distribution of the congestion window, cwnd, of a TCP process performing

idealized standard congestion avoidance ([4]) when the packet loss probability is

variable and depends on the (instantaneous) window of the TCP connection. This

technique is then applied to determine the window distribution of a single TCP

ow interacting with a random packet dropping queue; as stated in chapter 1,

the analysis also applies to a random packet marking queue. In a later chapter,

while investigating possible modi�cations to TCP's current window adjustment

mechanism in response to ECN (Explicit Congestion Noti�cation), we shall need

to obtain the window distribution of a TCP
ow performing generalized conges-

tion avoidance under a state-dependent packet marking model. We accordingly

present how suitable modi�cations to the time and space re-scaling employed for

the TCP-speci�c congestion avoidance case can be used to apply the same numer-

19

ical technique presented here for this generalized problem.

We consider the behavior of the stochastic process (Wn)
1
n=1, where Wn stands

for the congestion window just after the nth good acknowledgement packet (one that

advances the left marker of TCP's sliding window) has arrived at the source. By

disregarding time-outs and the behavior during fast recovery, this is a discrete-time

Markov process with the following behavior:

PfWn+1 = w +
1

w
jWn = wg = 1� p(w) (2.1)

PfWn+1 =
w

2
jWn = wg = p(w): (2.2)

where p(w) is the packet loss probability when the congestion window is w. (The

time index n in the above equations is referred to as ack time, since it increases

only with the receipt of acknowledgements.) Let the maximum value of this loss

probability, over all values of w, be denoted by pmax (hence pmax � 1). Our

Markovian formulation holds when, given the current window size, packet losses

are conditionally independent of past and future losses.

The problem of determining the stationary window distribution for TCP con-

gestion avoidance under a constant loss probability p was considered in [14]. For

the case of a constant loss probability, a continuous-time, continuous-space pro-

cess X(t) was derived by a linear time contraction with scale p and a linear space

contraction with scale
p
p, resulting in an e�ective rescaling given by X(t) =

p
pWb t

p
c. The resulting analysis derived the well-known `square-root' behavior of

TCP ([14],[10]): the average window of a persistent TCP connection is of the order

20

of 1p
p
. More speci�cally, it was shown using careful analysis that the stationary

distribution of the process X(t) is given by the following equation for the comple-

mentary distribution function, FX(x):

FX(x) = PfX > xg =
1X
k=0

Rk(
1

4
)e�

4kx2

2 (2.3)

where Rk(y) =
(�1)ky

1
2
k(k+1)

L(y)(1�y)(1�y2):::(1�yk) and L(y) =
Q1
k=1(1 � yk). The cumulative

distribution function of the TCP process Wn, denoted by Fack(x), is then obtained

by correcting for the space rescaling (using the relation Fack(x) = FX(
p
px)). The

above in�nite series converges very rapidly and provides a very e�cient technique

for determining the cumulative probability distribution. Among other results, the

analysis also established the fact that the coe�cient of variation, de�ned as the

ratio of the standard deviation to the mean, is independent of the value of p (scale-

invariance).

While the space rescaling in our model is still linear, the variable loss prob-

ability of our model requires the time rescaling to be non-linear, as explained in

section 2.1. In the limit as the maximum value of p(W) tends to 0, the window

evolution of this re-scaled process is described by a di�erential equation (between

events of packet loss); the intervals between these packet loss events are realiza-

tions of a Poisson process of intensity 1. It can, thus, be viewed as a generalization

of the analysis in ([14]), where the drop probability was assumed constant. The

di�erential equation is then solved via a stable and rapidly convergent numerical

technique; the stationary distribution of the TCP congestion window is approxi-

21

mated from this continuous process by appropriate corrections for the rescaling.

2.1 Process Re-scaling and Stochastic Behavior

We consider a persistent TCP connection. To begin with, assume that the receiver

generates an acknowledgement for every received packet (we shall later extend the

analysis to model the phenomenon of delayed acknowledgements). Packet losses

are assumed to be conditionally independent.

As stated earlier, the time index in the stochastic process described by the

conditional probabilities in equations (2.1) & (2.2) is called ack time; it is a positive,

integer-valued variable that increments by 1 whenever a good acknowledgement

packet arrives at the source. In general, ack time increases linearly with clock

time only when the window size and round trip times are both constant. Let the

cumulative probability stationary distribution for this process under this ack time

be Fack.

2.1.1 Time and State-space Rescaling

To derive a more amenable continuous-time continuous-valued random process

from the process described by equations (2.1) & (2.2), we rescale both the time

and state-space axes. This leads us to introduce the concept of subjective time,

which is, roughly speaking, related to ack time through a non-linear but invertible

mapping.

22

For a generalized notion of subjective time, consider a continuous time stochas-

tic process, Y (t), with a state-dependent failure rate �(y). We can now derive

another process Z(�) from Y (t) such that an increase of dt in the time index t

of Y (t) corresponds to an increment of �(Y (t))dt in the time index � of Z(�). A

realization of the process Z will thus assume the same state-space values as the

corresponding realization of Y but at di�erent instants of time. Subjective time

can also be though of as a history-and-state dependent rescaling of the base (ack)

time index. The process Z(�) is important as Theorem 1 proves that Z(�) has a

constant failure rate in its own notion of time, and hence lends itself to analysis

more easily. The time index, � , of the process Z(�) is then known as subjective

time in reference to the time index t of the process Y (t) and the two are related

by the di�erential relation

d� = �(Y (t))dt (2.4)

Subjective time can also be considered to be a variable stretching (or contraction)

of the time index.

For the speci�c TCP process under consideration, our quantized increment in

subjective time t is provided by the mapping

�t = p(Wn)�n (2.5)

where �t is the (real-valued) increment in subjective time, �n is the (integer-

valued) increment in ack time and p(Wn) is the loss probability associated with

the value of the window Wn at ack time n. In other words, for a process de�ned

23

under this subjective time, time advances at a variable rate, as an increase in

the ack time index of 1 corresponds to a state-dependent increase of p(Wn) in the

subjective time index. Thus, t(N), the subjective time immediately after receiving

the N th acknowledgement, is expressed as t(N) =
P

N

i=1 p(Wi). As 0 � p(Wn) � 1,

t is a real-valued sequence obtained by a contraction of the ack time index. As

pmax # 0, subjective time becomes a continuous variable.

If W 0(t) represents the process Wn in subjective time t via the transformation

in equation (2.5), its sample path between the events of packet failure can be

modeled by the di�erence equation:

�W 0

�t
=

1

p(W 0)W 0 (2.6)

As pmax # 0, the di�erence equation can be modeled by a corresponding di�erential

equation with increasing accuracy. The di�erential equation would however, in

the limit, be ill-behaved as the derivative goes to 1 as pmax # 0. To obtain a

well behaved process, we also need to rescale the state space of W 0(t). To rescale

properly, we assume that
p(W)

pmax
> �; 8W 1, (i.e., the ratio between the minimum

and maximum loss probabilities is uniformly bounded away from 0). If we then

rescale the state-space of the process W 0(t) by the multiplicative constant
p
pmax,

the resulting process, which we call X(t), obeys the functional relationship

X(t) =
p
pmax Wn (2.7)

where n = n(t) = arg max j :
jX

i=0

p(Wi) � t

24

We shall analyze the continuous-time and continuous valued process X(t) in this

chapter.

Inspection of equation (2.5) shows that subjective time does not increase when-

ever the loss probability is zero (p(Wn) = 0). Subjective time thus loses information

about the process behavior during those periods when the system evolves deter-

ministically without loss; the mapping in equation (2.5) is non-invertible if p(Wn)

is 0. We shall later show how the distribution for X(t) can be corrected to incor-

porate the portion of the state-space where the loss probability is 0; for the time

being, assume that p(Wn) 6= 0 in the region of interest.

2.1.2 Process Description

Given the state-dependent mapping for subjective time, we can establish the fol-

lowing characteristics of the process X(t).

Theorem 1 As pmax # 0, the points at which the process X(t) halves its value

(packet loss in the processWn) become a realization of a Poisson process of intensity

1.

1This requirement is usually more stringent than practically necessary. For example, when

p(W) varies slowly with W , the bulk of the probability mass lies around some small value of p,

say p�. By then using
p
p� as our space-rescaling factor, we can obtain a well-de�ned process as

long as
p(W)

p�
is bounded away from 0.

25

Proof: Let T (i) denote the time between the loss of the (i� 1)th packet and the

ith packet. Let us �nd the probability PfTi > Tg, i.e., the probability at least

subjective time T elapses between the (i� 1)
th

and the ith packet loss. Let us

renumber the packets such that j, j = (1; 2; : : :), denotes the jth packet after the

one that corresponds to ith loss. Since the congestion window is increasing after

the ith loss, there exists with probability 1 a (random!) N such that

p1 + p2 + � � �+ pN < T � p1 + p2 + � � �+ pN+1:

The probabilities pj are also random.

The probability of interest is that none of the �rst N packets are lost. Since

N is random, this probability equals

1X
n=1

PfN = ng
nY
j=1

(1� pj)jN = n]: (2.8)

As long as (with probability one) maxfpj; 1 � j � ng is almost zero, the

expression (2.8) is close to

1X
n=1

PfN = nge�
Pn

j=1
pj : (2.9)

Since 0 < T �P
N

j=1 pj � pN+1 for any value of N , we see that as long as

maxfpj; 1 � j � N + 1g] # 0; (2.10)

the RHS of equation (2.9) equals

e�T �
1X
n=1

PfN = ng = e�T : (2.11)

26

Hence, PfXi > Tg ! e�T .

Since the above proof is also independent of the size of the packet that caused

the ith packet loss, we see that if condition (2.10) holds, the inter-loss intervals

(in subjective time) are not only exponentially distributed, but also independent

of past and future intervals. This establishes the fact that the loss events are

realizations of a Poisson process of intensity 1 in subjective time. }

Theorem 2 As pmax # 0, the process de�ned by equations (2.1),(2.2) & (2.7), con-

verges (path-wise) to a process X(t), which behaves as follows: There is a Poisson

process with intensity 1, the points of which are denoted by (�n)
1
n=1. In between the

points of this Poisson process, the window, X, evolves according to the equation

dX

dt
=

pmax

p(Xp
pmax

)X
(2.12)

At the points of the realization of the Poisson process, we have X(�+) = 1
2
X(��).

Proof: The derivation of the di�erential equation describing the window evolu-

tion between failure events is trivial and obtained by taking appropriate limits in

equations (2.1), (2.5) & (2.6). The relationship at an instant of failure also follows

easily from equations (2.2) and (2.6). Note that the derivative in equation (2.12)

is always well-de�ned by virtue of our assumption that p(WN) > 0 for the interval

under consideration. Finally, Theorem 1 established the fact that the instants of

failure become a realization of a Poisson process of intensity 1. }

The process X(t) de�ned in Theorem 2 is an approximation of the re-scaled

27

`TCP' process; the approximation becomes asymptotically accurate as the loss

probabilities become smaller. For a given loss probability function p(W), we an-

alyze the rescaled `TCP' process by assuming that it exhibits the behavior of the

limiting process outlined by Theorem 2. In other words, even for a �nite loss

probability, we assume that W (t) is described by the di�erential equation (2.12),

with an i.i.d and exponential distribution of times between packet drops. We can

thus expect the numerical analysis outlined later to predict TCP window behavior

more accurately as pmax becomes smaller.

2.1.3 Distribution in (Continuous) Ack Time

We shall see how to compute Fsubj(x), the stationary cumulative distribution of

X(t) in subjective time later. We now show how, assuming the availability of

Fsubj(x), we can correct for for the state-space and time rescalings, introduced in

equation (2.7).

The state-space scaling results in a simple linear transformation of the prob-

ability distribution. Fsubj(x) is corrected �rst to obtain Fs(x), the cumulative

stationary distribution in subjective time, but without space-rescaling, by the re-

lationship Fs(x) = Fsubj(
p
pmaxx).

To obtain our desired distribution, Fack(w), observe that the state-dependent

rescaling of subjective time (in equation (2.5)) introduces a sampling non-uniformity

in the process W (t). To see this non-uniformity, note that an acknowledgement

28

arriving when the window is w occupies an interval of 1 in ack time but corresponds

to an interval p(w) in subjective time: a uniformly distributed sampling on the

subjective time axis corresponds to a non-uniform sampling (with non-uniformity

proportional to p(w)) in the ack time frame.

Assuming that the processes Wn (and X(t)) are ergodic, we can obtain the

ack time distribution, Fack(w), by correcting for the sampling non-uniformity, by

dividing the probability density in subjective time, dFs(w), by the appropriate

quantity p(w). This is achieved by the transformation

dFack(w) =

dFs(w)

p(w)R
dFs(�)

p(�)

(2.13)

2.1.4 A Generalized Process

Although our primary goal is to analyze the process X(t) obtained by rescaling the

TCP window evolution process, our analysis is applicable to a more general class

of processes. For example, any arbitrary process with a state-dependent failure

rate can be reduced to a process with a constant Poisson failure rate by moving

to an appropriate subjective time. Thus, we do not lose generality by considering

only processes with constant failure rates.

De�nition 2.1 Consider a general process X(t), described by the di�erential equa-

tion

dX

dt
=

1

q(X)
(2.14)

29

in between the instants of failure of a Poisson process with rate �; let q be a

well-behaved function (�nitely many discontinuities) such that q(x) > 0 8 x. At

the instants of failure of the Poisson process, the process evolution is given by

X(t+) = A(X(t�)), where A(x) : [0;1)! [0;1) is a strictly increasing function

of x such that A(x) < x; 8x > 0; A(0) = 0. Since A is strictly increasing, it has

an inverse function a(x), such that a(A(x)) = w and a(w) > w; 8w > 0.

The solution technique presently later for solving for the `TCP' stationary

distribution is applicable to this whole class of processes. For the TCP-speci�c

case at hand, we have A(w) = 1
2
w (so that a(w) = 2w), the intensity � of the

Poisson process is 1 and the rate function q(W) =
p(Wp

pmax
)W

pmax
.

In the next section, we formulate and solve the Kolmogorov equation for this

generalized process. Our numerical examples will, however, solely deal with the

TCP-speci�c process for the sake of concreteness.

2.2 The Kolmogorov Equation for Stationary Distribution

In this section, we obtain the stationary distribution of the generalized process

X(t), de�ned in section 2.1, whose behavior is described by the equation dX(t)

dt
=

1
q(X(t))

in between the points of a Poisson process of rate �. At the points of the

Poisson process, X(t) is obtained by X(t+) = A(X(t�)); let a(x) be the inverse

function of A(x).

30

Theorem 3 The stationary cumulative distribution Fsubj(x) of the process X(t),

de�ned in section 2.1, satis�es the di�erential equation

dFsubj(x)

dx
= �q(x)(Fsubj(a(x))� Fsubj(x)) (2.15)

Proof: If Fsubj(x; t) is the cumulative distribution function at (subjective) time

t, then the distributions at times t and t +�t can be related as

Fsubj(x +
�t

q(x)
; t+�t) =

Fsubj(x; t) + ��t(Fsubj(a(x))� Fsubj(x))

The �rst term in the RHS of the above equation asserts that the process cannot

increase by more than �t
q(x)

in an interval of time �t, while the second term considers

the probability of loss events that would cause the process value to reduce below

x at time t + �t. Since the stationary distribution Fsubj(x) is invariant in t, we

get the resulting di�erential equation

dFsubj(x)

dx
= �q(x)(Fsubj(a(x))� Fsubj(x)) (2.16)

}

It has not been possible to obtain a closed-form analytical solution for this

functional di�erential equation. We, however, provide an open-form analytical

expression for Fsubj(x) that translates into a rapidly converging numerical tech-

nique for evaluating the cumulative distribution. In passing, we note that the

approximation of the re-scaled TCP process results in the di�erential equation

dFsubj(x)

dx
= q(x)(Fsubj(2x)� Fsubj(x)); (2.17)

31

which will be used in the numerical examples to be presented later.

2.2.1 Solution of the Equation

Let G be the complementary distribution function de�ned by the relation G(x) =

1� Fsubj(x). Equation (2.15) is equivalent to the equation

dG(x)

dx
+ �q(x)G(x) = �q(x)G(a(x)) (2.18)

with the boundary conditions G(0) = 1, G(1) = 0. Let Q(x) =
R
x

0 �q(u)du and

de�ne G(x) = H(x)e�Q(x) where H(x) is an arbitrary function (to be evaluated).

H(x) is then seen to obey the di�erential equation

H(x) = H(z)� �
Z

z

x

q(u)eQ(u)G(a(u))du (2.19)

Now, suppose that lim x"1H(x) exists and is equal to �H. �H will exist only if

the tail of the complementary distribution decays as e�Q(x). By evaluating the

behavior of equation (2.18) for very large x (where G(a(x)) can be considered to

be 0 with negligible error), we can easily see that this phenomenon of exponential

decay is indeed true. Now, by letting z " 1 in equation (2.19) and noting that

G(a(u)) = e�Q(a(u))H(a(u)) , we have

H(x) = �H � �
Z 1

x

q(u)e(Q(u)�Q(a(u)))H(a(u))du (2.20)

with the boundary conditions H(0) = 1 and H(1) = �H.

By de�ning J(u) as J(u) = �q(u)eQ(u)�Q(a(u)) = �q(u)e�
R a(u)
u

q(�)d�, equation

32

(2.20) reduces to

H(x) = �H �
Z 1

x

J(u)H(a(u))du (2.21)

By iterated expansion, H(x) can be shown to obey the relation

H(x) = �H
1X
k=0

(�1)k
k�foldz }| {Z

u1>x

: : :
Z
uk>�uk�1

J(u1) : : : J(uk)duk : : : du1 (2.22)

Appendix A provides a proof that the above in�nite sum indeed converges to a

limit when the function q(x) is non-decreasing in x; this condition holds for the

TCP process whenever the drop probability is a non-decreasing function of the

window size.

2.2.2 Numerical Solution Technique

Repeated substitution in equation (2.21) o�ers a numerical technique for evaluating

H(x). As H(x) tends to a limit as x " 1, it can be treated as a constant beyond a

certain value xupper (chosen such that the resulting error in computing H(x) is at

most a small value �). We can then obtain an approximation for H(x) by setting

the value of H(x) beyond xupper to be a constant and computing H(x) between

(0; xupper). After the algorithm converges, we can divide by H(0) to satisfy the

boundary conditions H(0) = 1; H(1) = �H.

The complete numerical procedure for computing Fsubj(x) is as follows:

1. Choose a small positive constant � (� > 0), which indicates the accuracy of

the computation.

33

2. Find xupper such that
R1
xupper

J(u) du � �.

3. Let B0(x) = 1 for all x and let Bi(x) = 1; 8x > xupper; 8 i:

4. Also compute K(x) =
R1
x
J(u) du for A(xupper) � x � xupper. Denote

K(A(xupper)) by �.

5. For all values of i, let Bi(x) = 1� K(x); for A(xupper) � x � xupper.

6. Repeat the following iteration in the range (0; A(xupper)) until the function

converges below a speci�ed bound:

Bi(x) = 1�
Z

A(xupper)

x

J(u) Bi�1(�u) du � �:

7. Let the �nal solution be denoted by B(x).

8. Renormalize B(x) = B(x)

B(0)
to satisfy the necessary boundary conditions. B(x)

is then the numerical estimate for H(x).

9. The complementary probability distribution is then obtained as

G(x) = B(x)e�Q(x) (2.23)

10. Compute Fsubj(x) from Fsubj(x) = 1�G(x).

2.2.3 Corrections for Lossless Evolution

As noted in section 2.1.1, the rescaled TCP process in subjective time cannot

capture the dynamics of the window evolution when the loss probability is 0 (as

34

subjective time freezes during these epochs). From a sample path point of view,

the in�nite derivative in equation (2.12) and the zero time increment in equation

(2.5) imply that whenever the TCP process (in subjective time) enters an interval

in the state-space corresponding to 0 loss, it instantaneously jumps from the lower

to the upper end of the interval. In this subsection, we show how Fack(x) for the

TCP process, obtained from the mapping in equation (2.13), can be corrected to

incorporate the dynamics of the lossless evolution; the corresponding correction

for the generalized process is then straightforward.

The correction for the density fack(x) in ack time (after the correction for state-

space rescaling has been completed) is computed by the level crossing principle

which equates the rate at which the process evolves to the right of a value x to the

rate at which the process transitions to the left. For the TCP process, this results

in the equality

fack(x)
1

x
=

Z 2x

x

p(u)dFack(u): (2.24)

This follows by noting that at a point x, TCP evolves to the right at a rate 1
x
while

it moves to the left at the rate governed by the loss rate in the interval (x; 2x).

By �rst obtaining the values of Fack(x) (up to a scaling constant) in the regions

with non-zero loss probability, we can correct the solution for regions with zero loss

probability using the equation (2.24)2. (If Fack(u) in the RHS of equation (2.24)

is unknown for any u, it follows that p(u) = 0 also; the unknown region may thus

be left out of the computation.)

2The level-crossing equation (2.24) is valid for the entire state-space (and not just where

35

The numerical recipe for correcting the distribution for the lossless region is.

1. For the region(s) where p(x) = 0, compute the density fack(x) using the level

crossing relation

fack(x) = x
Z 2x

x

p(u)fack(u)du (2.25)

2. Renormalize fack(x) by
R
fack(u)du over the entire state-space to ensure a

well formed probability distribution function fack(x).

2.3 Simulations and Results

Typical examples are now provided to compare our analytical calculations with

simulated values. Simulations were carried out on the ns-2 simulator [29] using

both TCP Reno and TCP New-Reno algorithms. Although these algorithms di�er

in their fast recovery mechanisms and in the frequency of timeouts, the performance

of the two versions was found to be almost identical for the relatively low loss

environments studied in our simulations. Results were obtained by averaging over

multiple runs; each run comprised at least 106 packet transmissions. An idea of

p(x) is 0). It can easily be seen that the equation (2.17) (in subjective time) is equivalent to

equation (2.24) (in ack time) by noting the following set of relations: p(x)dFack(x) = K:dFs(x);

fack(x) =
K:fs(x)

p(x)
; Fs(x) = Fsubj (

p
pmaxx); and fs(x) =

p
pmaxfsubj(

p
pmaxx), where K is

a normalizing constant. The elaborate rescalings and computations in subjective time that we

employ are necessary simply because there does not appear to be a simple way of solving equation

(2.24) directly over the entire state space!

36

the bene�ts of the analytical procedure can be obtained by noting that a numerical

computation over a fairly �ne grid (� 1000 points) takes about 30 secs on a typical

workstation, compared to simulation durations (including multiple runs) of � 10�

15 minutes.

2.3.1 TCP with Simple State-Dependent Loss

The results in �gure 2.1 correspond to the case when the packet drop probability

depends directly on the window size. We simulate such an environment by passing

a TCP connection through a single queue with negligible link propagation and

transmission delay (all outstanding packets are thus e�ectively resident in the

queue), and independently dropping each arriving packet with a probability that

varies with the queue occupancy. The drop probability in this example increases

linearly with queue occupancy. It can be seen that the simulated behavior o�ers

excellent agreement with the numerical prediction in this example. For comparison

purposes, we include the distribution predicted by the `square-root formula' in

([14]) assuming a constant drop probability; the constant value of the p used in this

case is taken to be the drop probability corresponding to the mean TCP window

size obtained via simulation. As expected, the `square-root' approximation predicts

a much larger variation in the window size than the true distribution.

37

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window in Ack Time

 p_max=0.02, B*RTT~=0,
 min_th=20, max_th=275

State-dependent Loss (Simulation)
State Dependent Loss (Theory)

SqRoot Formula

Figure 2.1: TCP Window Distribution with State-Dependent Loss

2.3.2 TCP Window Distribution under Random Drop-based Bu�er

Management

One of the goals of this analysis is to predict the window distribution of a per-

sistent TCP
ow when it interacts with router queue management mechanisms

like Early Random Drop (ERD) and Random Early Detection (RED), where the

packet drop probability is not constant but varies with the queue occupancy. While

both ERD and RED involve variable drop probabilities that depend on the queue

occupancy, they have signi�cant di�erences, which are discussed in Appendix B.

These di�erences make RED much harder to model than ERD: the use of averaged

queue occupancies to determine drop probabilities destroys the applicability of our

single-step Markovian loss model (the drop probability is then a function of the

past state behavior) while the drop-biasing functionality negates the assumption

of conditionally independent packet drops. We circumvent these problems by (sim-

38

plistically) assuming that the drop probability depends only on the instantaneous

queue length and that each packet is dropped independently. We thus ignore the

e�ect of queue averaging in RED; we shall however present a simple correction to

account for the e�ect of drop-biasing.

2.3.2.1 Relating the Loss Probability to Queue Occupancy

As already stated, we assume that the loss probability is determined by the in-

stantaneous queue occupancy (for both RED and ERD); the loss probability for a

given TCP window is derived by relating the queue occupancy to the TCP window.

Neglecting the periods of fast recovery, the number of unacknowledged packets in

ight, when the window is Wn, equals bWnc, or in an approximate sense, Wn. If

C (pkts/sec) is the service rate of the (bottleneck) queue and the round-trip delay

(ignoring the queuing delay) is RTT (sec), then C:RTT packets are necessary to

�ll the transmission pipe. Assuming that this pipe is always full3, the occupancy

of the queue is given by the residual number of unacknowledged packets, so that

we have

Qn = [Wn � C:RTT]+ (2.26)

For our experiments, the loss function is given by the traditional model of RED

behavior, i.e., p(Q) = 0 for Q � minth, p(Q) = pmax for Q � maxth and p(Q) =

Q�minth

maxth�minth
pmax for minth < Q < maxth. The loss probability as a function of the

3This assumption holds only if the bu�er never under
ows (which, in turn, can hold only if

the time taken by the bu�er to drain minth packets is longer than RTT .)

39

window size is then given by p(W � C:RTT)4.

While the above model cannot capture the queue averaging function of RED,

we can make a simple correction to approximate the e�ect of drop-biasing in our

model. We note, that for a given value of drop probability p, the uniform distribu-

tion of inter-drop gaps in RED implies that the average inter-drop gap is 1
2p
packets;

the geometric distribution of gaps (resulting from an independent loss model) im-

plies an average gap of 1
p
packets. For the RED simulations, we accordingly modifed

our analytical drop function such that our average inter-drop gap agrees with that

of RED, i.e., for a given queue occupancy q, we make pmodel(q) = 2pred(q).

2.3.2.2 Experimental Results

Illustrative results of our validation experiments are provided in �gures 2.2 and

2.3, which plot the numerically predicted cumulative distribution of the TCP win-

dow against that obtained from simulations. Figure 2.2 shows that our numerical

analysis provides an excellent match with simulation when the queue implements

the ERD algorithm. The distribution predicted by the square-root formula is also

provided for comparison. Figure 2.3 consists of two graphs, the left one for a

4The reader will note that the ack arriving at the source at time n (when the window is Wn)

corresponds to a packet generated a round-trip time earlier when the window was Wn0 ; the loss

probability of the packet acked at n should thus be p(Wn0). However, as cwnd increases by a

maximum of 1 segment in a round-trip time Wn0 �Wn, so that the loss probability of the packet

acked at n can be assumed to be p(Wn) with negligible error.

40

RED queue with B:RTT � 0 and the right one with B:RTT = 5. The left

graph isolates the e�ect of approximating the RED averaging process from the

performance obtained when this approximation is combined with the assumption

of a full pipe (equation (2.26)). The two graphs show, somewhat surprisingly,

that the numerical predictions (with the correction for drop biasing) provide fairly

close agreement with the simulated distribution even when the queue implements

RED. The closeness of the �t is somewhat unexpected since the averaging e�ect in

RED queues typically lasted over 500 packets (our simulations used an exponential

weight of 0:002); we expected this memory to signi�cantly degrade the accuracy

of our modeling.

2.3.3 Incorporating Delayed Acknowledgements

Our model of TCP window evolution has so far assumed that TCP receivers gen-

erate an acknowledgement for every arriving packet. Many implementations, how-

ever, use delayed acknowledgements to slow down the rate of window expansion or

to alleviate congestion on the reverse link. We can model this artifact by noting

that if the receiver sends one ack for every K packets received, then the TCP

window grows from W to W + 1
W

for every K packets transmitted. An approxi-

mation to this behavior is achieved by supposing that the TCP window grows by

only 1=Kth of its value for every packet transmitted, i.e., by modifying the window

evolution equation to Wn+1 = Wn +
1

K:Wn
.

41

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window
 (with ERD) in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

ERD(Simulation)
ERD (Theory)

SqRoot Formula

Figure 2.2: TCP Window Distribution with

Early Random Drop (and External Delay)

Numerical results verify the e�ectiveness of this correction in accounting for

the phenomenon of delayed acknowledgements. The graphs in �gure 2.3 con-

tain the comparisons between analysis and simulations when a TCP connection

performing delayed acknowledgements is combined with the RED queue manage-

ment algorithm, while �gure 2.4 shows the comparisons when a TCP performing

delayed acknowledgements interacts with the ERD queue management algorithm.

For the ERD queue, we also provide the theoretical distribution obtained by apply-

ing the correction for delayed acknowledgements in the square-root formula [14].

Additional plots and analytical results can be obtained from [31].

42

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window
 (with RED) and State_Dependent Loss

 p_max=0.02,
 min_th=20, max_th=275

RED/ No Delayed ack(Simulation)
RED/ No Delayed acks (Theory)

RED/ Delayed ack(Simulation)
RED/ Delayed acks (Theory)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window (with RED)
 in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

RED/ No Delayed ack(Simulation)
RED/ No Delayed acks (Theory)

RED/ Delayed ack(Simulation)
RED/ Delayed acks (Theory)

Figure 2.3: TCP Window Distribution with Random Early

Detection (with & without External Delay and Delayed Acks)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window (with Delayed Acks)
 (through an ERD port) in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

ERD(Simulation) with delayed acks
ERD (Theory) with delayed acks

SqRoot Formula with delayed acks

Figure 2.4: TCP Window Distribution with

Delayed Ack and Early Random Drop

43

2.4 Extension of Analysis to Generalized Congestion Avoid-

ance

In chapter 5, we shall consider possible modi�cations to the TCP congestion

avoidance algorithm, especially in response to Explicit Congestion Noti�cation

(ECN) from routers. In our generalized model of TCP window adjustment, based

on [5], the window increases by c1W
� on the receipt of an acknowledgement with no

congestion indication and decreases by c2W
� on the receipt of an acknowledgement

indicating the presence of congestion. Here, �; �; c1 and c2 are arbitrary constants;

the current TCP congestion avoidance algorithm is a special case of this generalized

window adjustment strategy (with � = �1; � = 0; c1 = 1 and c2 = 0:5).

As part of our analysis, we shall consider the stationary distribution of a process

(Wn)
1
n=1 whose state-transition probabilities are given by the equations:

Prob(Wn+1 = Wn + c1W
�

n
jWn � W �) = 1

Prob(Wn=1 =Wn + c1W
�

n
jWn > W �) = 1� p(W)

Prob(Wn=1 = Wn � c2W
�

n
jWn > W �) = p(W) (2.27)

where W � is a threshold below which the process evolves deterministically. For

the speci�c case when � = 0, which corresponds to the multiplicative decrease

paradigm, we show how we can obtain the window distribution by converting this

process (Wn), through the application of suitable time and space rescalings, to a

speci�c instance of the generalized process X(t), represented by equation (2.14).

44

2.4.1 Generalized Process Rescaling

Consider the behavior of the process X(t) derived fromWn (described by equations

(2.27)) via the following state and time mappings:

X(t) = p
1

1��
maxWn; (2.28)

�t = p(Wn)�n; (2.29)

where pmax is, for now, an abitrary constant, such that pmax � p(W) 8 W and

p(W)

pmax
> � 8W ; the appropriate value of pmax will become clear when we consider

the generalized window adjustment analysis in full detail.

While the space-rescaling is a constant, the state-dependent time-rescaling for

X(t) implies that X(:) is de�ned in subjective time w.r.t to Wn. The validity of

the following proposition can then be easily established.

Proposition 2.1 Under the mappings (2.28) and (2.29), as pmax # 0, X(t) becomes

a speci�c case of the generalized process X(t) de�ned in De�nition 2.1. In partic-

ular, the intensity � of the associated Poisson process is 1, and the function q(X)

is given by the relationship:

q(X) =

p(X

c

1
1��
1

)

c1 � pmax �X�
; (2.30)

i.e., between the points of failure of the Poisson process, X(t) evolves according to

the equation:

dX

dt
=
c1 � pmax �X�

p(X

c

1
1��
1

)
(2.31)

45

Also, the function A(x) is given by (1� c2) � x, i.e., at a point of failure, � , of the

Poisson process, X(�+) = (1� c2) �X(��). }

It is at a point � of the Poisson process that the condition � = 1 is required.

If � 6= 1, then X(�+) can be shown to become ill-de�ned as pmax (and by impli-

cation, p(:)) tends to 0. By virtue of Proposition 2.1, we can then use the theory

and numerical analysis outlined here to obtain the stationary distribution of the

process X(t). If FX(x) represents the stationary cumulative distribution of X(t),

we can then �rst correct for the space-rescaling to obtain Fs(x), the cumulative

distribution in subjective time but without space-rescaling by the relationship

Fs(x) = FX(pmax

1
1��x): (2.32)

The sampling bias introduced by the non-linear mapping into subjective time is

then corrected to obtain the cumulative distribution of Wn in ack time, Fack(w),

using the relationship of equation (2.13).

Examples of the use of this technique to study the window distribution of the

generalized TCP window adjustment algorithm will be provided in chapter 5.

2.5 Summary

In this chapter, we presented a numerical-cum-analytical technique for deriving

the stationary window distribution of TCP congestion avoidance under state-

dependent packet loss. The key in the derivation process was the introduction

46

of a subjective time-frame through a non-linear (state-dependent) time-rescaling;

we proved how packet drops in the subjective time index were a realization of a

Poisson process. We also presented a numerical technique for solving the result-

ing functional equation for the stationary distribution of a process in subjective

time and proved the convergence and stability of the numerical procedure. In sec-

tion 2.4, we also showed how the analytical technique could be extended to derive

the window distribution of a process performing generalized congestion avoidance

(where the window is increased by c1W
� in the absence of congestion and decreased

by c2W
� in the presence of congestion).

Numerical examples were provided to verify the accuracy of our analytical tech-

nique. The technique was subsequently utilized to derive the window distribution

of a TCP process interacting with a bu�er performing randomized packet drops.

Once again, simulations were used to demonstrate the accuracy of our analytical

computations. Minor modi�cations to the technique to account for drop biasing

in router bu�ers and delayed acknowledgements from the TCP receiver were also

presented.

47

Chapter 3

Mean Occupancy and Window Distributions for

TCP Flows with Random Drop Queues

In this chapter, we consider the problem of multiple persistent TCP
ows, each

performing idealized congestion avoidance, interacting with a bu�er performing

congestion feedback via random packet drops. (As stated earlier, the analysis also

applies to random packet marking queues.) We �rst present a set of analytical

conditions for obtaining the `mean' of the queue occupancy and the TCP con-

gestion windows, and solve the resulting conditions using an iterative technique.

Armed with this estimate of the means, we then evaluate two techniques to derive

approximations to the window distribution of each individual TCP
ow. In the

simpler of the two approaches, called the square-root approach, we assume that

the loss probability for the packets of a speci�c
ow is constant and is given by

the drop probability corresponding to the mean queue occupancy. The window

distribution for this constant probability model is computed using the analytical

results and formulae derived in [14] and presented in chapter 2. In the second

48

approach, called the perturbation approach, we relate the window size of the
ow

to the queue occupancy through a simple linear relationship and hence, de�ne a

variable but state-dependent packet loss probability. The window distribution in

this case is computed using the technique presented in chapter 2.

Using extensive simulations of multiple TCPs over a random drop queue, we

demonstrate that, for queues performing randomized drop without any memory,

the window sizes of the TCP connections are not truly independent (or uncorre-

lated), but are, in fact, negatively correlated, i.e., the TCP windows tend to vary

out-of-phase. The queue occupancy consequently exhibits much lower variation

than expected under a truly independent model. This explains why the simpler

`square-root' technique (which assumes a constant loss probability) often provides

a relatively better prediction of simulated distributions than the more complex

`perturbation' technique.

3.1 Mathematical Model and Formulation

As in chapter 2, we consider individual TCP
ows to be persistent and perform-

ing idealized congestion avoidance. Thus, the window evolution of the ith TCP

connection is approximated by a stochastic process (W n

i
)1
n=1, where the subscript

i identi�es the
ow and the superscript n refers to the ack time for
ow i. When

multiple TCP
ows interact with a single queue, the packet loss probability for

a speci�c connection will clearly depend not just on the window size of that con-

49

nection, but also on the instantaneous window sizes of all the other connections.

An accurate model of the window evolution process for N TCP connections would

thus require an N � dimensional Markov model, where the state space would be

a N-dimensional vector consisting of the window sizes of each individual connec-

tion. The transition probabilities between states in this case would depend on the

state of the entire system (the instantaneous windows of each connection), making

the de�nition of useful scalings impossible. Furthermore, this approach hits the

curse of dimensionality for even small values of N (such as 2 or 3), making such

an approach intractable. Accordingly, we shall use a set of assumptions to reduce

the problem to N separate uni-dimensional Markov processes, which we can ana-

lytically solve using appropriate rescaling techniques. Under such an assumption,

we can reduce the stochastic description of TCP
ow i to a Markovian approx-

imation (similar to equations (2.1) and (2.2)) with the following state-transition

probabilities:

PfW n+1
i

= w +
1

w
jW n

i
= wg = 1� pi(w); (3.1)

PfW n+1
i

=
w

2
jW n

i
= wg = pi(w); (3.2)

where pi(w) is the packet loss probability when the congestion window of connec-

tion i is w.

Let N be the number of concurrent TCP connections under consideration. The

ith
ow of the set, denoted by TCPi, has a maximum segment size (MSS) of Mi

bytes and a nominal round trip time (excluding the queuing delay at the bu�er)

50

of RTTi seconds. Let Wi denote the window size of the ith connection in MSSs;

the amount of outstanding data for
ow i (in bytes) is then given by Wi �Mi.

As in chapter 2, we assume that the random drop queue performs packet

drops such that the loss probability of a packet is conditionally independent of

past and future losses and depends only on the instantaneous queue occupancy.

We let the service rate of the queue be C bytes/sec. In general, let Q be the bu�er

occupancy of the random drop queue and Qi (in bytes) be the amount of tra�c

from connection i that is bu�ered in the queue (so that
P

N

i=1Qi = Q). The drop

function is denoted by p(Q). To illustrate our analysis, we again focus on the linear

drop model used in current versions of RED:

p(Q) = 0 8 Q < minth

= pmax 8 Q > maxth

= pmax �
Q�maxth

maxth �minth
8 minth � Q � maxth;

where maxth and minth are the maximum and minimum drop thresholds (in bytes)

and pmax is the maximum packet drop probability. Our analysis however holds

for other arbitrary drop functions; our numerical technique for determining the

\means" only requires that p(Q) be non-decreasing in Q, which is true for all

sensible drop functions.

As a slight generalization, the analysis presented here also applies to a speci�c

case of
ow-dependent packet drop probabilities. Thus, we allow the loss proba-

bility for a packet of
ow i, which arrives when the queue occupancy is Q, to be

51

represented by the function pi(Q); pi(Q) is related to our afore-mentioned drop

function p(Q) by the expression:

pi(Q) = c2
i
p(Q) (3.3)

where the ci are arbitrary non-zero constants. Our model thus permits the loss

function for di�erent connections to be scalar multiples of one another but requires

them to have the same minimum and maximum thresholds. This scalar model

permits us, for example, to capture the byte-mode of operation of RED where the

probability of a packet drop is proportional to the size of the packet (by setting

c2
i
= Mi). Also, for convenience, we shall use �pi(W) to represent the (as yet

unknown) relationship between the packet drop probability of TCPi and its window

size W .

3.2 Mean Queue Occupancy and Window Sizes

We �rst use a drift-based argument to determine the center of the queue occu-

pancy, denoted by Q� (in bytes), and the centers of the cwnd-s of the individual

connections (in MSSs), denoted by W �
i
; i = f1; : : : ; Ng. To estimate the center of

the queue occupancy, we use a set of �xed point mappings. The basic idea is to

�nd values for the average window sizes, such that the average queue size given by

those set of values is consistent with the average loss probability that is implied

by the window sizes.

52

3.2.1 The Fixed Point Equations

De�ne the drift of the congestion window of any TCP
ow by the expected change,

�W , in its window size. Since, for a window size of w, the window size (in packets)

increases by 1
w
with probability 1� �p(w) and decreases by w

2
with probability �p(w),

we have:

�W = (1� �p(w))
1

w
� �p(w)

w

2
: (3.4)

From the above equation, the center or `0-drift' value of W , called W �, is seen to

be

W � �
s
2

1

�p(W �)
(3.5)

where the approximation is quite accurate as �p is usually quite small 5 (for current

TCP versions, if the drop probability exceeds � 0:02, timeouts and slow start

phenomena begin to degrade TCP behavior.)

For the case of multiple TCPs, the zero-drift analysis gives the window size (in

packets) for
ow i, as

W 0
i
(packets) =

s
2

pi(Q�)
(3.6)

By incorporating expression (3.3) in the above equation and noting that each

packet is of size Mi bytes, we get the mean window size (in bytes) as

W �
i
=
Mi

ci

s
2

p(Q�)
(3.7)

5A more accurate analysis [14] reveals that the mean window occupancy, in ack time, is given

by W � � 1:5269p
p

. It is this value that we used in all our experimental results ; for notational ease,

however, we shall continue using the
p
2 approximation in our exposition.

53

Now, let Ci be the bandwidth obtained by TCP i. Assuming that there is no

signi�cant bu�er under
ow and that the link is fully utilized (after all, this is the

bottleneck link), we get the relation
P

N

i=1Ci = C. Ci can also be computed by

a di�erent method- by noting that a TCP connection sends one window worth of

data in one e�ective round trip time. Since a queue of size Q will contribute a

bu�ering delay of Q

C
, the e�ective round trip time of connection i is RTTi +

Q

C
;

whence, we can related Ci to Wi by the expression

Ci =
Wi �Mi

RTTi +
Q

C

(3.8)

By equating the sum of the Cis from the above equation to C and by using equation

(3.7), we get

C =W
NX
i=1

Mi

ci

RTTi +
Q

C

(3.9)

or, upon simpli�cation,

W =
1

P
N

i=1

Mi
ci

Q+C:RTTi

(3.10)

where W =
q

2
p(Q)

. For notational convenience, let the RHS of equation (3.10) be

denoted by the function g(Q) so that g(Q) = (
P

N

i=1

Mi
ci

Q+C:RTTi
)�1.

The �xed point solutions for the `average' TCP window sizes and the queue

occupancy is then given by the set of values that provide a solution to the following

simultaneous equations:

W =

s
2

p(Q)
(3.11)

W = (
NX
i=1

Mi

ci

Q+ C:RTTi
)�1 = g(Q) (3.12)

54

The individual `average' TCP windows (in MSSs) are the computed using the

relationship Wi =
1
c1
W � and in bytes using the relationship:

W �
i
=
Mi

ci
W � (3.13)

Corrections for Delayed Acknowledgements

Although the above analysis assumed that the receiver generated an acknowl-

edgement for every incoming packet, a simple modi�cation to our model enables

consideration of the case of delayed acknowledgements when the receiver gener-

ates an acknowledgement for every K (usually 2) incoming packets. Such receiver

behavior can be approximated by modifying equation (3.1) to

PfW n+1
i

= w +
1

K � w jW
n

i
= wg = 1� pi(w); (3.14)

Accordingly, the `square-root relationship' in equation (3.5) is modi�ed to W � =

q
2

K�p(W �)
. Also, during the analysis of the state-dependent loss model using the

analysis in chapter 2, the di�erential equation for process X(t) is given by

dX

dt
=

pmax

p(Xp
pmax

)K �X
(3.15)

instead of equation (2.12).

3.2.2 Existence and Solution of Fixed Point

We now prove the existence of a unique solution to the above simultaneous equa-

tions and also provide a numerical technique for its rapid computation.

55

min
th max

th

Q
*

*

Q

W

W g(Q): concave function

p(Q)

2

Figure 3.1: Typical Relationship between W and Q

for Random Drop Queues

The existence of a unique solution can be demonstrated graphically (�gure

3.1) by plotting each equation as a line on the (Q;W) axes. Since p(Q) is assumed

non-decreasing in Q, we have W in equation (3.11) to be a non-increasing function

of Q, while in equation (3.12), g(Q) can be seen to an increasing function of Q.

The two plots will therefore intersect at a single point, which is our `zero-drift'

solution for W � and Q�.

In Appendix C, we prove that the function g(Q) is concave; accordingly we can

see that the function f(Q), de�ned by the di�erence between the RHS of equations

(3.11) and (3.12), is convex in Q.

f(Q) =

s
2

p(Q)
� 1P

N

i=1
Mi=ci

Q+C:RTTi

(3.16)

We thus use the Newton gradient technique, which is guaranteed to converge and

provide a solution to the equation f(Q) = 0, to solve for the �xed point. We start

56

with an initial estimate of Q0 = minth + � (an initial value to the left of Q�) and

proceed with repeated iteration. In this particular setting, the derivative f 0(Qj)

at the jth iteration is given by

p0(Qj)p
2p(Qj)

3
2

�
P

N

i=1

Mi
ci

(Qj+C:RTTi)2

(
P

N

i=1

Mi
ci

Qj+C:RTTi
)2

(3.17)

3.2.3 Insights from above Analysis

The drift analysis technique provides some insights for predicting or controlling

the stationary behavior of persistent TCP connections and for understanding the

accuracy of our approximation technique. For example, our analysis shows that:

� TCP connections with the same round trip time but di�erent packet sizes

will see the same `average' window size (in bytes) if ci = �Mi 8i, where � is

an arbitrary constant. In other words, to ensure fair sharing of throughput

among TCP connections with di�erent packet sizes, the packet dropping

probability should be proportional to the square of the packet size. Contrast

this with current byte-mode drop schemes where the packet drop probability

is normally proportional to the packet size.

� TCP connections which are identical, except for di�erent round trip times,

will observe relative throughput that is inversely proportional to the round

trip times. This unfairness towards TCP connections with larger round-trip

times is well known.

57

� Since W � (the `�xed point' that satis�es both equations (3.11) and (3.12)) is

identical for all
ows, it should be clear from equation (3.13) that the mean

value of the window size (in packets) for all TCP
ows, which have the same

drop function (same pis), will be the same, irrespective of their round-trip

times and segment sizes. The point is more subtle than apparent at �rst

glance: the means are identical only when expressed in MSSs and when

the distribution is taken with respect to ack time. When sampled in clock

time, the distribution of the window size and even the mean value of each

TCP connection will indeed depend on its round-trip delay (which in
uences

the rate of progress of the connection). We can, however, easily compute

the distribution in clock time from that in ack time if the round-trip delay

for a speci�c connection is non-varying, by using the relation dFack(x) =

xdFclock(x)R1
0

ydFclocky
. As the number of
ows increases, we shall later see that the

bu�er occupancy (and hence, the queuing delay) shows relatively smaller

variation; estimates of clock-time distributions from our ack-time calculations

will consequently be more accurate.

� Since the mean analysis technique is based upon an ideal model where each

TCP window stays around its `average' value and the loss rate is constant,

the accuracy of our predictions should be higher when the bu�er occupancy

(and hence the loss probability) does not change appreciably. We shall later

see that the TCP window sizes, when interacting with an ERD-based queue,

58

are not independent but reveal negative correlation. The queue occupancy

accordingly shows less variance fmathematically speaking, the coe�cient of

variation, Std:Dev(Q)

Mean(Q)
, decreases g with an increase in N , the number of con-

nections, making the estimates via the mean value approximation technique

progressively more accurate. This explanation and prediction is corroborated

by results presented later, in �gures 3.4 and 3.5. Furthermore, we also note

in passing, that for our model of a TCP
ow subject to packet drops with

a constant drop probability, Std:Dev(W) = 0:38E[W], i.e., the coe�cient of

variation is around :4.

3.2.4 Simulation Results for the Mean Window Sizes

The applicability and accuracy of our analytical technique was veri�ed using a wide

variety of simulation experiments, with various combinations of segment sizes and

round trip times. The simulations were performed using the ns-2 [29] simula-

tor, with sources implementing the New Reno version of TCP. The queue service

rate equals 1:5 Mbps throughout the results presented here. While the numerical

analysis (including the estimation of the distribution of the individual congestion

windows) takes less than 1-2 mins on a conventional workstation, the simulations

would require 20 mins (and higher, depending on the number of connections) before

results with an acceptable degree of statistical con�dence could be obtained. To

study the accuracy of our drift analysis, we simulated both RED (Random Early

59

15

20

25

30

35

40

45

50

55

60

65

70

75

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
T

C
P

 W
in

do
w

 (
pk

ts
)

 p_max

Mean of TCP Window vs p_max

Bottleneck B/W= 1.5Mbps, RTT=25ms,
 PktSize= 512 bytes

ERD Simulation, Flow 1
ERD Simulation, Flow 2
RED Simulation, Flow 1
RED Simulation, Flow 2

NumTheory, Flow 1
NumTheory, Flow 2

20

30

40

50

60

70

80

90

100

110

120

130

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
Q

ue
ue

 O
cc

up
an

cy
(p

kt
s)

 p_max

Mean of Queue Ocucpancy vs p_max

Bottleneck B/W= 1.5Mbps, RTT=25ms,
 PktSize= 512 bytes

ERD Simulation
RED Simulation

NumTheory

Figure 3.2: Mean TCP Window Sizes and Queue Occupancy

for 2 Identical Connections

Detection) and ERD (Early Random Drop) queues. The di�erences between these

algorithms and the necessary corrections to our model (for RED) are presented in

Appendix B.

A set of illustrative examples are presented in �gures 3.2 and 3.3. In these

simulations, we had two concurrent TCP connections, with 512 byte packets, in-

teracting with a single bottleneck queue. The queue parameters were kept as

follows: minth = 10240 bytes, maxth = 102400 bytes and the bu�er size was kept

at 256000 bytes. pmax was varied between the values outlined in the plots. Figure

3.2 considers two TCP connections with identical parameters, while in Figure 3.3,

we have two connections with the nominal RTT of the second connection double

that of the �rst connection's RTT (called the BaseRTT in the �gure). By varying

pmax, we change the slope of the drop function and hence, the `zero-drift' point of

the queue occupancy. In general, the accuracy of our predictions would slightly

60

20

25

30

35

40

45

50

55

60

65

70

75

80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
T

C
P

 W
in

do
w

 (
pk

ts
)

 p_max

Mean of TCP Window vs p_max

Bottleneck B/W= 1.5Mbps, BaseRTT=25ms,
 PktSize= 512 bytes

ERD Simulation, BaseRTT
ERD Simulation, 2*BaseRTT

RED Simulation, BaseRTT
RED Simulation, 2*BaseRTT

NumTheory, BaseRTT
NumTheory, 2*BaseRTT

20

30

40

50

60

70

80

90

100

110

120

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
Q

ue
ue

 O
cc

up
an

cy
(p

kt
s)

 p_max

Mean of Queue Occupancy vs p_max

Bottleneck B/W= 1.5Mbps, BaseRTT=25ms,
 PktSize= 512 bytes

ERD Simulation
RED Simulation

NumTheory

Figure 3.3: Mean TCP Window Sizes and Queue Occupancy

for 2 Dissimilar Connections

degrade for larger RTT values, although in all cases the agreement was within

10 � 15% of the predicted values. This is expected because a larger RTT essen-

tially increases the chance of bu�er under
ow (which invalidates our model) by

increasing the feedback time of the TCP control loop. Since our model does not

account for phenomena like fast recovery (during which the queue size reduces),

we tend to predict larger queue occupancies than those obtained via simulation.

Also, as expected, the quality of the prediction increases with the number of
ows

N (as long as p(Q�) did not become large enough to cause timeouts).

Our simulations hence support our analysis, which states that the means of

the TCP windows (in segments) should be identical (in ack time), even though

the round-trip times of the various
ows and the segment sizes are di�erent. It

should also be noted that the negative correlation among window sizes (discussed

a little later) helps to reduce the variation in packet loss probability and improves

61

the accuracy of our technique.

3.3 Computation of Individual Window Distributions

We now use the `mean' of the individual distributions and the queue occupancy to

determine the detailed stationary distribution of the individual connections. Since

the approach is identical for all the connections, we consider, in general, the ith

connection, with a calculated mean of W �
i
bytes, a segment size of Mi and a drop

function pi(Q); as before, the computed mean of the queue occupancy is Q�.

When considering a speci�c
ow, we use our independence assumption to pos-

tulate that the other connections always have their window size equal to their

computed means6. For the square-root approximation, we assume that the loss

probability of a packet for the
ow is constant and does not change with the win-

dow size. The constant packet loss probability used in this technique is given

by the value of p(Q) when Q = Q�. The window distribution (in ack time) is

then computed using the rescalings and the analytical formula presented earlier in

chapter 2 and in [14].

For the perturbation-based analysis, if Wi is the window size (in MSSs) of the

connection under consideration, the bu�er occupancy, Q, corresponding to this

window size is given (in bytes) by the relation

Q = [Q� +
(Wi �Mi �W �

i
) �Q�

Q� + C �RTTi
]+ (3.18)

where the []+ re
ects the fact that the queue occupancy cannot be negative. Ac-

62

cordingly, we now have a state-dependent loss probability for the TCP connection

where the packet loss probability is a function of the window size W and is given

by

�pi(W) = p(Q) = p([Q� +
(Wi �Mi �W �

i
) �Q�

Q� + C �RTTi
]+) (3.19)

We can then solve for the distribution of the state-dependent window evolution

model using the numerical technique detailed in chapter 2.

3.3.1 Simulation Results for TCP Window Distributions

A variety of simulations were performed to compare the accuracy of the distri-

butions predicted by our analytical techniques. Several sets of experiments were

carried out with the number of connections varying from 2 � 20 and with wide

variations in the round trip times and segment sizes. For all the plots presented

here, minth = 10240 bytes, maxth = 102400 bytes and pmax = 0:05.

6In general, the loss probability, for a particular value of Wi, is a random variable, say X,

whose value will depend on the instantaneous values of the other windows; let us denote this

dependence by X = p(
P

j 6=iWj +Wi). Now the expected value of X , conditioned only on the

window Wi of the
ow under consideration, is denoted by E[X] and equals E[p(
P

j 6=iWj +Wi)].

This conditional expectation equals p(
P

j 6=i E[Wj] + Wi) only if the loss function p is linear.

Accordingly, for linear loss functions, our postulation is equivalent to assuming that the loss

probability for a given window size is replaced by the unconditional expected loss probability for

that size.

63

3.3.1.1 Negative Window Correlation and its Consequences

Before presenting the simulation results themselves, we discuss an important rela-

tionship that was observed between the window sizes of multiple TCP connections.

We noticed this relationship only when trying to analyze the simulation results;

for lucidity of presentation, we present this empirical result upfront.

The perturbation-based approach assumes that the window sizes of the other

ows are uncorrelated to the window size of the
ow under consideration; the queue

occupancy consequently increases and decreases in tandem with the window size

of the
ow. If this were true (the windows were truly uncorrelated), the window

size probability distribution would indeed have less spread (be more concentrated

around the mean): any increase beyond the mean would result in a larger drop

probability (and more aggressive drops), while any decrease below the mean would

be immediately compensated for by a less aggressive drop probability. Consider

now what would happen if the
ows were negatively correlated; we use the case

of 2
ows for the ease of presentation. A negative correlation implies that when

the window size of one
ow is large, the other one has a smaller window size, and

vice versa; the queue occupancy thus exhibits lower variability and tends to be

less dependent on the variations in the window size of a single
ow. In such a

negatively correlated environment, the square-root technique would perform better

than the perturbation technique, since it (correctly) assumes that the queue size

(and the loss probability) is largely independent of the
ow's window size. On the

64

other hand, if the
ows were positively correlated (
ows tended to increase and

decrease in tandem), the perturbation technique should provide a better �t than

the square-root model, although both models could indeed exhibit lower accuracy.

The experimental results presented in this chapter use the ERD algorithm

[30], where the drop behavior is memoryless and is based on the instantaneous

queue occupancy. Similar results were also observed with RED queues; further

discussion of the dependence of the correlation on the choice of the algorithm (RED

vs. ERD) is deferred to chapter 4. To investigate the correlation for two
ows

(N = 2), we sampled in clock time the window size of each
ow and determined

the individual and joint moments of their distributions. The resulting correlation

coe�cient turned out to be �:4, indicating a not insigni�cant degree of negative

correlation. For the general case of N
ows, where individual correlation indices

are somewhat harder to comprehend, we use the sampling technique to plot the

variance of the sum of the window sizes, V ar(
P

N

i=1Wi), against the sum of the

individual variances,
P

N

i=1 V ar(Wi). We know that the two should be equal if

the
ows are ideally uncorrelated; for negative correlation, the sum should exhibit

lower variance (V ar(
P

N

i=1Wi) <
P

N

i=1 V ar(Wi)), while for positive correlation,

the sum should exhibit larger variance (V ar(
P

N

i=1Wi) >
P

N

i=1 V ar(Wi)). (This

follows from the general relationship

V ar(
NX
i=1

Wi) =
NX
i=1

V ar(Wi) +
X
i6=j

Cov(Wi;Wj) (3.20)

Hence, if the covariance terms are negative, then the LHS of equation (3.20) is less

65

than the RHS.)

A graph showing the observed behavior for N identical
ows (
ows with iden-

tical operating parameters), for di�erent values of N , is shown in �gure 3.4. The

�gure shows that V ar(
P

N

i=1Wi) is always less than
P

N

i=1 V ar(Wi) (and, in fact,

V ar(Q) is even lower than V ar(
P

N

i=1Wi)). This indicates the presence of `negative

correlation' among the TCP
ows. This observation will help explain our later

results which show that, for a majority of the simulated cases, the square-root

approach provides a better estimate than the variable-probability perturbation

technique. In chapter 4, we shall consider modi�cations in random drop algo-

rithms, such as RED and ERD, to increase the observed negative correlation, since

this results in lower variability in the queue length and hence reduces the delay

jitter experienced by incoming packets. With such modi�cations, the square-root

approach will indeed produce even more accurate predictions of the individual

window distributions.

Another interesting observation can be made by observing the graphs in �gure

3.5, where we plot the coe�cient of variation (Std:Dev
Mean

) of the queue size, the coe�-

cient of variation of the sum of the window sizes (

q
V ar(

PN

i=1
Wi)

Mean(
PN

i=1
Wi)

) and the mean of

the coe�cient of variation of the N TCP
ows (

PN

i=1
CoeffV ar(TCPi)

N
). As the �gure

shows, the coe�cient of variation of the queue (as well as the sum of the window

sizes) decreases with increasing N , indicating that the queue becomes smoother

(the variance of the queue occupancy increases more slowly than the average queue

occupancy). This corroborates our observation in section 3.2.3, which predicted

66

0

20

40

60

80

100

120

140

160

180

200

2 3 4 5 6 7 8 9 10

V
ar

ia
nc

e
(in

 p
ac

ke
ts

/s
eg

m
en

ts
)

Number of TCP Flows

Variance Behavior Plots

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Variance of Sum of Windows
Sum of Variance of Windows

Variance of Queue Occupancy

Figure 3.4: Variance Plots for TCP
ows over an ERD Queue

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5 6 7 8 9 10

C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
.D

ev
./

M
ea

n)

Number of TCP Flows

Coefficient of Variation Plots

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Coeff. of Variation of Sum of TCP Windows
Coeff. of Variation of Queue Occupancy

Mean Coeff. of Variation of TCP Windows

Figure 3.5: Coe�cient of Variation Behavior for TCP over an ERD Queue

a decrease in the coe�cient of variation of the queue occupancy with increasing

N and used this to explain why our `mean-value analysis' gets progressively more

accurate with increasing N . Also, note that the mean of the coe�cient of varia-

tion of the TCP
ows stays around :4, indicating a reasonable validation of our

constant drop probability assumption.

67

3.3.1.2 Illustrative Results

Simulation results indicate that, across a wide range of operating conditions, the

analytical techniques o�er a reasonably accurate estimate of the distributions of

the di�erent
ows. In particular, it comes as no surprise to observe that the pre-

dictions improves in accuracy when the number of
ows increases (until the loss

probabilities become large and transient TCP phenomena like timeouts become sig-

ni�cant): as the number of
ows increases, the dependency of the queue occupancy

on a single connection, as well as the coe�cient of variation of the queue occupancy,

decreases; consequently, the assumptions behind both the perturbation approach

and the square-root technique become progressively more accurate. It should also

be noted that, not only is the square-root approach usually more accurate than

the perturbation approach, it is always computationally cheaper and simpler than

the perturbation technique.

The simulations in �gure 3.6 compare the results when 2 or 5 concurrent TCP

connections, all having the same parameters, share the ERD queue. The packet

sizes are 512 bytes and the round trip times are 25msec. As we can see, the

agreement is fairly close; the square-root approximation, in fact, gives a very good

�t.

In �gure 3.7, we present results for simulations involving 2 or 5
ows, all of

which have the same packet size (512 bytes) but di�erent round trip times. Our

analytical methods predicts the same distribution (in ack time) for each connection.

68

The RTT of the �rst
ow is 25msec while each subsequent connection has a RTT

double that of the previous
ow. For conciseness and clarity, in each case, we

present the comparison of the results for 2
ows, those with the smallest and

largest RTT respectively. The agreement is observed to be fairly good, with the

square-root approach again proving superior to the perturbation approach.

Figure 3.8 shows the result of experiments similar to those of �gure 3.7, except

that now we keep the round trip time constant at 25msec but vary the segment

sizes: each
ow should now have a di�erent distribution. The segment size of

a connection is twice that of the previous connection, with the smallest segment

size being 64 bytes. Results are shown only for the
ows with the smallest and

largest segment sizes. Fairly good agreement is observed again. In this case, the

square-root approach gives an identical distribution for all the connections, while

the perturbation approach gives di�erent estimates for each
ow. We can see that,

for the
ow with the largest segment size, the perturbation technique provides a

better estimate than the square-root technique; this is because the square-root

technique is unable to capture the fact that the queue occupancy changes with a

change in the window size (which is more acute for
ows with larger MSS).

To further illustrate the e�ect of negative window correlation and the conse-

quent accuracy of the simpler square-root approach, we carried out a series of

experiments where we simply varied the number of concurrent
ows. Each TCP

ow had identical parameters like segment sizes and round trip times and the drop

function was constant across all simulations. The results for 2, 5, 10 and 15
ows

69

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Perturb-Theory, Flow 1&2
ERD Simulation, Flow 1
RED Simulation, Flow 2
Sqrt-Theory, Flow 1&2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Perturb-Theory, Flow 1-5
ERD Simulation, Flow 1
ERD Simulation, Flow 5

Sqrt-Theory, Flow 1-5

Figure 3.6: TCP Window Distribution for 2/5 Identical TCP Connections

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (2 Different RTTs)

Bottleneck B/W= 1.5Mbps,
 BaseRTT=25ms, PktSize= 512 bytes

Perturb-Theory, Flows 1&2
ERD Simulation, Flow 1
ERD Simulation, Flow 2
Sqrt-Theory, Flows 1& 2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Different RTTs)

Bottleneck B/W= 1.5Mbps,
 BaseRTT=25ms, PktSize= 512 bytes

Perturb-Theory, Flow 1
ERD Simulation, Flow 1
Sqrt-Theory, Flows 1-5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Different RTTs)

Bottleneck B/W= 1.5Mbps,
 BaseRTT=25ms, PktSize= 512 bytes

Perturb-Theory, Flow 5
ERD Simulation, Flow 5
Sqrt-Theory, Flows 1-5

Figure 3.7: TCP Window Distribution for 2/5 Connections with Di�erent RTT

70

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (2 Different Segsizes)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 BasePktSize= 512 bytes

Perturb-Theory, Flow 1
ERD Simulation, Flow 1
Sqrt Theory, Flows 1-2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (2 Different Segsizes)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 BasePktSize= 512 bytes

Perturb-Theory, Flow 2
ERD Simulation, Flow 2
Sqrt Theory, Flows 1-2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Different Segsizes)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 BasePktSize= 64 bytes

Perturb-Theory, Flow 1
ERD Simulation, Flow 1
Sqrt-Theory, Flows 1-5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Different Segsizes)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 BasePktSize= 64 bytes

Perturb-Theory, Flow 5
ERD Simulation, Flow 5
Sqrt-Theory, Flows 1-5

Figure 3.8: TCP Window Distribution for 2/5 Connections with Di�erent Segsizes

are presented in �gure 3.9. The graphs with the `Theoretical Distn.' label refer to

the plots for the perturbation-based predictions. As we can see from the graphs,

the square root-based predictions outperform the perturbation-based predictions,

with increasing accuracy at larger N .

3.4 Summary

In this chapter, we presented an analytical-cum-numerical technique to obtain

the centers of the TCP window sizes and the associated queue occupancy when

71

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (Two flows and Sqroot Theory)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Sqrt-Theory Flow 1&2
ERD Simulation, Flow 1
RED Simulation, Flow 2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (2 Flows & Perturbation Distn.)

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Perturb-Theory, Flows 1&2
ERD Simulation, Flow 1
RED Simulation, Flow 2

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Flows and Sq-root Formula)

Sqrt Theory, Flow 1-5
ERD Simulation, Flow 1
ERD Simulation, Flow 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (5 Flows and Theoretical Distn.)

ERD Theory, Flow 1-5
ERD Simulation, Flow 1
ERD Simulation, Flow 5

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (10 Flows and Sq-root Formula)

Sqrt Theory, Flow 1-5
ERD Simulation, Flow 1

ERD Simulation, Flow 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (10 Flows and Theoretical Distn.)

ERD Theory, Flow 1-5
ERD Simulation, Flow 1

ERD Simulation, Flow 10

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (15 Flows and Sq-root Formula)

Sqrt Theory, Flow 1-5
ERD Simulation, Flow 1

ERD Simulation, Flow 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

Segments

TCP Window Distribution (15 Flows and Theoretical Distn.)

ERD Theory, Flow 1-5
ERD Simulation, Flow 1

ERD Simulation, Flow 15

Figure 3.9: TCP Window Distribution for 2/5/10/15 Connections

(Square-root vs. Perturbation Approach)

72

multiple persistent TCP
ows share a bottleneck random-dropping bu�er. We

then evaluated two competing techniques to determine the window distribution

of each of the individual TCP
ows. One technique derives the distribution by

assuming a constant loss probability, whose value is determined by the center of the

queue occupancy. The other technique assumes a variable loss probability model

and uses a perturbation-type approximation to relate the packet loss probability

for a given connection to the window size of that connection alone. Simulation

experiments indicate that both techniques are fairly robust (accurate to within

� 10%); the numerical predictions are much more accurate at lower values of

the average drop probability. For ERD queues, the observed negative correlation

between the window sizes of di�erent
ows causes the predictions of the constant

loss model to outperform the predictions of the variable loss model, in a majority

of the experiments.

73

Chapter 4

Reducing the Variability of Random Drop Queues

We have seen in chapter 3 how a random dropping queue, which performs con-

ditionally independent packet drops based on the instantaneous queue occupancy,

causes the competing TCP windows to be negatively correlated. Such negative

correlation essentially results in a lower variability in the queue occupancy; see

[32] for details. The primary objective of random drop algorithms such as RED [1]

is to prevent bu�er under
ow and thereby improve the e�ective utilization of avail-

able link bandwidth; it is thus important to minimize the variability of the queue

occupancy. Decreasing the variability also achieves an important secondary goal:

reduction of jitter. Reduced jitter is bene�cial, especially for real-time applica-

tion tra�c, such as Voice-over-IP, which might be multiplexed on the same queue.

In this chapter, we study how two suggested features for practical random drop-

based queue management algorithms a�ect the correlation among the bu�ered

TCP
ows, and thereby make recommendations for reducing the variability of the

queue occupancy in such cases. Most research on the performance of random drop

queues typically concentrates on the performance of the individual TCP
ows; our

74

investigations are di�erent in that they concentrate primarily on the variation in

the queue occupancy itself. As always, the results of our investigations apply to

random marking queues (such as ECN) as well.

We study the dependence of the variability of the queue occupancy on two

important features associated with random drop algorithms:

� Using a weighted sum of the past queue occupancy in determining the average

queue occupancy. This approach has, for example, been suggested in RED,

where the averaged queue occupancy, Qavg, is computed by an exponentially

weighted moving average technique. The memory used in the averaging

process is usually expressed through a parameter, �, called the weight or the

`forgetting factor'- a smaller weight corresponds to an increased memory in

the averaging process.

� Supporting `drop-biasing', i.e., adjusting the drop probability, based on the

number of packets accepted since the last drop. This is usually performed

through the use of a variable cnt, which is incremented by 1 for every accepted

packet and reset to 0 whenever a packet is selected for random drop.

While randomized packet drops for providing early congestion warning to TCP

tra�c was �rst proposed in [30], the popular and widely deployed Random Early

Detection (RED) algorithm was presented in [1]. This version of RED (which we

call `classical RED') bases its dropping probability on a weighted average of the

past queue occupancy and employs a technique to generate a uniform distribution

75

for the gap between successive packet drops. While RED has several di�erent pa-

rameters which can be tuned to provide e�ective congestion control, relatively few

results that provide systematic guidelines on setting these parameters are available.

Since recent research has revealed why the absence of adaptive parameter tuning in

RED limits the usefulness of the classical RED algorithm over widely varying tra�c

loads, various modi�cations to the basic RED algorithm have been proposed. [19]

discusses SRED, a dropping strategy that modi�es the drop probability based on

the number of active
ows; [20] discusses BLUE, a dropping strategy that adapts

the dropping probability based on bu�er over
ow and link idle events. In this

chapter, we concentrate on utilizing functionality currently available in classical

RED implementations to reduce the variance of the queue occupancy. Note that

the two features studied in this chapter are not in con
ict with any of the proposed

modi�cations, such as SRED and BLUE, and can indeed be used to complement

the performance of any such modi�ed algorithm.

Our studies show that an increased use of the past queue occupancy in the

averaging process decreases the negative correlation among TCP windows; the use

of drop-biasing techniques that ensure a minimum gap between successive packet

drops, on the other hand, increases the negative correlation. As a result of this

changing correlation, the queue variance will change, even though the overall drop

probability and the individual TCP window distributions do not change noticeably.

Our results can be used to

76

� determine useful settings for the weight parameter in random loss queues.

� devise useful drop-biasing strategies for choosing packets for random drop.

In scenarios where packet drops are the only way to signal incipient congestion to

TCP, our recommendations can lead to signi�cant improvements in bu�er stability.

4.1 Models and Techniques under Investigation

We �rst provide a model for the random drop queue behavior as well as a descrip-

tion of the use of memory in the averaging process and the techniques for altering

the inter-drop gap in the random drop algorithms. We also include a discussion

of the two di�erent source models for TCP tra�c used in our simulation-based

studies.

4.1.1 Models for Random Drop-based Queuing

The probability of packet drops in the random drop queue is assumed to be related

to the drop function; the drop function is denoted as p(Q) where Q is the bu�er

occupancy7 of the random drop queue. For our simulations, we use the widely

used linear model for the drop function:

p(Q) = 0 8 Q < minth

= 1 8 Q > maxth

=
pmax � (Q�maxth)

maxth �minth
8 minth � Q � maxth

77

where maxth and minth are the maximum and minimum drop thresholds and pmax

is the maximum packet drop probability. Since all simulations reported here use

equal-sized TCP/ UDP packets, all thresholds and queue occupancies are reported

in packets (segments) instead of bytes. We now discuss separately the possible

choices that we have investigated for the memory and drop patterns, taking special

care to point out the current settings in classical RED.

4.1.1.1 Past Memory in Drop Function

Random drop algorithms can base their drop function either on the instantaneous

queue occupancy or on some function of the past queue occupancy. RED uses

the exponentially weighted moving average model to incorporate the past queue

occupancy in the drop pattern; in this model, an average queue occupancy Qavg is

computed for each incoming packet according to the iterative relation

Qi+1
avg

= (1� �)Qi

avg
+ � �Qi+1

curr
; (4.1)

where the superscript refers to the arrival of the i+ 1th packet and Qcurr refers to

the instantaneous queue occupancy. � is called the weight or the forgetting factor;

a smaller � implies a relatively larger e�ect of the past queue occupancy on the

7Depending on the context, Q represents either the instantaneous queue occupancy, Qcurr,

or some mapping of the queue occupancies in the past. For classical RED, Q is really Qavg , a

weighted average of the past queue occupancies; for ERD, Q is identical to Qcurr.

78

current drop probability. Thus, RED's drop function can be expressed as p(Qavg).

Note that if the weight � = 1, the drop function depends only on the instantaneous

queue occupancy; as � # 0, the memory of the averaging process increases. For our

convenience, we de�ne the term `length of the memory' in the averaging process

as 1
�
. Accordingly, by varying � within the interval (0; 1], we can obtain the entire

range of memory in the dropping process8.

While other drop functions based on fancier projections of past queue occu-

pancy are also possible, exponentially weighted moving averaging is popular as

it requires minimal computational complexity. In our simulations, we vary � to

investigate the sensitivity of the random drop queue behavior to the length of the

memory used in the drop function.

4.1.1.2 Inter-Drop Gap Determination Strategy

Given a speci�c drop function, p(Q) provides an estimate of the averaged inde-

pendent drop probability: if the queue occupancy (instantaneous or averaged) were

to remain constant at Q, on an average, one out of every 1
p(Q)

packets should be

dropped. We can however use various drop-biasing techniques to alter the distri-

bution of the gap between drops, without altering the average gap of 1
p(Q)

.

Classical RED performs drop-biasing by using the variable cnt, introduced

8When � = 1, i.e., when the instantaneous queue occupancy is used, we shall refer to the

random drop queue as an ERD queue throughout this chapter; when � 6= 1, i.e., when averaging

is performed, we shall refer to the queue as a RED queue.

79

earlier, to modify the dropping probability of an incoming packet. In classical

RED, the packet dropping probability, denoted by pdrop is given by the equation

pdrop =
p(Q)

1� cnt � p(Q) : (4.2)

This code is present in the publicly available ns-2 simulator [29]. This results in an

inter-drop gap that is uniformly distributed between (1; : : : ; b 1
p(Q)

c). Neglecting the

integer constraints, we can then approximate the mean inter-drop gap as 1
2�p(Q)

, if

the queue occupancy Q remains constant. We refer to this strategy as the Uniform

model of drop-biasing in our subsequent discussions.

Early Random Drop, as discussed in [30] or as applied in [32], on the other

hand, computes the dropping probability for each incoming packet by the equation

pdrop = p(Q), i.e., the drop probability of an incoming packet is independent of the

number of packets accepted since the last drop. If the queue occupancy function

p(Q) is constant, this results in a geometric distribution for the inter-drop gap. We

shall accordingly call this dropping strategy as the Geometric model; note that

under this method, a constant Q results in a mean inter-drop gap of 1
p(Q)

packets.

Both drop-biasing strategies presented so far can result in the dropping of

two consecutively arriving packets- they do not impose any minimum gap between

successive packet losses. We shall later see that introducing such a minimum gap

can appreciably reduce the variability of the queue occupancy. One alternative to

the uniform dropping pattern of conventional RED is to delay dropping the next

packet until at least 1
p(Q)

packets have been accepted. This can be accomplished

80

through the following pseudo-code (also available in ns-2) based on the variable

cnt:

if cnt <=
1

p(Q)
; then pdrop = 0;

if
1

p(Q)
< cnt <=

2

p(Q)
; then pdrop =

2

2� cnt � p(Q) ;

if cnt >
1

p(Q)
; then pdrop = 1:

This pattern of random dropping results in a uniformly distributed gap between

(1
p(Q)

; : : : ; 2
p(Q)

). This dropping pattern, which we call the Delayed Uniform drop

mechanism, results in a mean inter-drop gap of 3
2�p(Q)

.

As a natural corollary to the Delayed Uniform model, we have the Delayed

Geometric model where the gap between successive packet losses is at least 1
p(Q)

;

once 1
p(Q)

packets have been accepted, each new incoming packet is likely to be

dropped with a probability of p(Q). If the drop function p(Q) is constant, this

results in a shifted-geometric distribution for the inter-drop gap, with a mean

inter-drop gap of 2
p(Q)

.

One additional model of delayed dropping in drop-biasing is interesting for

its simplicity and resultant insight. This model, which we call the Deterministic

model, causes every 1
p(Q)

th
packet to be dropped. Readers will note, that for a

constant p(Q), there is indeed nothing random about this packet dropping strat-

egy; accordingly, special artifacts such as synchronization and phase e�ects, that

unfairly penalize speci�c connections, are possible [17]. Given the random delays

81

In
te

r-
dr

op

C
D

F
of

G
ap

Inter-drop Gap

1

1/p(Q) 2/p(Q)

Uniform

Delayed Uniform

Deterministic

Geometric

Delayed Geometric

Figure 4.1: Di�erent CDFs for the Inter-Drop Gap

in actual links and tra�c paths, this is however unlikely to be a problem in real In-

ternet. (Also, the algorithm can be easily modi�ed to perform a random drop not

exactly at the 1
p

th
packet, but in a small interval around that value.) The Deter-

ministic model is the simplest drop-biasing strategy that introduces a mandatory

(yet unpredictable) separation between successive packet drops. We shall later see

that it is this separation, rather than the exact distribution of the inter-drop gap,

that primarily a�ects the variability in the queue size. Finally, we note that, for a

�xed value of p(Q), the Deterministic model results in a mean inter-drop gap of

1
p(Q)

, as in the Geometric model.

In sections 4.2 and 4.3, we shall report on the relative performance of random

drop queues under these di�erent drop-biasing strategies. Figure 4.1 provides

a visual understanding of how the various dropping strategies result in di�erent

shapes for the cumulative distribution function (cdf) of the inter-drop gap.

82

4.1.2 TCP Source Models

Two source models have been used in our simulations, as they emphasize two dif-

ferent phases of TCP window evolution. The �rst model is the standard persistent

source model with in�nite-sized �le transfers, where the sender's congestion win-

dow is the only constraint on the injection of new data packets by the sender.

This model allows us to study the impact of various settings of and modi�cations

to the RED algorithm on the performance of windows regulated primarily by the

congestion avoidance [4] algorithm, where the window is halved upon the detection

of a loss and incremented by one every round-trip time.

The other source model, called the Web TCP model, mimics the e�ects of

Web-based TCP transactions and involves the transfer of �nite-sized �les. The

model and its parameters are based on [33] and consists of a cycle of a Web

transaction (consisting of multiple �le transfers) alternating with an inactive o�-

period (when no data transfer takes place). Each of the multiple �le transfers in a

single transaction occurs sequentially and on distinct TCP connections. While most

transfers involve relatively small �les (a few KB) and consume a small number of

TCP segments, the heavy-tail of the �le size distributions implies that the bulk of

the transferred data lies in very large �les. The bulk of the transfers are completed

during TCP's initial slow-start transient (where TCP congestion control is less

e�ective). Also, since each transaction goes through alternating on and o� periods,

the number of TCP connections that are active at any given instant is not constant

83

but can
uctuate rapidly; since the occupancy of the RED queue is dependent on

the number of active
ows, the queue occupancy will
uctuate as well [19].

Current Web transfer protocols (e.g., HTTP 1.1 [34]) use persistent TCP con-

nections9; the same TCP connection is used for multiple transfers, even across

multiple transactions. The use of such protocols result in an increase in the e�ec-

tive size of a single transfer; in comparison to our Web model, a greater portion of

the data is now transferred during TCP's stationary congestion avoidance phase.

Results in later sections show that improvements with drop-biasing strategies are

more pronounced for persistent TCP tra�c rather than our model of Web traf-

�c. As persistent TCP connections become commonplace in Web transfers, we

expect our drop-biasing strategies to provide a greater degree of performance im-

provement. Note also that our simulation results are obtained using the TCP New

Reno algorithm available in the ns-2 simulator.

4.1.3 Simulation Parameters

Due to space constraints, all simulations reported in this chapter involve a single

random drop queue with a capacity (C) of 1:5 Mbps, a minth of 20 packets, a

maxth of 200 packets, a pmax of 0:05 and a maximum bu�er size of 500 packets.

Furthermore, all TCP and UDP connections have a packet size of 512 bytes and

9In the context of HTTP, the use of the word `persistent' implies the use of a single TCP

connection for multiple �le transfers. This is di�erent from the earlier de�nition of persistent

TCP source models, which refers to the transfer of in�nitely large �les over a single TCP
ow.

84

round trip times that vary randomly around 25msec. The queue occupancy and

TCP window sizes are sampled every 50msec in all our simulations to generate

realizations of appropriate random processes. For experiments involving persistent

TCP sources, the number of sources is varied between 2 � 15. For experiments

involving Web TCP sources, the number of sources is varied between 30� 120.

During our discussion of drop-biasing strategies, we have seen how di�erent

strategies give rise to di�erent expressions for the mean inter-drop gap. A fair

comparison of the queue variance is only possible when the mean queue occupancy

is nearly the same for all drop-biasing strategies. We can ensure this by having

the mean inter-packet gap, for a �xed Q, equal for all strategies. In other words,

we need 1
pGeom(Q)

= 2
pDelayedGeom(Q)

= 1
2�pUniform(Q)

= 3
2�pDelayedUnif (Q)

= 1
pDeter(Q)

8Q.

For the linear packet drop model provided earlier, the reader can verify that this

is achieved by setting the pmax values for the DelayedGeometric, Uniform, De-

layedUniform and Deterministic models to be respectively 2, 1
2
, 3
2
and 1 times the

value of pmax for the Geometric model. All the studies reported in this chapter use

this corrected parameter setting to ensure fairness.

4.1.4 Jitter Formulation

Since devising algorithmic improvements to minimize the packet jitter is a primary

objective, we often use a probe stream to directly obtain the delay variation under

di�erent parameter settings. The probe stream injects packets periodically into

85

the queue at a relatively low intensity (64 Kbps).

We use two di�erent de�nitions of jitter in our analyses. For each method,

we �rst de�ne a time interval and determine both the one-way packet delays and

the di�erence in delay between consecutive packets (the `per-packet' jitter) for all

packets received in that interval. Under the percentile de�nition, the jitter for that

interval is computed as the di�erence between the 95th and the 5th percentile of

the packet delay distribution. The alternative RTP-based [35] de�nition employs

a moving average computation over the per-packet jitter of each packet using

JitterMov(i) = (1:0� �) � JitterMov(i � 1)

+� � PerPacketJitter(i)

where � = 1
16
. The RTP-jitter for that interval is de�ned as the maximum value

of JitterMov in that interval. Graphs presented here use intervals of 250msec and

10sec, corresponding to a sample size of � 4 and � 160 probe packets respectively.

4.2 E�ect of Memory in Random Drop Queues on Queue

Occupancy Variability

In this section, we evaluate how the variability of the queue occupancy depends

on the length of the memory used in the averaging process. We shall see how

an increased use of the past queue occupancies can alter the negative correlation

among the TCP windows and often increase the variability of the queue occupancy.

86

As stated earlier, the length of the memory in the averaging process is expressed

in terms of the weight � and is given by 1
�
. In this section, we keep N , the

number of TCP connections, �xed and vary � to isolate the dependence of the

queue occupancy on the weight alone.

Chapter 3 discussed how TCP windows exhibit negative correlation when the

instantaneous queue occupancy is used in computing the drop function (ERD).

Negative correlation implies that the window sizes of the TCP connections tend

to vary out-of-phase: when the window size of one
ow is large, the other
ows

have smaller window sizes. In such a situation, the sum of the window sizes

(and indirectly the bu�er occupancy) at any instant would exhibit less variability.

Mathematically speaking, we can observe the correlation behavior by considering

the variance of the sum of the window sizes V ar(
P

N

i=1Wi) against the sum of

the individual variances
P

N

i=1 V ar(Wi). When the windows are uncorrelated, the

two are equal; for negative correlation, the sum should exhibit lower variance (

V ar(
P

N

i=1Wi) <
P

N

i=1 V ar(Wi)), while for positive correlation, the sum should

exhibit larger variance (V ar(
P

N

i=1Wi) >
P

N

i=1 V ar(Wi)). This follows from the

general relationship:

V ar(
NX
i=1

Wi) =
NX
i=1

V ar(Wi) +
X
i6=j

Cov(Wi;Wj) (4.3)

Thus, the correlation among the windows can be observed from comparisons of

the variance of the sum of the windows (or, almost equivalently, the variance of

the queue occupancy, V ar(Q)) with the sum of the variances of the individual

87

windows,
P

N

i=1 V ar(Wi).

Negative correlation lowers the variance of the queue occupancy itself and

causes a smoother queue than if the TCP windows were truly uncorrelated. As

� is decreased from 1 (increasing memory), Qavg becomes an increasingly low-

pass �ltered version of the queue occupancy and p(Qavg) consequently changes

more slowly. A slower change in Qavg increases the likelihood that the di�erent

TCP connections will observe the same drop probability and hence, experience

greater synchronization (at least in a stochastic sense) in their window evolution.

An excessive memory in the averaging process could thus defeat RED's aim of

de-synchronizing the evolution of the various TCP windows and could lead to a re-

duction in the negative correlation observed among the competing TCP windows.

Thus, we can intuitively see that, while a small degree of averaging of the queue

occupancy can guard against transient bursts from individual sources, an exces-

sive amount of memory can resurrect the possibility of synchronized losses and

reduced bandwidth utilization. We now provide the results that we have observed

with persistent and Web TCP connections.

4.2.1 Persistent TCP

Figure 4.2 shows how the occupancy statistics of a RED queue, bu�ering packets

from persistent TCP sources, varies as a function of the exponential weight �. We

see that the variance of the queue occupancy seems to decrease extremely slightly

88

(essentially stays constant) in some cases as � decreases from 1 to 0:5, and then

gradually increases (for all drop-biasing strategies) with a further increase in the

memory. We found this behavior to be consistent across all our simulations. The

graph for the average queue occupancy shows that the average queue occupancy is

independent of the length of the exponential memory (as expected); it also shows

that our pmax adjustment procedure was quite e�ective in making the mean queue

occupancy independent of the choice of the drop-biasing technique. The plot for

the sum of variance of the TCP windows
P

N

i=1 V ar(Wi) reveals that the window

variances of the TCP windows themselves stay fairly constant for di�erent values

of �. Accordingly, by comparing the variance of the queue occupancy with the

sum of the variance of the TCP windows, we can see that a longer memory in the

averaging process decreases the extent to which the TCP windows are negatively

correlated.

Reducing � beyond � 0:1 leads to an appreciable reduction in the negative

correlation among the TCP connections; in fact, when � is reduced beyond 0:001

(not plotted here), the TCP windows become positively correlated (the queue

variance exceeds the sum of the variance of the TCP windows themselves)! In

fact, for the Deterministic and Delayed Uniform drop-biasing strategies (which

will later be shown to outperform other drop-biasing alternatives), � = 1:0 seems

to provide the most optimal weight setting.

89

0

20

40

60

80

100

120

140

160

0 1 2 3

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

- Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

0

5

10

15

20

25

30

35

40

45

50

55

0 1 2 3

M
ea

n
Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

20

40

60

80

100

120

140

160

180

0 1 2 3

S
um

 o
f V

ar
ia

nc
e

of
 T

C
P

 W
in

do
w

s

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops
0

0.05

0.1

0.15

0.2

0.25

0 1 2 3C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
. D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

Figure 4.2: RED Queue Dynamics vs. Weight with Persistent TCP

90

4.2.2 Web TCP

Figure 4.3 graphs the RED queue behavior with Web TCP sources, as a function

of the exponential weight. As with persistent TCP, we see that the variance of the

queue occupancy increases with an increase in the length of the memory of the

averaging process. Note also that although the mean queue occupancy is about

the same (� 50� 60) for both persistent and Web source models, the variance of

the queue for Web sources is much higher (� 400� 1200) than the corresponding

variance for persistent sources (� 10�150). This is primarily due to the
uctuation

in the number of active connections itself: as the number of active
ows changes,

the expected occupancy of the RED queue also varies rapidly. A secondary reason

is the burstiness of the tra�c from an individual connection: random dropping

mechanisms are less e�ective in controlling bursty TCP tra�c (largely controlled

by the slow start mechanism) than in controlling smoother tra�c (regulated by

the congestion avoidance mechanism). The graphs of �gure 4.3 also show that

decreasing � increases the coe�cient of variation of the queue occupancy. This

is a direct fallout of the decreasing negative correlation among the TCP window

sizes.

4.2.3 Main Inferences

Using extensive simulations with di�erent drop-biasing strategies, we conclude

that, generally speaking, there is very little performance improvement (and in

91

fact, possibly signi�cant performance degradation) if the exponential weight � in

the averaging process is decreased from 1. For some drop-biasing strategies, a small

reduction in queue variance was observed as � was reduced from 1 to 0:1. However,

any smaller value of � (longer memory) only serves to make the TCP windows less

negatively correlated and increases the queue occupancy variance and the jitter

experienced by individual packets. Accordingly, in contrast to reported typically

reported settings of � as low as 0:002, we propose that random drop algorithms

should operate either on the instantaneous queue occupancy or with very little

exponential memory.

It is also interesting to observe, that for both persistent and Web sources,

the Delayed Uniform and the Deterministic drop-biasing techniques consistently

result in lower queue variance than the other schemes. This is an observation

that we revisit in section 4.3, where the experiments mostly involve ERD queues

(where the drop function uses the instantaneous queue occupancy). For these

two drop-biasing strategies, a value of � = 1 seems optimal, indicating that, for

well-designed random dropping strategies and appropriately provisioned bu�ers,

there is no motivation for introducing even a minimal amount of memory (or

queue averaging) in the packet dropping process. Bear in mind that the results to

be presented in section 4.3 apply equally to RED queues which operate on the

averaged queue occupancy.

While the simulations reported here involved a low speed bottleneck (1:5 Mbps

bandwidth), we have performed similar simulations at higher link speeds (e.g., 45

92

0

200

400

600

800

1000

1200

1400

0 1 2 3

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

- Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 70 Web TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

10

20

30

40

50

60

0 1 2 3

M
ea

n
Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 70 Web TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
. D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, 70 Web TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.3: RED Queue Dynamics vs. Weight with Web TCP

93

Mbps) to study the relevance of our conclusions for higher-speed backbone links.

The results obtained are similar and indicate that our conclusions apply for bu�ers

both at the network edges and in the backbone. However, for a given value of � and

a speci�c choice of drop-biasing strategy, the coe�cient of variation of the queue

occupancy is lower at higher link speeds (due to the improved tra�c aggregation).

Accordingly, relatively speaking, the increase in queue variance with increasing

memory (or the reduction in variance through the use of appropriate drop-biasing

schemes) is more signi�cant (in terms of the actual reduction in delay jitter) at

slower edge links than at faster backbone links.

Finally, as stated earlier, the much larger queue variance forWeb tra�c is partly

due to the variation in the number of active
ows. The use of enhanced dropping

mechanisms, such as SRED, and additional congestion control techniques, such as

ECN, need to be explored to reduce the sensitivity of the bu�er occupancy to the

number of
ows.

4.3 E�ect of Drop-Biasing Techniques on Queue Occupancy

Variability

In this section, we investigate the e�ect of the �ve dropping strategies enumerated

in section 4.1.1.1 on the variability of the queue occupancy (and consequently on

the delay jitter). In these studies, we usually vary the number of TCP
ows while

94

keeping the exponential weight � constant. Most graphs presented in this section

involve ERD queues (based on instantaneous queue occupancies); as stated earlier,

we have observed similar results for RED queues with varying degrees of memory

in the averaging process.

We �rst motivate why introducing a minimum spacing between consecutive

random drops might reduce the variability in the queue occupancy. Suppose a

random drop queue drops a packet from TCP
ow i at time instant t. If there is

no minimum separation between two consecutive packet losses, packets from other

TCP
ows may also encounter packet drops soon after t. Since TCP reduces its

congestion window in response to a packet drop, such drops can lead to a reduc-

tion of the window sizes of multiple TCP connections at around the same time.

Imposing a minimum inter-drop gap, on the other hand, ensures that multiple

TCP
ows do not reduce their windows simultaneously. After a packet from a

ow is dropped, packets from other
ows are guaranteed to be accepted without

random drops for the duration of the gap; this process e�ectively increases the

negative correlation among the TCP windows. As a secondary bene�t, ensuring a

minimum gap between successive packet drops reduces the likelihood of multiple

random packet drops from the same
ow within a congestion window. Multiple

drops within a window can lead to TCP transients such as timeouts and slow start,

which increase the burstiness of the o�ered tra�c. Both the above reasons sug-

gest that enforcing a minimum separation between consecutive packet drops can

dampen the
uctuation in the queue occupancy.

95

0

20

40

60

80

100

120

140

0 5 10 15

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

Number of (Persistent TCP) Sources

Variance Behavior Plots for ERD versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15

M
ea

n
Q

ue
ue

 O
cc

up
an

cy

Number of (Persistent TCP) Sources

Mean Queue Behavior for ERD versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

20

40

60

80

100

120

140

160

180

200

220

0 5 10 15

S
um

 o
f V

ar
ia

nc
e

of
 T

C
P

 W
in

do
w

s

Number of (Persistent TCP) Sources

Variance Behavior of TCP Windows for ERD versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
.D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

Number of (Persistent TCP) Sources

Coeff. of Variation of Queue for ERD versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.4: Drop-Biasing in an ERD Queue with Persistent TCP

4.3.1 Persistent TCP

Figure 4.4 shows the occupancy statistics of an ERD queue (as a function of

the total number of TCP
ows) for di�erent drop-biasing strategies. We see that

the Deterministic strategy provides the least variance among the �ve proposed

strategies; it also shows the least increase in variance with an increase in the

number of TCP
ows.

Observe also, the fairly large reduction in variance between the delayed and

non-delayed versions of the Geometric and Uniform dropping models. The above

96

0

20

40

60

80

100

120

140

160

0 5 10 15

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

Number of (Persistent) TCP Sources

Variance Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, Exp.Wt= 0.01

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15

M
ea

n
Q

ue
ue

 O
cc

up
an

cy

Number of (Persistent) TCP Sources

Performance Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, Exp.Wt=0.01

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

20

40

60

80

100

120

140

160

180

200

220

0 5 10 15

S
um

 o
f V

ar
ia

nc
e

of
 T

C
P

 W
in

do
w

s

Number of (Persistent) TCP Sources

Variance Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, Exp.Wt= 0.01

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
. D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

Number of (Persistent) TCP Sources

Performance Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes, Exp.Wt=0.01

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

Figure 4.5: Drop-Biasing in a RED Queue with Persistent TCP

97

results suggest that introducing a minimum inter-drop gap is much more signi�cant

than specifying the exact distribution of the drop pattern. Note also that, in all

cases, we have ensured, through the appropriate adjustment of pmaxs, that the

mean queue occupancies do not exhibit signi�cant variation across di�erent drop-

biasing strategies.

Figure 4.5 shows the results for the same experimental setup, except that

the ERD queue has been replaced by a RED queue with an exponential weight

� = 0:01. Behavior similar to that mentioned for the instantaneous (ERD) case

can be observed.

It is instructive to analyze the variance results in further detail. From �gure

4.4, we can see that, for a mean occupancy of � 60 packets, the Geometric ap-

proach results in a variance of � 100 packets, while the Deterministic approach

results in a variance of � 10 packets. If we assume that the queue occupancy is

normally distributed, the di�erence between the 95th percentile and the 5th per-

centile (given by 6 �Std:Dev) is � 60 packets and � 20 packets for the Geometric

and Deterministic approaches respectively. For a 1:5 Mbps link with 512 byte-size

packets, this translates into a delay variation of � 27msec and � 5:4msec respec-

tively, a signi�cant di�erence indeed! The choice of a drop-biasing scheme can thus

often lead to a signi�cant reduction in the queue variability and packet jitter.

98

4.3.2 Web TCP

Figure 4.6 shows the plots for ERD queue behavior with Web TCP tra�c. Simu-

lations of RED (with exponential averaging) with Web TCP provide similar results

and are accordingly not presented here. As before, we can observe that the Deter-

ministic and the Delayed Uniform dropping models provide lower queue variance

(for the same mean queue occupancies) than alternative dropping strategies.

Note that, compared to the persistent TCP case, the variances are much larger

and the di�erence in variance between the di�erent drop-biasing strategies is rel-

atively lower. As we have seen, the Web model implies that the number of active

TCP connections can vary, even over relatively short time scales. Accordingly, a

signi�cant portion of the observed queue variance is simply due to the variability

in the number of active connections.

To isolate the dependence of the queue variance on the drop-biasing strategies

themselves, we also poll the number of active connections at each sampling instant.

This enables us to derive the conditional variance of the queue occupancy, i.e., the

variance of the queue occupancy as a function of the number of active connections.

Plots of the conditional mean and variance of the queue occupancy are provided

in �gure 4.7, for the case of 70 Web TCP connections.

We also provide the probability distribution of the number of active connections

in this case. We can see that the number of active connections lies between (10; 30)

most of the time; furthermore, there were never more than 45 active connections

99

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

Number of Web TCP Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops
0

20

40

60

80

100

120

0 50 100 150

M
ea

n
of

 Q
ue

ue
 O

cc
up

an
cy

Number of Web TCP Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
.D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

Number of Web TCP Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.6: Drop Biasing in an ERD Queue with Web TCP

100

0

20

40

60

80

100

120

140

0 10 20 30 40

C
on

di
tio

na
l M

ea
n

of
 Q

ue
ue

 O
cc

up
an

cy

Number of Active (Web TCP) Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes,N=70

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops
0

200

400

600

800

1000

1200

1400

0 10 20 30 40

C
on

di
tio

na
l V

ar
ia

nc
e

of
 Q

ue
ue

 O
cc

up
an

cy

Number of Active (Web TCP) Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes,N=70

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(N

or
m

al
iz

ed
 H

is
to

gr
am

)

Number of Active (Web TCP) Sources

Performance of Web TCP and ERD queues

Bottleneck B/W= 1.5Mbps,RTT=25ms,
 PktSize= 512 bytes,N=70

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.7: Conditional Statistics for an ERD Queue with Web TCP

101

present at any sampling instant. The value of 0 for the mean and variance graphs

for Nactive > 40 is simply a place-holder indicating the absence of any samples. The

graphs of �gure 4.7 clearly reveal that while the conditional means are about the

same for each strategy, the conditional variances are very di�erent. The variance of

the Deterministic strategy (� 200) in the region of Nactive = (10; 30), where most

of the samples are located, is consistently lower than that of all the alternative

drop-biasing strategies. By way of comparison, the variance of the Deterministic

strategy is markedly lower than the variance of the Geometric strategy (� 600)

for the same region.

4.3.3 Jitter Plots

We now provide plots of the delay jitter experienced by a periodic probe stream;

as mentioned earlier, the bit rate of the probe stream was 64Kbps and the packet

sizes were 512 bytes.

We �rst present the results when 10 persistent TCP sources interact with an

ERD queue. In this speci�c instance, we simply present plots of the queue oc-

cupancy (sampled at 50msec intervals) for the various drop-biasing strategies in

�gure 4.8. These plots are adequate to visually illustrate how, in this case, the

Deterministic drop-biasing strategy provides a much smoother queue and smaller

packet jitter than the Geometric and Uniform drop-biasing models.

Similar plots, for 70 Web TCP streams, also reveal the reduction in queue

102

0

20

40

60

80

100

120

140

300 400 500 600

E
R

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with ERD (Geometric) queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 10 Persistent Sources

Queue Occupancy (50ms Interval) for Geometric Drops

0

20

40

60

80

100

120

140

300 400 500 600

E
R

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with ERD (DelayedGeometric) queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 10 Persistent Sources

Queue Occupancy (50ms Interval) for DelayedGeometric Drops

0

20

40

60

80

100

120

140

300 400 500 600

E
R

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with ERD (Uniform) queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 10 Persistent Sources

Queue Occupancy (50ms Interval) for Uniform Drops

0

20

40

60

80

100

120

140

300 400 500 600

E
R

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with ERD (DelayedUniform) queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 10 Web Sources

Queue Occupancy (50ms Interval) for DelayedUniform Drops

0

20

40

60

80

100

120

140

300 400 500 600

E
R

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with ERD (Deterministic) queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 10 Persistent Sources

Queue Occupancy (50ms Interval) for Deterministic Drops

Figure 4.8: Sample of ERD Queue Occupancy with Persistent TCP

103

0

5

10

15

20

25

30

35

40

1000 1002 1004 1006 1008 1010

Ji
tte

r
of

 C
B

R
 S

ou
rc

e
(R

T
P

 D
ef

in
iti

on
)

m
s

Time (Secs)

Delay Performance with ERD queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 Interval=250 ms,70 Web Sources

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

20

40

60

80

100

120

140

160

180

1002 1004 1006 1008 1010 1012

Ji
tte

r
of

 C
B

R
 S

ou
rc

e
(9

5%
til

e-
 5

%
til

e
D

ef
in

iti
on

)
m

s

Time (Secs)

Delay Performance with ERD queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 Interval=250 ms,70 Web Sources

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.9: Jitter Plots (250msec Interval) for an ERD Queue with Web TCP

variability and delay jitter through the use of the Deterministic and the Delayed

Uniform drop-biasing strategies, but are less visually apparent than their persistent

TCP counterparts. To provide a better visual illustration, we provide the delay

jitter plots (as per the two de�nitions outlined in section 4.1.4) in �gures 4.9 and

4.10 for intervals of 250msec and 10sec respectively.

The RTP-based moving averaged jitter is more appropriate for a 250msec inter-

val; on the other hand, the percentile-based de�nition of jitter is more appropriate

for an interval of 10sec. These plots show that, generally speaking, the Determin-

istic and Delayed Uniform approaches have lower jitter than the other models for

inter-drop gap.

4.3.4 Main Inferences

Choosing an appropriate drop-biasing strategy can indeed result in a signi�cant

reduction in the variance of the queue occupancy in a random drop queue. Intro-

104

0

5

10

15

20

25

30

35

40

1000 1100 1200 1300 1400 1500

Ji
tte

r
of

 C
B

R
 S

ou
rc

e
(R

T
P

 D
ef

in
iti

on
)

m
s

Time (Secs)

Delay Performance with ERD queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 Interval=10 sec,70 Web Sources

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

50

100

150

200

250

300

350

400

450

500

550

1000 1100 1200 1300 1400 1500

Ji
tte

r
of

 C
B

R
 S

ou
rc

e
(9

5%
til

e-
 5

%
til

e
D

ef
in

iti
on

)
m

s

Time (Secs)

Delay Performance with ERD queues

 Bottleneck B/W= 1.5Mbps,RTT=25ms,
 Interval=10 sec,70 Web Sources

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

Figure 4.10: Jitter Plots (10s Interval) for an ERD Queue with Web TCP

ducing a minimum packet gap between successive random drops provides signi�-

cant reduction in jitter by increasing the negative correlation among TCP windows

and reducing the
uctuations in the queue.

In particular, the Deterministic drop model and the Delayed Uniform drop

model were found to perform better than alternative drop-biasing models. The

performance improvement was more signi�cant with persistent TCP sources than

with Web TCP sources; this is due to the fact that Web TCP sources inherently re-

sult in rapid variation in the number of active TCP connections. When conditional

queue variances were observed, as in �gure 4.7, we could isolate the performance

improvement due to the choice of better drop-biasing strategies.

105

4.4 Summary

While random drop-based queue management strategies, especially RED, have at-

tracted a great deal of attention for deployment on the Internet [3], relatively little

has been reported on the optimal setting of various algorithm features. Using simu-

lations, we showed why basing the random drop probabilities on the instantaneous

queue occupancy outperforms algorithms that use the averaged queue occupancy,

especially if the averaging process has a long memory. A long memory in the aver-

aging process can reduce the negative correlation among competing TCP
ows and

increase the variance of the queue. Setting the weight to around 0:5 (a memory of

around 2� 3 packets) provided the best performance in our simulations. We also

�nd that the choice of an appropriate drop-biasing strategy can signi�cantly a�ect

the variability of the random drop queue. In particular, introducing a minimum

inter-drop gap between successive packet drops signi�cantly reduced the variance

of the queue occupancy; we identi�ed the Deterministic and the Delayed Uniform

schemes as two attractive drop-biasing strategies. Since the Deterministic strategy

is the least computationally complex, it appears to be an attractive drop-biasing

technique. Reducing the queue variability can signi�cantly reduce the delay jitter

for packets bu�ered in such a queue. The results in this chapter are of signi�-

cance to those designing and setting parameters for random dropping and random

marking queues (such as RED and ECN) in the Internet.

Our studies also indicate the necessity of developing adaptive dropping algo-

106

rithms, where the RED parameters change with variations in the number of active

ows. Since TCP implementations begin to exhibit performance degradation as the

drop probabilities exceed � 1� 2%, the limitations of congestion control through

variations in the packet dropping probabilities alone should be clear. Accord-

ingly, over the next two chapters, we shall consider the possibility of using Explicit

Congestion Noti�cation (ECN) as an additional congestion indicator and analyze

possible changes to TCP's window adaptation mechanism in an ECN-enabled en-

vironment.

107

Chapter 5

Generalized ECN-aware TCP and the Assured

Service Framework

Flow control and window regulation using only packet drops imposes signi�cant

limitations not only on the acceptable range for drop probabilities in random drop

queues but also to possible changes in TCP's window adjustment scheme. Accord-

ingly, the possibility of deploying Explicit Congestion Noti�cation (ECN) in the

Internet through explicit marking of a single bit in the packet header has received

a great deal of attention recently. Furthermore, as we shall shortly argue, the de-

ployment of ECN provides us a signi�cant opportunity to modify TCP's window

adaptation scheme for better control of adaptive tra�c loads on the Internet.

In this chapter, we consider a generalized form of TCP window adaptation,

which can be parametrized to capture the current congestion avoidance algorithm

as well as the more signi�cant suggested changes to the window adaptation scheme.

As a speci�c example of how such modi�cations a�ect the bandwidth sharing

paradigm, we �rst consider the case of multiple such generalized TCP
ows un-

108

der the Assured Service [28] model, wherein each TCP
ow is associated with

a minimum rate guarantee. The packets of a TCP
ow are tagged as in or out

(i.e., in-pro�le or out-of-pro�le), based on whether the sending rate exceeds the

minimum assured rate, and bu�ered at a queue providing congestion noti�cation

through ECN-based packet marking. We use an analytical technique (motivated

by the �xed point-based analytical framework presented in chapter 3) to study

how the mean window behavior and the bandwidth sharing paradigm is a�ected

by possible changes in the TCP window behavior.

To further study the e�ects of changing the TCP congestion avoidance algo-

rithm, we derive the window distribution (and other relevant statistics) when a

single generalized TCP
ow is regulated using ECN feedback under the Assured

Service model. The analytical technique in this case uses the numerical approach

presented in section 2.4 to derive the window distribution for the generalized

TCP
ow. Motivated by our observations in this case, we use further simula-

tions to study how changes in the TCP window adaptation parameters a�ect the

sensitivity and robustness of TCP performance under the Assured Service model.

Based on these studies, a sub-additive increase, multiplicative-decrease (SAIMD)

adjustment procedure, similar to current TCP, with smaller values of the increase

and decrease constants than used currently in TCP, appears to provide the most

robust performance and bandwidth sharing semantics, at least under the Assured

Service model.

109

5.0.1 Motivation for Modi�cations in ECN-aware TCP

Internet routers have primarily employed tail-drop bu�ering strategies; also, packet

loss has been the sole form of congestion indicator used. TCP's current \congestion

avoidance" algorithm was developed in the classic paper [4]: a TCP
ow increased

its congestion window by 1 every round trip time in the absence of congestion and

halved its congestion window on detecting congestion. This policy of conservative

increase and rapid decrease is extremely appropriate for the tail-drop environment,

where packet losses and hence congestion indicators are generated only when a link

is already subject to sustained overload. Such a drastic window reduction technique

however leads to several problems with TCP tra�c:

� It makes the instantaneous rates of TCP tra�c vary wildly, making it a poor

form of `background tra�c' for periodic real-time tra�c such as VoIP.

� Stabilizing the queue occupancy in router bu�ers via bu�er management

algorithms is also more di�cult.

� The sharp drop in the transmission rate on detection of congestion can lead

to signi�cant wastage of bandwidth, especially over high-speed large-latency

paths, such as those involving satellite links.

To provide faster and clearer indication of congestion to adaptive
ows, Ex-

plicit Congestion Noti�cation was proposed for the Internet in [2]. In this scheme,

routers would set a bit (referred to as marking the packet) in the header of a packet

110

(on the forward path) during congestion. The receiver would copy this bit into the

acknowledgement packet sent on the reverse path; on receipt of an acknowledge-

ment with the congestion bit set, the sender would reduce its transmission rate

appropriately. [2] speci�ed that the response of a TCP process to an ECN mes-

sage should be the same as the response to a lost packet. Given the signi�cantly

enhanced congestion signaling capacity of ECN, this requirement may indeed may

be called into question. Current mechanisms, such as RED, which rely solely on

packet losses to signal congestion require packet drop probabilities to remain below

� 1�2% since TCP implementations (because of the coupling between congestion

control and loss recovery) exhibit sharp performance degradation (including time-

outs) if the packet loss rate exceeds this value. Since ECN-based feedback does not

involve loss of transmitted packets, a signi�cantly larger variation in the marking

probability (and hence, a much stronger level of congestion feedback) is possible in

the router bu�ers. This
exibility, in turn, provides us an opportunity to reduce

TCP's current drastic response to congestion signaled via ECN.

Investigating possible changes to TCP's window adjustment protocol has a

long history. The `additive-increase multiplicative- decrease' (AIMD) algorithm

for rate-based congestion control was considered in [22] and shown to possess op-

timality properties. In this scheme, the window is increased by a constant amount

in the absence of congestion and decreased by a fraction of the current window on

detecting congestion. [5] has recently studied how the generalized TCP window

behaves as a function of the router marking probability and has suggested reasons

111

why an AIMD adjustment scheme might be a more appropriate response to ECN

feedback.

The Assured Service model [28] provides a model for service di�erentiation

whereby users are provided a rate pro�le; by using appropriate tagging policies

at the network edge, the model proposes to use a simple priority packet discard

scheme called RIO (RED with In-Out Marking) in router bu�ers to ensure that

users receive throughputs at least equal to their pro�led rates, even during periods

of congestion. While the framework does provide for di�erential rate guarantees

for di�erent users, limitations on the practical implementation of the scheme using

RIO and current TCP versions have been reported. The tagging mechanism has

been shown to perform most accurately when embedded in the source (host node)

itself, since it requires a knowledge of the round-trip time and other parameters for

accurate functionality. Also, the practice of dropping out packets via RIO has been

shown to cause some unfairness towards
ows with larger rate pro�les, primarily

because of TCP's drastic rate reduction in response to packet drops.

We shall consider a more generalized form of TCP window adjustment, of which

the current `congestion avoidance' scheme and the suggested AIMD scheme will be

seen to be special cases. Practical considerations however make the SAIMD and the

AIMD schemes the primary alternatives; our quantitative analysis will accordingly

focus exclusively on these two window adjustment algorithms. Our investigations

are motivated by our belief that coupling the use of ECN, to signal congestion

via preferential marking of out packets, with modi�cations to TCP response to

112

ECN could signi�cantly improve the robustness of the Assured Service framework

for TCP
ows without requiring complicated packet tagging mechanisms at the

network edge. By investigating TCP behavior in this framework, we hope to

understand which modi�cations to the current TCP window adjustment algorithm

are of primary importance. Readers concerned with practical implementability

of the Assured Services model should note that this can be implemented in the

Di�erentiated Services [36] paradigm (especially by appropriate use of the Assured

Forwarding (AF) per-hop-behavior ([37]) that has now been standardized in the

IETF.

5.1 Mathematical Models

In this section, we present the mathematical model for the generalized TCP window

adjustment algorithm. We then present the Assured Service model and �nally

consider an ECN-enabled modi�ed bu�ering strategy that is consistent with the

Assured Service model.

5.1.1 Generalized TCP Window Evolution

We �rst consider the generalized TCP window adjustment paradigm. As presented

in [5], a process acting in this paradigm can be thought of as increasing its window

by a function incr(W) on receiving an acknowledgement in the absence of con-

gestion and decreasing its window by decr(W) on receiving an acknowledgement

113

indicating congestion. For the discussion at hand, we restrict these functions such

that:

incr(W) = c1W
� (5.1)

decr(W) = c2W
�; (5.2)

where �; �; c1 and c2 are constants that parametrize the
ow control algorithm.

Although the analysis presented here holds even when di�erent TCP
ows have

di�erent values of the above parameters, we assume, at least in this chapter, that

all the N TCP
ows use identical values of �; �; c1 and c2. (The use of di�erent

window adjustment parameters by di�erent
ows to provide an alternative service

di�erentiation mechanism on the Internet is explored later in chapter 6.) Thus,

under the generalized TCP window adjustment procedure, a
ow increases its

window from the current value W by c1W
� if it receives an acknowledgement

where the ECN feedback bit is not set, and decreases its window by c2W
� on

receiving an acknowledgement where the ECN feedback bit is set. The evolution

of the generalized stochastic process (Wn)
1
n=1 (sampled at the instance of reception

of an acknowledgement) is thus represented by the equations:

PfWn+1 = w + c1w
�jWn = wg = 1� pm(w) (5.3)

PfWn+1 = w � c2w
�jWn = wg = pm(w); (5.4)

where pm(w) denotes the probability of the speci�c packet being marked at the

ECN-capable router port when the congestion window is w. The current TCP

114

congestion avoidance mechanism is captured by the parameter set (� = �1:0; c1 =

1:0; � = 1:0; c2 = 0:5). Adaptation algorithms with � = �1:0 and � = 1:0 are

referred to as sub-additive-increase, multiplicative-decrease (SAIMD) algorithms;

current TCP congestion avoidance is clearly a member of the SAIMD family. Also,

the case of additive-increase, multiplicative-decrease (AIMD) window adjustment,

which has received signi�cant attention in literature, is obtained by setting � =

0; � = 1 (clearly c2 < 1 in this case).

5.1.2 Assured Service Framework

The Assured Service model [28] was presented as a strategy for supporting di�er-

ential bandwidth allocation in the Internet. In this model, users purchase a service

pro�le that speci�es a minimum or assured rate. The network is assumed to be

provisioned to ensure that packets from a
ow experience minimal congestive losses

as long as its transmission rate lies within its speci�ed assured rate; packets that

violate the rate pro�le (excess packets) are not provided any service guarantees.

The model thus attempts to di�erentiate between premium packets (which corre-

spond to a negotiated pro�le and, for which, a fee has presumably been speci�ed)

and opportunistic packets (which are beyond the speci�ed pro�le and should be

treated with lower priority). Preferential treatment of in packets during periods

of congestion enables the network to ensure the availability of at least the pro�led

(assured) rate at all times.

115

To enable network bu�ers to di�erentiate between such packets, [28] proposes

a tagging mechanism at the network edge. Packets which stay within the pro�led

rate are tagged as in packets, while packets that violate the pro�le are tagged as

out packets. Such a mechanism might be implemented by a tra�c conditioner such

as a leaky bucket [38]; [28] shows one way in which a modi�ed leaky bucket might

be used for TCP
ows. Di�erentiation within the network in [28] was achieved by

employing a preferential discard algorithm known as RIO (Red with In/Out); the

mechanism was essentially similar to RED except that it used di�erent thresholds

for in and out packets to ensure that out (or opportunistic) packets were dropped

before in packets.

5.1.3 Router Marking Model

The router bu�er is assumed to implement an algorithm which we call ORED10

(In/Out RED). In this scheme, the router queue randomly sets the ECN bit on out

packets (marks them with a probability based on the bu�er occupancy). Since, in

packets correspond to assured service rates, they are never marked or randomly

dropped in the bu�er; the only possible loss of in packets occurs due to bu�er

over
ow. Accordingly, a user whose packets stay within his assured rate will never

receive any congestion signal from the network node. The model thus essentially

assumes that marking out packets with a su�ciently aggressive probability is ad-

equate to ensure that the window sizes of the connections do not grow without

116

limit. Mathematically speaking, such an assumption will hold true as long as

lim w " 1 incr(W)

decr(W)
! 0. i.e., while � < �. Such a condition is true in all practical

cases of interest. Our ORED algorithm is similar to the RIO algorithm presented

in [28] except that :

1. ORED marks packets (i.e., indicates congestion explicitly via ECN) while

RIO uses random packet drops to signal incipient congestion.

2. ORED only marks out packets; RIO also marks in packets (with less aggres-

sive thresholds than those used for out packets). Since a well provisioned

network should rarely need to mark in packets, our ORED algorithm can be

considered an idealized abstraction of the RIO functionality.

Although our analysis holds for arbitrary non-decreasing marking functions, we

shall focus on the analogue of the standard RED linear marking model for con-

creteness. Hence, the marking probability fmark for out packets is given by:

fmark(Q) = 0 for Q < minth

= pmax �
Q�minth

maxth �minth
for minth � Q < maxth

= pmax for Q > maxth

10Unlike classical RED, our router port provides congestion detection and noti�cation exclu-

sively through ECN marking; packet drops are assumed to be the result of bu�er over
ow only.

Strictly speaking, this is still within the purview of RED which really stands for Random Early

Detection (and not Random Early Drop).

117

where minth and maxth are the minimum and maximum marking thresholds and

pmax is the maximum marking probability. Note that pmax for practical queues can

now be much larger than conventional RED queues, since packets are only marked

and not dropped.

5.2 Mean Window Sizes and Throughputs for Multiple Gen-

eralized TCPs

Let N be the number of TCP
ows which are sharing the router bu�er. We assume

that each TCP source is persistent (has in�nite data to send) and transmits packets

in equal sized segments (di�erent
ows can have di�erent segment sizes), with the

source congestion window acting as the only constraint on the injection of new

packets into the network. The ith TCP
ow is assumed to have a nominal round-

trip time (excluding the queuing delay in the bottleneck bu�er) of RTTi secs and a

segment size (MSS) of Mi bytes. We shall let Wi denote the window size of the ith

ow in MSSs; Wi�Mi will then provide the window size of the ith
ow in bytes. The

ith
ow is also associated with a pro�led (or assured) rate of Ri bytes/sec and can

consequently expect to receive no congestion feedback as long as its transmission

rate is less than Ri. The bandwidth of the bottleneck link serving the bu�er is

denoted by C bytes/sec. Our analysis assumes that

C >
NX
i=1

Ri: (5.5)

118

It should be clear that under condition (5.5), each
ow will obtain at least its

pro�led rate. Clearly, if it did not, its window would continue to increase without

bound (and accordingly, the mean queue occupancy would increase as well) as no

packet would be tagged as out and thus marked- an unstable situation indeed.

To estimate the mean TCP window sizes and their achieved throughputs when

N generalized
ows interact with an ORED queue, we use drift analysis techniques,

similar to the analysis technique employed in section 3.2, to derive and solve a set

of simultaneous equations,

5.2.1 Characterizing the Fixed Point

We de�ne the drift in the congestion window of the ith
ow by the expected change,

�Wi, in its window size as a function of its window size Wi. Since the window

size increases by c1W
�

i
with a probability 1�pi(W) and decreases by c2W

�

i with a

probability pi(W), where pi(W) is the probability of a packet being marked (ECN

bit set), we can postulate that the `mean' or center of the TCP congestion window

is given by the value of Wi for which the drift is 0. This is given by the solution

of the equation

c1W
�

i
� (1� pi(Wi)) = c2W

�

i � pi(Wi): (5.6)

Accordingly, given a speci�c function pi(:), we can obtain a solution by �nding a

value such that the following equation

c2

c1
W

���
i =

1� pi(Wi)

pi(Wi)
(5.7)

119

is satis�ed. Clearly, relation (5.7) de�nes a set of N equations for i = 1; : : : ; N .

We now proceed to determine the function pi(:), assuming that we are given

a speci�c value Q (bytes) for the mean of the ORED bu�er occupancy. In this

case, the marking probability for out packets is given by fmark(Q). Now if we

assume that only a fraction
i of the packets from
ow i are marked as out, we can

then get the unconditional marking probability for packets of
ow i as
ifmark(Q).

Unfortunately, when more than 1 TCP
ow is present,
i is itself a function of

both Wi and Q. To see this, note that, when the queue occupancy is Q, the total

round-trip time for
ow i is given by RTTi +
Q

C
. Since the
ow control algorithm

transmits W �Mi bytes every round-trip time, the achieved throughput �i is given

by

�i =
Wi �Mi

RTTi +
Q

C

(5.8)

Now, in the Assured Service model, the probability of a packet being tagged as

out can be assumed to be equal to the fraction by which the achieved throughput

exceeds the assured rate Ri. This probability
i is thus given by
i =
�i�Ri
�i

or,

upon using equation (5.8):

i = 1�
Ri � (RTTi + Q

C
)

Wi �Mi

: (5.9)

Accordingly, the marking probability pi(Wi) can be see to be given by pi(Wi) =

(1� Ri�(RTTi+Q

C
)

Wi�Mi
) � fmark(Q), which on substituting into equation (5.6) yields the

following relationship (one for each i = (1; : : : ; N))

c2

c1
W ���

i = (1�
Ri � (RTTi + Q

C
)

WiMi

� fmark(Q))
�1 � 1 (5.10)

120

We denote the solution for Wi of the above equation as hi(Q) to explicitly indicate

that the above equation is really a function of the queue occupancy Q. We shall

elaborate on a technique for solving the above equation (to obtain hi(Q)) in the

next subsection.

Given a value for Q, we can then (at least in principle) solve the set of N

equations (equation (5.10) for i = 1; : : : ; N) to obtain the N values of hi(Q).

However, another constraint must be satis�ed by these values; it is this constraint

that de�nes the �xed-point in our formulation. If we assume that there is no queue

under
ow in steady-state, we require the sum of the throughputs of the N
ows

to be equal to the link capacity C, i.e.,
P

N

i=1 �i = C. For a speci�c value of Q, we

note that �i =
hi(Q)�Mi

RTTi+
Q

C

, and hence, after trivial algebraic manipulations arrive at

the other constraint:

NX
i=1

hi(Q) �Mi

Q +RTTi � C
= 1 (5.11)

The basis of our �xed-point theory should now be clear. As we vary Q and

solve for the hi(Q) according to expression (5.10), there will be one value for which

the constraint (5.11) is satis�ed. This value of the queue occupancy is denoted by

Q�. The corresponding solutions for hi(Q
�) provides the theoretical mean window

sizes W �
i
; the corresponding throughput for connection i is then computed by

W
�
i
�Mi

RTTi+
Q�
C

. To see the existence of a unique solution for our �xed point formulation,

consider what happens as Q is varied from minth to 1. At values close to minth,

fmark(Q) � 0 and hence, from equation (5.10), we see that hi(Q) will be very large.

121

Accordingly, the LHS of equation (5.11) will be much larger than 1. On the other

hand, as Q " 1, the value of hi(Q) also increases (since it is clearly always larger

than Ri � (RTTi + Q

C
)). In that case, if we neglect the constant term of 1 in the

RHS of equation (5.10), we can easily see, after elementary manipulation, that the

expression (5.10) reduces to

c2Mi

ci
�W ��� =

c2

c1
�Ri � (RTTi +

Q

C
)W ����1 +Mi (5.12)

which for large values of Q and Wi can be see to yield

Wi �Mi = hi(Q) �Mi � Ri � (RTTi +
Q

C
) (5.13)

By plugging expression (5.13) into the LHS of constraint (5.11), we can see that

the LHS turns out to be equal to

PN

i=1
Ri

C
. But by our assumption (5.5), this is

clearly less than 1. We can further show that as Q increases from minth to1, the

LHS of (5.11) decreases monotonically and crosses 1 at some point. Such a value

of Q accordingly de�nes the unique solution (or the �xed point).

5.2.2 Solving the Fixed Point

We now present an algorithm for solving the above set of simultaneous equations

which de�ne our mean-value �xed point-based solution. The technique essentially

consists of varying Q and solving for hi(Q) until the condition (5.11) is satis�ed.

hi(Q) is solved using the Newton-gradient iterative technique; a similar ap-

proach was used in section 3.2.2. A value of Wi that satis�es equation (5.10) is

122

essentially the unique zero of the function g(W) de�ned by

(1�
Ri � (RTTi + Q

C
)

WiMi

� fmark(Q))
�1 � 1� c2

c1
W ���

i (5.14)

De�ne g1(Wi) = (1 � Ri�(RTTi+Q

C
)

WiMi
� fmark(Q))

�1 � 1 and g2(W) = c2

c1
W ���

i . By

taking derivatives, we can see that g1(Wi) is convex and decreasing in Wi while

g2(Wi) is increasing in Wi (since � > �). Furthermore, if � � � < 1, then g2(Wi)

is also concave. Accordingly, we start with a value of Wi slightly larger than

Ri � (RTTi + Q

C
) and repeat the iterations until we converge. In particular, if

��� � 1, we can see that g(Wi) is convex and hence, we can guarantee convergence

without any overshoot. When � � � > 1, we have the possibility of overshoot.

However, in all our numerical calculations (where � � � was at most 2), we were

able to attain convergence using the following Newton gradient-based iteration

W j+1
i = W j

i +
g(W

j

i)

g0(W j

i)
(5.15)

where the derivative g0(Wi) is given as

g0(Wi) =
�Ri � (RTTi + Q

C
)

fmark(Q) �W 2 �Mi � (1�
Ri�(RTTi+Q

C
)

Wi�Mi
)2
� c2

c1
� (� � �)W

����1
i :

Using the above iterative method, we can solve for hi(Q), given Q. The appro-

priate value for Q, i.e., Q�, can be obtained by a binary search procedure, since we

have established that
P

N

i=1
hi(Q)�Mi

RTTi+
Q

C

is monotonically decreasing and smaller than

C when Q > Q� and larger than C when Q < Q�. Thus, the entire algorithm

consists of two loops: an outer loop consisting of varying Q via a binary search

123

method and an inner loop consisting of evaluating hi(Q) via the Newton gradient

method.

5.2.3 Simulations and Comparative Results

Extensive simulation-based studies were conducted to compare the accuracy of our

analysis and were found to be in remarkably close agreement with our numerical

predictions. To perform the simulations, we modi�ed the publicly available ns [29]

(version 2.1b2) simulator code. The modi�cations included incorporation of the

generalized incr(W) and decr(W) functions in the TCP code and also augmenta-

tion of the RED code to perform ECN marking (instead of packet dropping) on

out packets alone. Illustrative results are presented here.

To validate our analysis, we concentrate on the case of only 2 such generalized

ows; such an approach also helps us to understand the excess bandwidth sharing

paradigm as a function of the window adjustment parameters. Both
ows had the

same segment size of 512 bytes. While our analysis holds for arbitrary values of

�; �; c1 and c2, practical interest in the research community ([5], [22]) has focussed

on � = 1 (multiplicative decrease), � = �1=0 (SAIMD/AIMD) and possibly re-

ducing c2 from 0:5 (current practice of halving the window), with a corresponding

reduction in c1 (to prevent average window sizes from becoming excessively large).

We accordingly present results for the following four sets of window adjustment

parameters:

124

1. Parameter Set 1: (� = �1, � = 1, c1 = 1, c2 = 0:5), i.e., the current TCP

congestion avoidance algorithm.

2. Parameter Set 2: (� = 0, � = �1, c1 = 0:2, c2 = 0:1), i.e., an interesting

choice of AIMD parameters.

3. Parameter Set 3: (� = �1, � = 1, c1 = 0:5, c2 = 0:1), i.e., TCP conges-

tion avoidance with a reduction in the coe�cients for window increase and

decrease.

4. Parameter Set 4: (� = 0, � = 1,i c1 = 0:4 and c2 = 0:2), i.e., AIMD with

larger coe�cients for window increase and decrease than parameter set 2.

The link capacity was varied between 4:5� 12 Mbps. While maxth and minth was

maintained at 20 and 100 respectively for both parameter sets, pmax was kept at

0:01 for parameter set 1 and 3, and at 0:1 for parameter sets 2 and 4. This was

done to ensure reasonable mean window sizes: for identical marking probabilities,

the mean window sizes for parameter sets 2 and 4 would be much larger than

that for parameter sets 1 and 3. We present here the results of two di�erent

experiments, each of which was designed to study the performance of generalized

TCP to changes in di�erent network parameters and speci�cations.

In the �rst set of experiments, which we shall refer to as Experiment A, we

kept the round-trip times identical for both
ows but provided them di�erent

pro�led rates. TCP
ow 1 had a pro�le of 1:5 Mbps and TCP 2 had a pro�le

of 3 Mbps i.e., the assured rate for TCP 2 was twice that for TCP 1. Both

125

34

36

38

40

42

44

46

48

50

52

6 7 8 9 10 11 12

M
ea

n
T

C
P

 W
in

do
w

s
(T

C
P

1
an

d
T

C
P

2)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=-1.0, Beta=1.0,
c1=1.0, c2=0.5

Profile(TCP1)= 1.5Mbps, Profile(TCP2)= 3.0Mbps

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

6 7 8 9 10 11 12

A
ve

ra
ge

 G
oo

dp
ut

 (
T

C
P

1
an

d
T

C
P

2)
 (

M
bp

s)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=-1.0, Beta=1.0,
c1=1.0, c2=0.5

Profile(TCP1)= 1.5Mbps, Profile(TCP2)= 3.0Mbps

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

Figure 5.1: Mean TCP Windows and Throughputs

for Parameter Set 1 (Di�erent Rate Pro�les)

ows were tagged by a leaky bucket-based conditioner with a moderate bucket

size of 20 packets. Figure 5.1 shows the theoretical and simulated TCP mean

window sizes and throughputs for parameter set 1 as the link capacity C is varied.

Figure 5.2 shows the corresponding plots for parameter set 2 (we do not provide

plots for the other parameter sets due to space limitations). We can see that

there is remarkably close agreement (always within 5%) between our analytical

computations and the simulated results. We conducted other experiments with

larger number of connections (varying from 2� 20) and other parameter sets; the

analytical results were always within 5% of the values obtained via simulations.

In the second set of experiments, which we shall refer to as Experiment B,

the two TCP
ows had identical pro�led rates (1:5 Mbps) but di�erent round-trip

times. The RTT for
ow 1 was kept at 20msec while the RTT for
ow 2 was

speci�ed to be 100msec, i.e., the ratio of the round-trip times was kept at 5. Both

126

45

50

55

60

65

70

75

80

85

90

95

100

6 7 8 9 10 11 12

M
ea

n
T

C
P

 W
in

do
w

s
(T

C
P

1
an

d
T

C
P

2)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=0.0, Beta=1.0,
c1=0.2, c2=0.1

Profile(TCP1)= 1.5Mbps, Profile(TCP2)= 3.0Mbps

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

6 7 8 9 10 11 12

A
ve

ra
ge

 G
oo

dp
ut

 (
T

C
P

1
an

d
T

C
P

2)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=0.0, Beta=1.0,
c1=0.2, c2=0.1

Profile(TCP1)= 1.5Mbps, Profile(TCP2)= 3.0Mbps

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

Figure 5.2: Mean TCP Windows and Throughputs

for Parameter Set 2 (Di�erent Rate Pro�les)

ows were tagged by a leaky bucket-based conditioner with a moderate bucket size

of 20 packets. Figure 5.3 shows the theoretical and simulated TCP mean window

sizes and throughputs for parameter set 1 as the link capacity C is varied. Figure

5.4 shows the corresponding plots for parameter set 2. Once again, we can see that

our analytical predictions are in close agreement with the simulated values.

Having established the accuracy of our analytical technique, we now use this

analysis to consider another interesting aspect of service di�erentiation. We would

like to study how the excess capacity (i.e., C �P
N

i=1Ri) is shared by the di�erent

TCP connections in this service model and how the changes in the window ad-

justment parameter set a�ect the relative sharing of this excess bandwidth. It can

certainly be argued that the degree of di�erentiation of the excess link capacity is a

metric of only secondary signi�cance in evaluating the e�ect of window adjustment

algorithms on the robustness of the Assured Service model. After all, the service

127

35

40

45

50

55

60

65

70

75

80

85

5 6 7 8 9 10 11 12

M
ea

n
T

C
P

 W
in

do
w

s
(T

C
P

1
an

d
T

C
P

2)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=-1.0, Beta=1.0,
c1=1.0, c2=0.5

Profile(TCP1 &TCP2)= 1.5Mbps,
RTT(TCP2)/ RTT(TCP1)= 5.0

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

1

2

3

4

5

6

7

8

9

5 6 7 8 9 10 11 12

A
ve

ra
ge

 G
oo

dp
ut

 (
T

C
P

1
an

d
T

C
P

2)
 (

M
bp

s)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=-1.0, Beta=1.0,
c1=1.0, c2=0.5

Profile(TCP1 &TCP2)= 1.5Mbps,
RTT(TCP2)/ RTT(TCP1)= 5.0

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

Figure 5.3: Mean TCP Windows and Throughputs

for Parameter Set 1 (Di�erent RTT values)

55

60

65

70

75

80

85

90

95

100

105

5 6 7 8 9 10 11 12

M
ea

n
T

C
P

 W
in

do
w

s
(T

C
P

1
an

d
T

C
P

2)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=0.0, Beta=1.0,
c1=0.2, c2=0.1

Profile(TCP1 &TCP2)= 1.5Mbps,
RTT(TCP2)/ RTT(TCP1)= 5.0

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

1

2

3

4

5

6

7

8

9

5 6 7 8 9 10 11 12

A
ve

ra
ge

 G
oo

dp
ut

 (
T

C
P

1
an

d
T

C
P

2)
 (

M
bp

s)

Total Available Bandwidth (Link Capacity) (Mbps)

Performance of Generalized TCP with MRED

Alpha=0.0, Beta=1.0,
c1=0.2, c2=0.1

Profile(TCP1 &TCP2)= 1.5Mbps,
RTT(TCP2)/ RTT(TCP1)= 5.0

TCP1 (Theory)
TCP2 (Theory)

TCP1 (Simulation)
TCP2 (Simulation)

Figure 5.4: Mean TCP Windows and Throughputs

for Parameter Set 2 (Di�erent RTT values)

128

model is concerned with ensuring that each
ow obtains its minimum (assured)

rate; how the remaining bandwidth is shared is not of much use to users. However,

a di�erent service model, the User Service Di�erentiation (USD) [39] advocates

proportional di�erentiation: the service model simply attempts to apportion the

available bandwidth in the ratio of the assigned weights. All other things being

equal, it would seem worthwhile to promote the use of a window adjustment proce-

dure which is not only preferable for the Assured Service model but also provides

a larger degree of conformity to the proportional sharing model. To study this

aspect of changes to the TCP window adjustment parameters, we again consider

Experiments A and B outlined earlier.

In Experiment A, we had kept the round-trip times identical but had made

the pro�led rate of TCP
ow 2 to be twice the pro�led rate of TCP
ow 1. Our

analysis enables us to predict and analyze how di�erent window adjustment pa-

rameters a�ect the relative sharing of the excess bandwidth. Figure 5.5 shows

both the theoretical predictions and simulation results on how the ratio of the

TCP throughputs varies as a function of the window adjustment parameter sets

and the amount of the excess bandwidth. We can see that as the excess bandwidth

increases, for the 4 parameter sets considered here, the excess is never shared in the

ratio of the pro�led rates. Rather, as the excess capacity (the sum of the pro�les

is 4:5 Mbps) is increased, this excess is increasingly evenly distributed among the

two competing
ows, as a result of which the ratio of the attained throughputs

decreases from 2 towards 1. Also, more importantly, we see that parameter sets

129

1.1

1.2

1.3

1.4

1.5

1.6

1.7

6 7 8 9 10 11 12

T
he

or
et

ic
al

 R
at

io
 o

f T
C

P
2/

 T
C

P
1

T
hr

ou
gh

pu
ts

Total Available Bandwidth (Link Capacity) (Mbps)

Two Generalized TCPs with MRED (Ideal Ratio=2.0)

RTT(TCP1)= RTT(TCP2)= 20msec

Profile(TCP1)= 1.5Mbps, Profile(TCP2)= 3.0Mbps

Parameters 1
Parameters 2
Parameters 3
Parameters 4

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

6 7 8 9 10 11 12

S
im

ul
at

ed
 R

at
io

 o
f T

C
P

2/
 T

C
P

1
T

hr
ou

gh
pu

ts

Total Available Bandwidth (Link Capacity) (Mbps)

Two Generalized TCPs with MRED (Ideal Ratio=2.0)
Profile(TCP1)=1.5Mbps, Profile(TCP2)=3.0Mbps

RTT(TCP1)= RTT(TCP2)=20msec

Parameters 1
Parameters 2
Parameters 3
Parameters 4

Figure 5.5: Ratio of Attained TCP Throughput for

Di�erent Parameter Sets (Di�erent Rate Pro�les)

2 and 4 (AIMD)(which have � = 0) provide greater di�erentiation in the sharing

of the excess capacity than comparable settings with � = �1 (SAIMD). Further-

more, although our theory indicates that the ratio depends only on the ratio c1 to

c2 (and not their individual values), we see that, in practice, a window adjustment

procedure with a lower value of c2 (a less drastic reduction in the window size on

receiving congestion indication) provides for larger di�erentiation.

Figure 5.6 shows the ratio of the obtained throughputs (both theoretical and

practical) for Experiment B. As stated earlier, in this case, the two TCP
ows had

identical assured rates (1:5 Mbps each), but the RTT of TCP2 was 5 times that

of TCP1. An ideal proportional sharing would result in an achieved throughput

ratio of 1; however, given the inherent bias of window adjustment procedures

against longer RTT connections, we can expect the lower RTT TCP connection

to obtain the greater share of the excess bandwidth. The graphs in �gure 5.6 do

130

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 6 7 8 9 10 11 12

T
he

or
et

ic
al

 R
at

io
 o

f T
C

P
2/

 T
C

P
1

T
hr

ou
gh

pu
t

Total Available Bandwidth (Link Capacity) (Mbps)

Two Generalized TCPs with MRED (Ideal Ratio=1.0)

RTT(TCP2)/RTT(TCP1)=5.0

Profile(TCP1)= Profile(TCP2)=1.5Mbps

Parameters 1
Parameters 2
Parameters 3
Parameters 4

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 6 7 8 9 10 11 12

S
im

ul
at

ed
 R

at
io

 o
f T

C
P

2/
 T

C
P

1
T

hr
ou

gh
pu

ts

Total Available Bandwidth (Link Capacity) (Mbps)

Two Generalized TCPs with MRED (Ideal Ratio=1.0)

RTT(TCP2)/RTT(TCP1)=5.0

Profile(TCP1)= Profile(TCP2)= 1.5Mbps

Parameters 1
Parameters 2
Parameters 3
Parameters 4

Figure 5.6: Ratio of Attained TCP Throughput for

Di�erent Parameter Sets (Di�erent RTT)

indeed con�rm this phenomenon. More importantly, as with experiment A, they

illustrate that an AIMD algorithm (� = 0) provides for more equitable sharing of

the excess capacity than an equivalent SAIMD adjustment procedure. Also, as

in Experiment A, a smaller value of c2 gives better practical performance (causes

a greater degree of proportional sharing of the excess bandwidth).

5.2.4 Salient Features of Analysis

The analysis presented in this section provides us a technique to estimate the mean

TCP window sizes (and hence the TCP throughputs) when multiple TCP
ows

(with individual assured rates) interact with an ORED queue under the Assured

Service framework. Comparison of simulation results with analytical predictions

(for a variety of parameter settings of the window adjustment procedure) con�rm

the accuracy of our analysis.

131

As a secondary objective, we use the above analytical technique and simulations

to evaluate how changes to the parameters of the generalized window adjustment

algorithm a�ect the proportional sharing of excess bandwidth. We see that the

AIMD adjustment procedure usually results in a bandwidth sharing paradigm

that is closer to that of the proportional sharing model than a comparable SAIMD

algorithm and that is more robust to di�erences in the round-trip times of the

various TCP
ows. We have also demonstrated (using simulations) that a smaller

value of c2 results in a greater proportional di�erentiation in the sharing of the

excess bandwidth and a larger tolerance to variations in RTT . In the next section,

we shall see why this is really the result of smaller variance in the window size and

hence, motivate why, as in [5], we believe that a smaller multiplicative decrease

factor is recommended for ECN-aware TCP.

5.3 Window Distribution and Analysis of a Generalized TCP

Process (� = 1)

To further study the implications of changing the window adjustment parameters

in ECN-enabled TCP, we now consider the special case of a single TCP
ow, with

an associated pro�led rate, being regulated by an ORED bu�er. Technical reasons

(which will become clear shortly) permit our analytical technique to apply only

when � = 1. While this is certainly a restriction on the generalized model, we

132

believe that this constraint is not practically important since all recommended

changes to (as well as the current version of) TCP's window adjustment algorithm

use � = 1 (multiplicative decrease). By presenting the model for TCP window

evolution in this case, we see why the determination of the window distribution

turns out to be a special case of the generalized analysis presented in section 2.4.

We then compare our analytical predictions with simulation results to demonstrate

the accuracy of our analysis and subsequently use this analysis to further study

the implications of changing TCP's window adjustment procedure.

5.3.1 Formulating the Window Evolution Model

As before, we consider a TCP
ow with a round-trip time of RTT secs and a

segment size of M (the sub-scripts being dropped since only one
ow is considered

here). It interacts with an ORED bu�er serving a link of capacity C (which,

for notational e�ciency, is now expressed in segments/sec) and has an assured

bandwidth of R (also in segments/sec). Also, let Q be the bu�er occupancy (in

segments); minth and maxth are also similarly expressed in segments now. Our

aim is to �nd the stationary distribution of the stochastic process (Wn)
1
n=1.

If as before, we assume that bu�er under
ow never occurs, it is clear that the

TCP average transmission rate will be equal to the link capacity C. (Indeed, as the

TCP window size exceeds the bandwidth delay product (BDP), given by C �RTT ,

any increase in the window size results in a corresponding increase in the bu�er

133

occupancy and hence, the total round-trip delay, leaving the e�ective throughput

unchanged at C). Under this model, we can then see that the packet tagging

probability
 is independent of W and Q and is simply given by the fraction by

which the capacity exceeds the pro�led rate

 =
C �R

C
(5.16)

Also, since we assume that the bu�er never under
ows, `the pipe is always full'

and hence, the window size and the queue occupancy are related according to

W = Q+ C �RTT (5.17)

Now consider the evolution of the TCP generalized window. It is easy to see that

although packets will be tagged as out as soon as the TCP throughput exceeds R,

they will not be marked (ECN bit set) until the window has expanded to ensure

that the queue occupancy exceeds minth; this of course, can only occur once the

throughput reaches C and the window size exceeds C �RTT +minth. Accordingly,

a reasonably accurate model of the marking probability p(W) as a function of the

window size W is given by the equations

p(W) = 0 for W < minth + C:RTT;

=
 � f(W � C:RTT) for W < maxth + C:RTT

=
 � �pmax for W > maxth + C:RTT; (5.18)

where
 = C�R
C

. More speci�cally, we can then specify the stochastic behavior of

the generalized TCP process as follows:

134

Prob(Wn+1 =Wn + c1W
�

n
jWn � W �) = 1

Prob(Wn=1 = Wn + c1W
�

n
jWn > W �) = 1� p(W)

Prob(Wn=1 = Wn � c2W
�

n
jWn > W �) = p(W) (5.19)

where W � = minth +C �RTT and p(W) is as given by equations (5.18). But this

is exactly the generalized state-dependent window evolution model (see equation

(2.27)) analyzed in section 2.4. Accordingly, we can now use the time-and-space

rescalings employed in equations (2.28) and (2.29) to solve for the distribution

of the generalized TCP window W . For details on this technique, please refer

to chapter 2. Our requirement for � = 1 also follows from the discussion on �

presented in section 2.4.1.

5.3.2 Results

As stated earlier, the real motivation for performing the above analysis is to un-

derstand the e�ect of changes in TCP's window adaptation parameters on the

distribution and variance of the congestion window. To this end, we took TCP's

current window adjustment algorithm (� = �1, � = 1, c1 = 1 and c2 = 0:5) as a

baseline parameter set and varied each of the three parameters �, c1 and c2 in turn.

A set of typical results are provided in this section. The graphs here are for a TCP

ow with MSS of 512 bytes, nominal RTT of 13:66msec and an assured rate of 0:75

135

Mbps and an ORED queue with a service rate of 1:5 Mbps (the bandwidth-delay

product is thus 5 segments), minth = 15, maxth = 95 and pmax = 0:02.

Figure 5.7 shows the simulated/ theoretical mean and variance of the window

size of the TCP
ow as a function of �. To illustrate the accuracy of our analytical

technique, we also include a plot comparing the predicted and simulated window

distribution for � = �1:0. We can see that our analytical technique is able to

predict the statistics of the congestion window fairly accurately. Our plots and

studies show that increasing � from the current value of �1, i.e., SAIMD, to a

larger value (say 0, i.e., AIMD) not only increases the mean window size but

also the variance in the window size. In fact, the coe�cient of variation (de�ned

as Std:Deviation(W)

Mean(W)
) can be seen to increase with an increase in �. Since a larger

coe�cient of variation implies a larger variation in the short-term transmission rate,

we can see that making the window increase algorithm in TCP more aggressive can

lead to higher
uctuation in the short-term throughputs (once TCP has reached

its steady state). This could explain our observations in section 5.4 which show

that SAIMD may provide more robust adherence to the Assured Service model

than a comparable AIMD algorithm.

Figure 5.8 shows the plots of the TCP window statistics (as well as the sim-

ulated and theoretical distributions for c1 = 0:5 and c1 = 1:0) when the increase

coe�cient c1 is varied. We can see that decreasing c1 from its current value of

1 results in a lowering of the coe�cient of variation. (For a constant drop prob-

ability, [5] showed that the coe�cient of variation would be ideally independent

136

20

40

60

80

100

120

140

160

180

200

-2 -1.5 -1 -0.5 0 0.5

M
ea

n
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

Alpha--->

Single Generalized TCP/MRED performance versus alpha

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Mean TCP Window (Theoretical)
Mean TCP Window (Simulations)

1

10

100

1000

10000

-2 -1.5 -1 -0.5 0 0.5

V
ar

ia
nc

e
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

(L
og

sc
al

e)

Alpha

Single Generalized TCP/MRED performance versus alpha

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Var.of TCP Window (Theoretical)
Variance of TCP Window (Simulations)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

-2 -1.5 -1 -0.5 0 0.5

C
oe

ff.
V

ar
 (

S
td

.D
ev

/M
ea

n)
 o

f T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

Alpha

Single Generalized TCP/MRED performance versus alpha

Min_W= 15, Max_th=95,
BDP=5, p_max=0.02

Mean TCP CoeffVar (Theoretical)
Mean TCP CoeffVar (Simulations)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

 Window (Segments) (alpha=-1.0)--->

Single Generalized TCP/MRED Distribution versus alpha

Min_th= 15, Max_th=95,
 BDP=5, p_max=0.02

CDF(Sim) (alpha=-1.0)
CDF(Theory) (alpha=-1.0)

Figure 5.7: Generalized TCP Window Statistics

(and Distribution) with �

137

of c1.) While decreasing c1 might thus appear attractive, it should be clear that

this will lower the rate of increase of the window and consequently increase the

time before a TCP connection utilizes the available bandwidth completely. The

main objective of modifying TCP is to change its response to congestion; since c1

is concerned with the window increase algorithm (which occurs in the absence of a

congestion indicator), changes to it are probably not of primary concern and might

be necessary only in conjunction with changes in the other parameters. Also, a

smaller value of c1 would be more appropriate for the AIMD algorithm (which has

a more aggressive window increase policy) than the current SAIMD algorithm.

Figure 5.9 shows the plots of the TCP window statistics (as well as the sim-

ulated and theoretical distributions for c2 = 0:2 and c2 = 0:4) when the decrease

coe�cient c2 is varied. It is most interesting to note that as c2 is decreased from

its current value of 0:5, the mean window size increases but the variance decreases,

i.e., the coe�cient of variation decreases very rapidly. Thus, decreasing the mul-

tiplicative decrease coe�cient c2 appears to provide a tighter control on the TCP

window. Note also that while decreasing this factor does imply a less drastic re-

duction in the window size on receiving a single congestion indicator, routers can

a�ect the same overall amount of window decrease by simply adopting a larger

marking probability. (As stated earlier, since ECN does not cause packet losses,

the packet marking probability can be arbitrarily large).

The above analyses and simulations indicate that lowering the multiplicative

decrease constant c2 is probably the most important modi�cation for ensuring

138

22

24

26

28

30

32

34

36

38

40

42

0.1 1

M
ea

n
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c1---> (Logscale)

Single Generalized TCP/MRED performance versus c1

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Mean TCP Window (Theoretical)
Mean TCP Window (Simulations)

0

20

40

60

80

100

120

140

0.1 1

V
ar

ia
nc

e
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c1---> (Logscale)

Single Generalized TCP/MRED performance versus c1

Min_th= 15, Max_W=95,
BDP=5, p_max=0.02

Var. of TCP Window (Theoretical)
Var. of TCP Window (Simulations)

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.1 1

C
oe

ff.
V

ar
 (

S
td

.D
ev

/M
ea

n)
 o

f T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c1---> (Logscale)

Single Generalized TCP/MRED performance versus c1

Min_th= 15, Max_th=95,
 p_max=0.02

Mean TCP CoeffVar (Theoretical)
Mean TCP CoeffVar (Simulations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

Window (Segments)

Single Generalized TCP/MRED Distribution versus c1

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

CDF(Sim) (c1=1.0)
CDF(Sim) (c1=0.5)

CDF(Theory) (c1=1.0)
CDF(Theory) (c1=0.5)

Figure 5.8: Generalized TCP Window Statistics

(and Distribution) with c1

139

32

34

36

38

40

42

44

0.2 0.3 0.45

M
ea

n
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c2---> (Logscale)

Single Generalized TCP/MRED performance versus c2

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Mean TCP Window (Theoretical)
Mean TCP Window (SImulations)

50

55

60

65

70

75

80

85

90

0.2 0.3 0.45

V
ar

ia
nc

e
of

 T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c2--->(Logscale)

Single Generalized TCP/MRED performance versus c2

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Var. of TCP Window (Theoretical)
Var. of TCP Window (Simulations)

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.2 0.3 0.45

C
oe

ff.
V

ar
 (

S
td

.D
ev

/M
ea

n)
 o

f T
C

P
 W

in
do

w
 D

is
tr

ib
ut

io
n

c2---> (Logscale)

Single Generalized TCP/MRED performance versus c2

Min_th= 15, Max_th=95,
BDP=5, p_max=0.02

Mean TCP CoeffVar (Theoretical)
Mean TCP CoeffVar (Simulations)

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45 50 55 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

Window (Segments)

Single Generalized TCP/MRED Distribution versus c2

Min_th= 15, Max_th=95,
BDP=5, p_max=0.01

CDF(Sim) (c1=0.4)
CDF(Sim) (c2=0.2)

CDF(Theory) (c2=0.4)
CDF(Theory) (c2=0.2)

Figure 5.9: Generalized TCP Window Statistics

(and Distribution) with c2

140

smoother TCP tra�c in an ECN-aware environment. As c2 is decreased, designers

can also consider a commensurate decrease in c1, primarily to leave the average

window sizes (and hence, the bu�ering requirements) unchanged from current im-

plementations.

5.4 Simulation-based Sensitivity Studies of Generalized TCP

While the previous section has studied the e�ect of changing each TCP window

adjustment parameter (except �) in isolation by considering a single
ow, section

5.2 considered how the excess bandwidth sharing paradigm would be a�ected by

changes in the window adjustment parameters. Our analysis shows that smaller

values of c1 and c2 are in general preferable as they reduce the variance in the win-

dow distribution. We have also seen that the secondary objective of proportional

sharing of excess bandwidth is more closely realized by � = 0 rather than � = �1.

The analysis of both sections was based on the assumption that excess capacity

was available (C >
P

N

i=1Ri); the theory does not apply when the capacity is less

than or equal to the sum of the pro�led rates (essentially because the tagging prob-

ability cannot be appropriately de�ned for each
ow in such a situation). While

the case of C <
P

N

i=1Ri is not interesting as it violates the basic premise of the

Assured Service model, it would indeed be interesting to study how the changes in

the window adjustment parameters a�ect the functioning of the Assured Service

model when no excess capacity is available (C =
P

N

i=1Ri). More speci�cally, the

141

performance curves shown in [28] were obtained using a tagging mechanism more

sophisticated than the typical leaky bucket; indeed for best performance, the tag-

ger was required to have knowledge of the round-trip times, a requirement clearly

not practicable in current networks. It would be useful to study whether changes

in TCP's window adjustment algorithm would enable us to obtain more robust

service under the Assured Service model without requiring tra�c conditioners to

perform anything more sophisticated than a leaky bucket-based algorithm. We

accordingly performed simulations similar to that of Experiments A and B (pre-

sented in section 5.2) and studied the performance of the four di�erent parameter

sets (presented in section 5.2.3).

In the �rst set of experiments, which we call Experiment C, we considered two

TCP
ows with identical RTT values. We allocated rate pro�les to each TCP

ow such that, while the sum of the pro�les was always 4:5 Mbps, the ratio of

the pro�led rates was varied between 2 and 10 (with TCP 2 always having the

higher pro�led rate). The
ows were tagged by individual leaky buckets and the

link capacity in this case was always 4:5 Mbps. Earlier studies have reported that,

while the discrimination of
ows in the ratio of the pro�led rates is close to ideal

when the pro�led rates are not drastically di�erent, the bandwidth sharing is less

than ideal when the rate pro�les di�er dramatically. Figure 5.10 shows the plot of

the ratio of the simulated throughputs against the speci�ed throughput ratio for

the four di�erent parameter sets. As we can see, a simple implementation using a

leaky bucket tagger is unable to enforce the ideal di�erentiation across all ratios of

142

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10

S
im

ul
at

ed
 R

at
io

 o
f T

C
P

2/
 T

C
P

1
T

hr
ou

gh
pu

ts

Specified ratio of TCP2/TCP1 Throughput

Two Generalized TCPs with MRED (No Slack Capacity)

RTT(TCP1)= RTT(TCP2)= 20msec,
C=4.5Mbps

Parameters 1
Parameters 2
Parameters 3
Parameters 4

Figure 5.10: Bandwidth Sharing for Di�erent Window

Adaptation Parameters (Varying Rate Pro�les)

the throughputs. However, parameter set 1 and 3 (which correspond to the SAIMD

paradigm) are able to attain better adherence to the assured rate guarantees than

parameter sets 2 and 4 (AIMD). Of greater importance to our investigations is the

fact that, for any given value of �, a lower value of c2 (and c1) results in a lower

deviation of the TCP throughputs from the assured service rates.

The second set of experiments, which we call Experiment D, considered two

TCP
ows with identical rate pro�les of 1:5 Mbps. The link capacity was main-

tained at 3:0 Mbps but the round-trip times of the TCP
ows were altered such

that the ratio of the round-trip times of the two
ows varied from 2 � 50. The

objective of this experiment was to see whether certain parameter sets were better

in providing the desired rate pro�les over large variations in the round-trip times;

ideally, each connection would receive exactly its pro�led rate and the ratio would

be constant at 1. Figure 5.11 shows the plot of the ratio of the simulated through-

143

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50

S
im

ul
at

ed
 R

at
io

 o
f T

C
P

2/
 T

C
P

1
T

hr
ou

gh
pu

ts

Ratio of RTT (TCP2/TCP1) (msecs)

Two Generalized TCPs with MRED (Ideal Ratio=1.0)

RTT(TCP2)/RTT(TCP1)=5.0,
C=3.0Mbps

Profile(TCP1)= Profile(TCP2)= 1.5Mbps

Parameters 1
Parameters 2
Parameters 3
Parameters 4

Figure 5.11: Bandwidth Sharing for Di�erent Window

Adaptation Parameters (Varying RTT)

puts against the ratio of the TCP connections for the four di�erent parameter

sets. We see that the parameter sets with smaller values of c2 (and consequently

c1) show less divergence from the ideal throughput ratio, even though the round-

trip times vary over almost two orders of magnitude. Furthermore, it can be seen

that the choice of AIMD or SAIMD (variation in �) is not as critical a determinant

of system performance as changes to c2 (and consequently c1).

The experiments of this section reveal that window adjustment algorithms

which use a lower value of c2 (the multiplicative decrease factor) than 0:5 (as

practised in current TCP) provide better performance (closer adherence to theo-

retical values). The choice between SAIMD and AIMD is less clear: in general, it

appears that while SAIMD provides for better approximation to ideal throughputs

over wider variations in the ratio of the assured rates, both SAIMD and AIMD

perform similarly over wide variations in the round-trip times. Since SAIMD has

144

a less aggressive window increase policy than AIMD, lowering c2 and c1 may cause

the rate of convergence of SAIMD TCP to the optimal value to become unac-

ceptably slow. An AIMD adjustment procedure may thus make sense from that

perspective. Our results from section 5.2 also show that an AIMD algorithm with

smaller values of c2 and c1 provides for closer approximation to the proportional

sharing of excess bandwidth (this is, of course, a secondary objective). Combining

the above results, we see that reducing the decrease (and increase) coe�cients ap-

pears to be the most important modi�cation for ECN-aware TCP. Changing the

current sub-additive-increase algorithm to an additive-increase one is of secondary

importance and could involve tradeo�s: while the AIMD algorithm results in a

more proportional sharing of excess bandwidth, the SAIMD algorithm appears to

enforce the Assured Service model in a more robust fashion.

5.5 Summary

In this chapter, we have focussed on the possibility of changing TCP's window

adjustment algorithm to better exploit the enhanced congestion signaling facility

provided by ECN-enabled bu�ers. To investigate this issue, we consider a gener-

alized TCP window adjustment procedure and the Assured Service model.

We �rst analyzed the case of multiple generalized TCP
ows interacting with a

queue that marks out-of-pro�le packets with an occupancy-dependent probability.

Using a mean-value based �xed-point iterative technique, we are able to compute

145

the mean TCP window sizes and TCP throughputs; simulations are used to verify

the accuracy of our analysis. Our analysis reveals that the use of an additive-

increase, multiplicative-decrease window adjustment paradigm results in a closer

approximation to the proportional sharing of excess bandwidth than an equivalent

sub-additive-increase, multiplicative-decrease window adjustment procedure.

We then consider the special case of a single generalized TCP
ow (with � = 1)

under the Assured Service model and provide an analytical-cum-numerical tech-

nique to evaluate the window distribution in this case. By studying the dependence

of various window statistics on the window adjustment parameters �, c1 and c2,

we can see that decreasing the multiplicative decrease factor, c2, from the current

TCP value (0:5) is probably the most important recommended modi�cation since

it results in a much lower coe�cient of variation of the TCP window.

We �nally use simulations to study how di�erent window adjustment parame-

ters a�ect the robustness of service di�erentiation according to the Assured Service

model. We again �nd that, generally speaking, a smaller value of c2 results in a

greater degree of adherence to the rates of the Assured Service model. Based on

the above observations, we believe that modifying TCP to reduce its multiplicative

window decrease factor is probably the most important enhancement in an ECN-

enabled environment. Shifting from the current sub-additive-increase algorithm

to an additive-increase technique could bring tradeo�s between the proportional

sharing of excess bandwidth and robust adherence to the Assured Service model.

Integrating the design of the router marking algorithm with changes in the

146

TCP window adjustment procedure is a vital requirement for the successful de-

ployment and use of ECN. As a logical next step, we shall present an analysis

in the next chapter which shows how the interaction between generalized TCP

window adjustment and ECN marking can be shown to resemble an iterative solu-

tion of a global optimization objective. Such an analysis will motivate suggestions

on changing the linear shape of the marking probability curve fmark(Q) and also

present the implications of changes in the various window adjustment parameters

on the global optimization function.

147

Chapter 6

A Theoretical Framework for ECN and TCP

Window Adjustment

In the previous chapter, we have analyzed the possible impacts of modifying TCP's

window adaptation mechanism in response to ECN and mentioned that changes in

the source adaptation scheme must be carried out jointly with the design of ECN

algorithms in Internet routers. In this chapter, we provide a theoretical interpre-

tation of the interaction between the TCP window adaptation algorithms and the

marking probability function employed in ECN-capable routers. As before, the

theory can also be applied to the design of dropping functions in random drop-

ping queues, such as RED. We shall �rst show that the generalized TCP window

adaptation based on ECN feedback can be considered to be an iterative stochas-

tic gradient solution of a broader network optimization problem; changes to the

parameters of the window adaptation algorithm are directly related to a change

in the optimization objective. Since pure window adjustment algorithms achieve

optimality objectives only for uniform round-trip times, we shall present the nec-

148

essary modi�cations to the window adaptation scheme to obtain a fair bandwidth

allocation under arbitrary round trip times. As an interesting aside, we shall in-

dicate how using di�erent window adaptation parameters on di�erent TCP
ows

can achieve a service di�erentiation paradigm on the Internet without using packet

di�erentiation in the intermediate routers. Finally, by relating the optimality con-

ditions to the nature of the ECN marking probabilities, we shall prove that, under

the assumption of Poisson arrivals at individual nodes, the marking probabilities

should be an exponential function of the queue occupancy. This is another signi�-

cant contribution, since current literature in this area typically employs rate-based

computations for determining marking probabilities, while practical implementa-

tions continue to be occupancy-driven and based on ad-hoc design guidelines.

6.0.1 Previous Work and Applicability

Several authors have recently considered the analysis of
ow control algorithms

from a network optimization perspective, especially from the standpoint of pricing

and fairness objectives on the Internet. We have seen earlier how TCP's current

window adjustment procedure (also known as `congestion avoidance') involves an

update of the congestion window on the receipt of every acknowledgment. The

current congestion avoidance algorithm can be described as `sub-linear increase

and multiplicative decrease' (SAIMD), with the evolution of the window process

149

(Wn)
1
n=1 abstracted by the Markovian model:

Wn+1 = Wn +
1

Wn

if packet n is not lost;

Wn+1 =
Wn

2
if packet n is lost:

Chapter 5 discussed why this window adaptation algorithm may not be the most

appropriate for ECN-aware networks, chie
y because of the drastic window de-

crease (halving) practised on receiving a congestion indicator. Investigations on

possible modi�cations to TCP's window adjustment algorithms have traditionally

pursued two parallel objectives. One track (e.g., [5, 40]) analyzes the possible

e�ects on window dynamics of a single TCP connection by treating the network

as a `black-box', that subjects the incoming packets to a constant (or variable)

marking probability. Another approach (e.g., [24], [23], [22]) considers the use

of
ow control and congestion feedback as a mechanism to optimize certain net-

work costs; most research initiatives in this approach assume that sources perform

rate-based adaptation (and not explicit window adjustment on the receipt of every

acknowledgement). Our analysis appears to be the �rst one to consider the case

of a single TCP
ow under the current window adaptation paradigm but in the

network optimization framework.

It is clear that router mechanisms for ECN marking, and the TCP response

to such marked packets, need to be designed in tandem. It is thus of immense

interest to understand the following:

150

� How modi�cations to the TCP window adjustment procedure will �t into

fairness paradigms for bandwidth sharing on the Internet.

� How ECN marking probabilities in routers �ts into such a bandwidth shar-

ing framework, and thereby suggest possible techniques for determining the

marking probability function.

The problem of Internet congestion control as a global optimization problem

was presented in [23]. In this model, each user is associated with a dis-satisfaction

function es(rs), which is a function of the allocated rate rs (increasing rs leads

to lower dis-satisfaction), while each link is associated with a cost function gl(cl)

which is a function of the o�ered load cl (increasing the load increases the cost

on the network). The congestion control algorithm is presented as a technique for

minimizing a linear sum of the two costs; [23] showed how such a class of
ow

control algorithms could be based on feedback from the constituent links in the

path with FIFO queuing at intermediate routers. The paper also showed how

a modi�ed TCP congestion control procedure could be treated as a special case

of such an optimization scheme. Although the paper brie
y mentions why the

ECN paradigm can also be considered a coarse version of this optimal scheme, the

treatment was super�cial and does not consider the associated problem of designing

the marking behavior in routers according to this optimization criterion.

Source-based
ow control and network-based `congestion' feedback, from the

viewpoint of allocating rates among competing users to achieve certain fair-sharing

151

objectives, was considered in [24]. [24] showed that rate control according to the

additive-increase, multiplicative-decrease principle (AIMD) [22] enables bandwidth-

sharing according to proportional rather than max-min fairness. Such a fairness

objective could be achieved by either congestion feedback signals (similar to ECN)

or through explicit rates based on shadow prices. The paper assumes the pres-

ence of a utilization function log(rs), which is a function of the allocated rate

rs (increasing rs leads to larger utilization) associated with each user. Although

the analytical framework can be generalized to consider costs associated with the

utilization on a link, it is largely concerned with maximizing the sum of these uti-

lization functions subject to the link capacity bounds. (Since the paper concerns

only long term rates, it simply requires the sum of all rates over a link to be less

than the link capacity. In real life, since tra�c arrival is bursty and QoS metrics

other than bandwidth will also be involved, a cost must be associated with the

o�ered load, in terms of either packet loss rates and/or queuing delays). Practical

implementation of such a scheme would require signi�cant enhancements in router

functionality and does not lend to ready application in the Internet.

An interesting scheme for congestion indication, `Random Early Marking' has

been proposed in [27] and [26]. Using the dual of the optimization problem con-

sidered in [23] and [24], the authors showed how the marking probability can be

shown to be related to the derivative of the link cost function and hence, derived

a scheme where the marking probability of a packet was related to the input rate

at the queue under consideration. Their rate (or window) adaptation scheme is,

152

however, di�erent from the conventional TCP paradigm since they do not update

the rate (or window) on every individual acknowledgment, but only after per-

forming a statistical estimate on a window of acknowledged packets. While [27]

establishes the convergence of this modi�ed rate adaptation scheme for the case of

delayed feedback, the problem of convergence within the TCP paradigm (window

adjustment on every acknowledgement) is left unsolved. Also, since their marking

probabilities are based on estimates of the localized arrival rates at the bu�er, it

is not a pure function of the instantaneous bu�er occupancy (as in conventional

ECN).

[41] considered the possibility of supporting proportional bandwidth di�eren-

tiation on the Internet using modi�cations to the TCP window algorithm. Their

scheme essentially consists of weighting the window increase parameter (c1 in the

generalized adaptation process represented by equations (5.1) and (5.2)); we shall

present a systematic analysis of altering the various other window adjustment

parameters in a more analytical framework. Another interesting contribution was

made in [42], which showed how di�erent forms of fair-sharing (including max-min,

proportional and potential delay minimization) can be achieved for �xed size win-

dow control algorithms by varying the packet scheduling algorithms at each link.

They also provide a framework by which di�erent rate adjustment algorithms can

be seen to result to converge to di�erent fair-sharing criteria. The analysis applies

to the case of stationary windows and does not consider the problems of window

evolution or delayed feedback. Our analysis generalizes this approach by show-

153

ing how a generalized TCP window adjustment procedure, under FIFO scheduling

alone, can be shown to be a stochastic optimization of di�erent user utilization

functions and how the choice of di�erent parameters for di�erent users can result

in a weighted bandwidth allocation scheme.

6.1 ECN-based Generalized TCP and Optimization Objec-

tives

We �rst consider how the window-based
ow control procedure of generalized TCP

is related to a network optimization problem that attempts to apportion the avail-

able network capacity among competing users. By considering the interaction of

the TCP
ows with multiple ECN-capable routers on a path, we then identify

the relationship between the window adjustment and ECN algorithms and the

optimization objectives.

6.1.1 Network Optimization Model

Consider the problem of allocating the bandwidth resources of a network among

competing connections. Let the links of a communication network be denoted by

the integers l = 1; : : : ; L and the individual user sessions (TCP or otherwise) be

denoted by s = 1; : : : ; S. Let rs denote the average rate of tra�c from session

s and cl the average rate of tra�c carried over link l. We shall refer to rs and cl

154

as the rate of sessions s and load of link l respectively. The route of tra�c from

session s is denoted as Rs and consists essentially of a subset of the total L links.

Accordingly, let Asl = 1 if Rs includes link l and 0 otherwise.

To derive the optimization framework, we assume that each session has an

associated cost function es(rs), which expresses the dis-satisfaction of the user

with the allocated rate rs and is, naturally, decreasing in rs. Similarly, we denote

the cost function of link l as gl(cl); since an increased load on the link leads to

larger delays and losses, this is an increasing function of cl. We assume that es

is decreasing convex (law of diminishing returns) and gl is increasing and concave

(rapid increase in cost at high link loads).

Proposition 6.1 The allocation of session bandwidths by the congestion control

scheme can be considered a minimization NET (:) of the following total network

cost
()of the rate vector �R = (r1; : : : ; rS):

NET = min
(�R) =
SX
s=1

es(rs) +
LX
l=1

gl(cl) (6.1)

subject to the constraints

cl =
SX
s=1

Aslrs � Cl for l = 1; : : : ; L (6.2)

and

rs � 0 for s = 1; : : : ; S (6.3)

To express the solution vector �R� for the above optimization problem, we need

to introduce two new functions, derived from the cost functions es and gl. The

155

incremental reward function (or reward function, for short) for session s is de�ned

as

hs(rs) = �e0
s
(rs) s = 1; : : : ; S: (6.4)

hs(rs) is the incremental decrease in the dis-satisfaction of the session s customer

for a unit increase in its allocated rate; since es is decreasing and convex, hs is

positive and decreasing.

We also de�ne the congestion measure of a session s as the incremental increase

in link costs for a unit increase in rate rs:

qs(�c) =
�

�rs

LX
l=1

Alsgl(cl) =
LX
l=1

Alsg
0
l
(cl) (6.5)

As shown in [23], applying the Kuhn-Tucker conditions to the optimization

problem (equation (6.1)) leads to the following optimality criterion:

Theorem 4 Assume that gl(:) and es(:) have �rst and second derivatives satisfying

g0
l
> 0, g00

l
> 0, e0

s
< 0 and e00

s
> 0. Then, a necessary and su�cient condition for

a session rate vector �R� to minimize expression (6.1) is

hs(r
�
s
) = qs(�c

�) if r�
s
> 0

� qs(�c
�) if r�

s
= 0 (6.6)

for s = 1; : : : ; S.

Another way of looking at the above optimality condition is to observe that, at

the optimal rate allocation, the session's incremental reward equals the incremental

cost of congestion, i.e., the session's congestion measure.

156

Furthermore, the above optimization process can be solved by a well-known

gradient based iterative algorithm based on the following iteration:

rs = 0 if rs + �(hs(rs)� qs(�c)) � 0

rs = rs + �(hs(rs)� qs(�c)) otherwise; (6.7)

where � is a scalar that determines the step size of the increments and hence the

convergence of the iterative scheme; note that the above model does not consider

the case of delay in the feedback loop.

The necessity and su�ciency of condition (6.6) to optimize the expression (6.1)

implies that any iterative procedure based on expression (6.7), that converges to

condition (6.6), optimizes the NET objective function (6.1). We place a gen-

eralized version of TCP's window adaptation under the ECN paradigm in the

framework of (6.7) and (6.6) and thereby derive the precise cost function that the

adaptation procedure will optimize.

6.1.2 Generalized TCP Adaptation and ECN Marking Models

Since one of our objectives is to study the implications of minor changes in TCP's

congestion control algorithm, we consider the generalized form of TCP congestion

avoidance. Under this generalized model, presented earlier in chapter 5, when a

TCP window receives an acknowledgement and its window is W , it increases its

window by incr(W) when the acknowledgement is for an unmarked packet (ECN

bit not set) and decreases its window by decr(W) for a marked packet (ECN bit

157

set). As a simpli�cation of generalized incr(:) and decr(:) functions, we consider

`power-law' functions such that :

incr(W) = c1W
� (6.8)

decr(W) = c2W
�; (6.9)

where c1; c2; � and � are scalar constants. For the conventional `congestion avoid-

ance' algorithm of TCP, we have � = �1; � = 1; c1 = 1 and c2 = 0:5. For the

`additive-increase multiplicative decrease' framework ([22],[24] and [42]), we have

� = 0 and � = 1.

If pmark is the end-to-end ECN marking probability for a generalized TCP
ow,

then a simple drift analysis shows that, in steady state, it will have a mean window

size such that:

c1W
� � (1� pmark) = c2W

� � pmark; (6.10)

which shows that, under steady state, the generalized TCP algorithm will converge

to a mean window size W� given by

W ���
� =

c2 � pmark

c1 � (1� pmark)
(6.11)

Note that we have implicitly assumed the convergence of the adaptation scheme

to its steady-state value; the analysis of convergence, especially under the case of

delayed feedback is left open for now. If we now assume that the round trip time of

the TCP session s is constant and is given by �s, we can see that the mean session

158

rate r�
s
for session s is given by

r�
s
=
W�

�s
(6.12)

We now proceed to determine how pmark, the end-to-end ECN marking proba-

bility for a
ow can be determined. We assume in the ECN model that each router

on the path Rs marks packets independently with a probability that is, in general,

a function of the load cl on the outgoing link l and can be denoted by pl(cl)
11.

Accordingly, the probability of a packet being marked is given as

pmark = 1�
LY

l=1;Asl=1

(1� pl): (6.13)

Having determined the relationship between the marking probabilities and the

TCP window (and hence the rate), we now establish the connection with the

optimization framework of section 6.1.1.

We can see from equations (6.11), (6.12) and (6.13), that at steady state, the

mean TCP window can be related to the marking probabilities by the following

equation

c3(rs�w)
���

=
1�Q

L

l=1;Asl=1(1� pl)Q
L

l=1;Asl=1(1� pl)
; (6.14)

where c3 =
c1

c2
and pl are the ECN marking probabilities on the router bu�er with

output link l.

By minor algebraic manipulations of equation (6.14) and subsequently taking

11Unless speci�cally required by the context, we drop the dependence of pl on cl in our subse-

quent notation.

159

logarithms on both sides we get:

log(c3(rs�s)
��� + 1) = �

LX
l=1;Asl=1

log(1� pl) (6.15)

By now comparing equation (6.15) with the Kuhn-Tucker equality in condition

(6.6), we see that, under an assumption of constant �s, we can indeed consider TCP

window adjustment to be a special case of a rate-optimization algorithm with the

following mappings:

hs(rs) = log(c3(rs�s)
��� + 1)

ql(cl) = �log(1� pl) (6.16)

provided the following conditions hold (which ensure that hs(:) is decreasing in rs

and ql(:) is increasing in cl):

1. � < �.

2. pl(:) is an increasing function of the link load cl.

Both conditions will hold in all adaptation and marking schemes of interest. Con-

dition 1 applies as stability requires that lim W " 1 c1W
�

c2W
� ! 0; condition 2 holds

since, in general, the marking probability always increases with an increase in the

link load (or equivalently, the bu�er occupancy). In other words, if the window

adaptation parameters (�; �; c1 and c2) and the ECN marking functions satisfy the

relationship (6.16), we can then see that the
ow control algorithm converges to

the minimum of the appropriately-de�ned network cost.

160

The above equations clearly bring out the relation between the window ad-

justment procedure and the packet marking functions in the generic bandwidth

allocation framework. To proceed further, we use an approximation that enables

us to explain the recommendations on packet marking and TCP window adjust-

ment in a more intuitive fashion. We assume that the TCP windows operate in a

regime large enough so that c3W
���
s

is small enough to enable us to assume that

log(c3(Ws)
��� + 1) � c3W

���
s

. Under these assumptions, we have the following

mappings for hs(:) and ql(:):

hs(rs) = c3(rs�s)
���

ql(cl) = �log(1� pl(cl)) (6.17)

6.1.2.1 TCP Window Adaptation as an Iterative Algorithm and Necessary Mod-

i�cations Thereof

While it is clear that (at least under uniform round trip times), the mean win-

dow sizes of the generalized algorithm result in some form of optimal bandwidth

allocation, we should clearly be more interested in how TCP's window adjustment

mechanism relates to the iterative optimization technique presented in equation

(6.7). Since ECN signals are binary (single bit feedback), it is not possible to ob-

tain the congestion measure of a session s on the receipt of every acknowledgement

packet. (This corresponds to the di�erence between the `�ne' and `coarse' realiza-

tions of the MCFC algorithms, which were discussed in [23], and marks the point

161

of departure with the analysis in [26].) Accordingly, TCP window adaptation is

not really a gradient-search algorithm in the context of equation (6.7) but is really

a stochastic version of the gradient search algorithm. Accordingly, the stochastic

gradient search procedure may be expressed as

rs = rs + �1 � as(rs) if the acknowledgement is unmarked

= rs � �2 � bs(rs) if the acknowledgement is marked

where as = hs(rs) and bs(rs) = 1� hs(rs). However, a quick check of the function

hs(:) in the equation equation (6.17) shows that TCP's current window adjustment

procedure does not follow this model. To �t this model, TCP's incr and decr func-

tions would have to be proportional to W ��� and W��W�

W� respectively. However,

by considering the iterative version of the TCP window update algorithm, we can

see how we can obtain the same h(s) as in (6.16) to a close approximation.

Consider �rst a rate-based TCP adaptation scheme where as(rs) = r�
s
, bs(rs) =

r�
s
, �1 = c1 and �2 = c2. Under this condition, we have

hs(rs)

1�hs(rs) =
c1r

�
s

c2r
�
s

, whence we

get the hs(rs) for 'TCP-like' updation as

hs(rs) =
1

1 + c2

c1
r���s

: (6.18)

Contrast this equation with the value of hs(rs) in equation (6.17) given by the

equality in the Kuhn-Tucker conditions. Although they do seem to be di�erent,

we can see that since � < �, for reasonably large values of rs, hs(:) in equation

(6.18) can be closely approximated by hs(rs) = c1

c2
r���
s

, which is the same as

162

equation (6.17), if we assume that the round-trip times are uniform (and hence,

the term ����
s

can be treated as a scalar constant).

Since the round-trip times are, however, not constant, it should now be clear

how to incorporate the round-trip time estimates of the di�erent sessions in their

window update schemes to ensure fair bandwidth allocation when di�erent sessions

have di�erent round-trip times. For example, since we have rs = Ws

�s
, we have

incr(rs) =
incr(W)

�s
. Also since we know that incr(rs) = c1r

�

s
, upon substitution we

get the modi�ed function incr(W) as :

incr(W) = c1�
1��W � (6.19)

Similarly, we can see than the appropriate modi�cation for decr(W) is given by

the expression

decr(W) = c2�
1��W � (6.20)

The above equations show how the TCP algorithm should be modi�ed to incor-

porate the round-trip time into the window update procedure to solve the band-

width optimization problem for di�erent round-trip times. In particular for the

`sub-additive increase, multiplicative decrease' of classical TCP, the window upda-

tion scheme involves incr(W) =
�2s

W
and decr(W) = W

2
. On the other hand for the

`additive-increase multiplicative-decrease' mooted in ([5],[24]), we can see that the

window updation procedure involves incr(W) = c1� and decr(W) = c2W . Similar

�ndings have also been reported in [23] and other previous TCP analyses [11]. Un-

der the modi�ed window adjustment functions proposed in equations (6.19) and

163

(6.20), it is now easy to see that the corresponding functions hs(:) and ql(:) are :

hs(rs) = c3r
���
s

;

ql(cl) = �log(1� pl(cl)); (6.21)

i.e., suitably modi�ed TCP `window adaptation' results in the optimization of a

network bandwidth allocation objective, independent of the round-trip times of the

individual connections.

6.1.3 Generalized Window Adaptation and Fairness Objectives

We now consider how the choice of parameters in generalized TCP window adapta-

tion (modi�ed by the inclusion of the round trip time � in the update equations) de-

termines the fairness objective realized (the optimization criteria implicitly used).

We have shown that the generic TCP window increase algorithm results in

a reward function of c3r
���
s

. By substituting speci�c values for � and �, we

can obtain speci�c dis-satisfaction functions es(rs) that the algorithm seeks to

minimize. For example, if � = 0 and � = 1, we have e0(rs) = �c3r�1
s
, which

implies that es(rs) = K � c3log(rs). Accordingly, similar to the results in [24],

we see that the `additive-increase multiplicative-decrease' procedure results in the

proportionally fair allocation of network bandwidth. On the other hand, for the

conventional TCP algorithm (� � �=-2), we have e0(rs) = �c3r�2
s
. Accordingly,

we can see that es(rs) in this case has the form es(rs) = K + c3

rs
. This form of

the dis-satisfaction function was shown to result in the potential delay fairness

164

criterion in [42]. [42] also showed that the potential delay fairness criterion could

be interpreted as having an objective of minimizing the overall delay of the �le

transfers of all sessions.

Proposition 6.2 If the TCP window update algorithm is modi�ed to include an es-

timate of the round-trip time, as in equations (6.19) and (6.20), without modifying

the current `sub-additive multiplicative-decrease' behavior, the stationary allocation

of rates achieves the potential delay fairness objective i.e., minimizes the overall

delay of the �le transfers of all sessions.

As shown in [42], potential-delay fairness is a fairness objective that is inter-

mediate between the proportional fairness (which penalizes
ows over multiple

bottleneck links) and max-min fairness (which does not impose any penalty for

sessions with large number of links in the data path). Thus, the fairness objec-

tive achieved with current TCP
ow control can in some sense be seen to be a

compromise between the desire for better overall network utilization (proportional

fairness) and avoidance of beat-down for longer
ows (max-min fairness). This

is indeed an argument for retaining the current SAIMD model of TCP window

adaptation.

6.1.4 Di�erentiated Services and Weighted Bandwidth Sharing

[41] showed how changing the coe�cient of window increase in the current TCP

window adaptation model leads to the possibility of weighted sharing of available

165

bandwidth among competing TCP connections. The paper introduces `MulTCP',

a modi�ed version of the TCP protocol, that is shown to support a weighted

proportional di�erentiation model (similar to the USD service outlined in [39]).

By interpreting changes to the window adaptation parameters in the optimization

context, we now present a more general scheme for service di�erentiation by using

di�erent window adaptation parameters for di�erent
ows.

We �rst show that if we leave c1 and c2 common for all the sessions but provide

each session di�erent � and �, it is NOT possible to provide a �xed proportion of

bandwidth sharing (proportional sharing model) among competing
ows. Consider

two
ows i and j which have identical routes and which accordingly, have qi(ri) =

qj(rj) (since they share the same marking probability on all routers). Let us also

assume that we want to ensure a �xed ratio between the rates allocated to each

session, irrespective of the rates of other sessions and the load on the network (the

so-called Proportional Sharing Model). We see than hs(:) depends on the di�erence

���. Accordingly, let �i = �i��i be the di�erence for the i
th
ow (and similarly

�j be the di�erence for the j
th
ow).

If we want to have proportional sharing for all bandwidth allocations (say

ri

rj
= K), we would then need

c3r
�i
i = c3r

�j

j = c3(Kri)
�j : (6.22)

On simplifying this condition we get the required relationship between �i and �j

166

as

�i

�j
=
log(K) + log(ri)

log(ri)
(6.23)

This shows that the relationship between the window adjustment exponents of

ow i and
ow j is dependent on the exact allocation of the rates (and thus on

the state on the remaining
ows). Accordingly, it is not possible to provide for

a weighted sharing framework by simply adjusting the exponents of the window-

based TCP congestion control (at least when the marking probabilities do not

distinguish between
ows).

On the other hand, providing di�erent coe�cients of the window adjustment

scheme, or more speci�cally di�erent ratios c1

c2
, for the di�erent sessions results

in the proportional service di�erentiation model. This assumes that each session

uses the same exponents in the window adjustment procedure. To observe this,

consider as before
ows i and j sharing the same route (hence having the same

marking probabilities) and having their c1

c2
ratios given by ci3 and cj3 respectively.

Now, if we assume as before that we want
rj

ri
= K, we can use the Kuhn-Tucker

condition (equations 6.21) to see that we need :

ci3r
���
i = c

j

3r
���
j = c

j

3(Kri)
���

(6.24)

which translates into the following relationship for c3s :

ci3

c
j

3

= K��� (6.25)

The above expression shows that an appropriate modi�cation of either the constant

in incr(:) or decr(:) can be used to ensure a �xed ratio of bandwidth sharing among

167

the di�erent
ows on a path. Accordingly, a larger priority
ow can be assigned

a more aggressive increase in the transmission rate; it appears desirable to keep

the rate decrease algorithm a constant (all c2 identical) to ensure a universally

applicable response to router marking during congestion. This is indeed the theory

behind the operation of MulTCP [41]. Also, as the above analysis shows, the

larger the value of � � � in the window adjustment procedure, the wider the

disparity among the coe�cient ratios (ci3 and cj3) required to achieve the required

proportionality of sharing. Since additional considerations, such as convergence

rates, may not allow wide discrepancies among the coe�cients of di�erent
ows,

it appears likely that, under the current TCP adaptation scheme (� � � = �2),

only a limited range of proportionality (e.g. 2� 10) may be practically realizable

using this approach.

6.1.5 Rate Sensitivity and Probability Variation

We can also make a further observation on the sensitivity of the rates obtained

to variations in the link cost functions. Since the Kuhn-Tucker conditions for the

`generalized TCP process' (with the modi�cations for incorporating the round-trip

delay in the window update scheme), represented by equations (6.19) and (6.20),

results in the optimality condition

c3r
���
s

=
LX
l=1

Asl � log(1� pl) (6.26)

168

we can see how the allocated rate would vary with minor changes in the marking

probabilities pl. Assume for instance a network condition where only the ith link

along the path of rs is bottlenecked. The summation in the RHS of equation (6.26)

is then closely approximated by �log(1�pi). In such a case, we can easily see that

drs

rs
=

�1
c3 � (� � �)

dpi

(1� pi) � �log(1� pi)
(6.27)

The above equation shows how a change in the marking probability at the

bottleneck link a�ects the rate allocated to a particular
ow. We can see that the

sensitivity of the obtained rate is inversely proportional to the di�erence � = ���.

For example, under conventional TCP (� = 2), a doubling of the pi would result

only in a reduction of the rate by about 70%; on the other hand, under `additive-

increase multiplicative decrease' (� = 1), a similar doubling of the marking proba-

bility would result in a rate reduction by 50%. We shall later motivate the design

of a marking probability function that increases exponentially with the bu�er oc-

cupancy. Since such a function exhibits a rapid increase in the marking probability

for small changes in the bu�er occupancy, it again appears wiser to preserve the

SAIMD model (rather than the AIMD model) to prevent rapid
uctuations in the

transmission rates.

6.2 Design of Marking Probabilities in ECN Routers

While modifying the TCP window adaptation protocol in response to ECN-based

feedback, it is also important to study and design the marking function employed in

169

ECN-capable Internet routers. In particular, we are interested in determining the

preferred mechanisms for determining the ECN marking probabilities in a router

port where the marking probability depends on the bu�er occupancy only. Since

we have seen that the marking probability is really related to the tra�c load on

a speci�c link, we clearly have to relate the bu�er occupancy to some measure of

the tra�c load on the outgoing link.

Proposition 6.3 The marking probabilities in an ECN-capable router should be an

exponential function of the bu�er occupancy.

The optimization framework and the ECN paradigm presented in equations (6.17)

show that we can identify a logarithmic function of the marking probabilities

�log(1 � pl(cl)) as the derivative of the link cost functions in the optimization

framework. Thus, as per the expression (6.21), the marking function can be seen

to be given by

pl(cl) = 1� e�g
0
l
(cl); (6.28)

which completes the proof of the above proposition. }

A key question now naturally arises as to how the cost function gl(cl) can

be characterized and its derivative computed. Sophisticated algorithms for deter-

mining the marking probability would possibly estimate the packet arrival rate

over a moderately large interval (possibly O(100msec)) and then compute the of

the speci�ed cost function. We believe that it is possible to achieve fairly robust

performance with a much simpler algorithm (similar to RED [1]) which bases its

170

marking probability on the queue size itself. While the precise form of g0
l
(:) (and

thus the true exponent in the equation for the marking function) is yet to be de-

termined and will indeed depend on the speci�c form of the link cost function and

the tra�c arrival process, equation (6.28) provides the �rst proof that the marking

probabilities (and, by an analogous argument, the packet dropping probabilities in

RED) should be an exponential function of the bu�er occupancy.

6.2.1 Marking Function under Poisson Arrival Assumption

As one possible approach for determining the shape and nature of this drop proba-

bility, we assume that each router considers the packet arrivals for a speci�c output

bu�er as a manifestation of a Poisson tra�c stream of unknown load � (normal-

ized by the link capacity to a maximum of 1). We also use the average delay, D

(including queuing and transmission), to represent the link cost function gl(cl) i.e.,

gl(cl) = gl(�) = D(�)

In the ensuing analysis, we focus on the lth link and hence, drop the subscript l

for notational convenience.

Let us assume that the capacity of the link under consideration is C bits/sec

and that the mean size of packets using the link is S bits. (We shall later see

that a precise estimate for S is not really required for our dropping function.)

Accordingly, the mean service time of a packet bu�ered in that queue, which we

denote by 1
�
, is given by 1

�
= S

C
sec; as per the M/M/1 model, we assume, for now,

171

that the packet sizes are exponentially distributed. For mathematical rigor, we

adopt the convention that a packet currently under service (being transmitted by

the router port) is considered to contribute to the instantaneous bu�er occupancy.

Since our packets are bu�ered in a single queue and serviced in FIFO order, the

packet service process can be modeled by a M=M=1 system (we assume that the

bu�er size is in�nitely large), leading to an average bu�er occupancy in packets

(equal to the number of packets in the system) given by

Navg =
�

1� �
: (6.29)

We relate the actual observed bu�er occupancy (the true instantaneous bu�er

occupancy) Bobs to the corresponding average number of packets in the bu�er

system through the relationship Bobs = Navg � S. Using standard M/M/1 theory,

we then know that the average delay per customer is given, using Little's Theorem

[43], by the expression

Davg =
1

�(1� �)
(6.30)

Since we use this average delay as the cost function for our link, we see that:

D(�) =
�

(1� �)
; (6.31)

where � = S

C
is a constant based on the link capacity.

The derivative of the link cost function, g0(�), is thus given by:

g0(�) = D0(�) =
�

(1� �)2
: (6.32)

172

All that remains to be done now is to relate � to the instantaneous occupancy of

the queue. This can be done by noting that from equation (6.29) we have

� =
Navg

Navg+1

: (6.33)

By plugging Navg = Bobs

S
into the above relationship and substituting for � in

equation (6.32), we get the relationship between g0(�) and Bobs as :

g0(�) =
�

(1� Navg

Navg+1
)2

= �(
Bobs

S
+ 1)2 (6.34)

When this expression is substituted into equation (6.28), we see that the marking

probability is given as :

p = 1� e��(
Bobs
S

+1)2 (6.35)

The above equation shows that, under the assumption of Poisson tra�c arrivals

at the individual queues and exponentially distributed packet sizes, the router

marking probabilities should be an exponential function with an exponent that is

a quadratic function of the queue occupancy. For the purposes of implementation,

we can either specify the mean packet size S and use that to convert the queue

occupancy (in bits) into an equivalent number of packets or simply keep track of

the number of packets queued and use that directly. Several other practical con-

siderations and approximations can be applied to simplify the marking function.

Direct application of equation (6.35) would imply that packets would have the

possibility of being marked even when the bu�er occupancy was very low. To pre-

vent possible under-utilization of link capacity in such a case, it appears useful to

173

specify a minimum mark threshold minth (similar to the minimum drop threshold

in RED): the marking probability would be 0 if the bu�er occupancy was below

this threshold. Also, since under congestion, Bobs � S, we can closely approxi-

mate the function D0(�) by the expression D0(�) = �B2
obs
, where � = 1

C�S can be

considered to be an arbitrary scaling constant. Note that under this assumption,

we do not need an explicit knowledge of the mean packet size. Furthermore, the

expression for � shows that faster links (large C) have a smaller scaling constant

(smaller �) than slower links; this is natural since we would want to mark more

aggressively for slower links where even moderate bu�er occupancies can lead to

signi�cant end-to-end delays.

The above analysis is obviously idealized since it assumes an in�nite bu�er size

and ignores the possibility of bu�er over
ows. While the analytical model can

be extended by laborious mathematical manipulations to consider such practical

limitations, such e�orts are unlikely to shed any useful insight in the practical

design of ECN marking functions. As a practical suggestion, the following marking

function (as a function of the bu�er occupancy Q) appears to be a reasonable

candidate:

p(Q) = 0 if Q < minth (6.36)

= 1� e��Q
2

if minth � Q: (6.37)

where � is a scaling constant. Determining practically useful values for � (through

experimental and simulation-based studies) is left as an interesting problem for

174

future research.

Although the above analysis was presented for a Poisson arrival process and

exponential packet sizes, analogous derivations may be carried out for other pro-

cesses with di�erent arrival statistics and di�erent packet size distributions. For

example, if the packets are deterministically sized (as in an ATM cell-based net-

work), the delay for a load of � is given by M=D=1 analysis and can be seen to

be

D =
1

�

2� �

2 � (1� �)
:

Thus, g0(�) in this case can be seen to be (in contrast to equation (6.32) given by

D0(rho) =
1

2 � � � (1� �)
2 (6.38)

We can thus see that the marking function in this case again has a quadratic

exponent in the argument of the exponential term, with an additional factor of

0:5. In fact, we can show that, under the assumption of Poisson arrivals, the

marking function is always given by 1� e��Q
2

, independent of the distribution of

the packet sizes. We can thus see the applicability of the bu�er occupancy function

given by equation (6.37) for a wide variety of tra�c arrival and service statistics.

Note that our speci�cation of the marking function does not involve any explicit

or implicit dependence on either � or � (the exponents of the window adjustment

process) or on N , the number of elastic
ows sharing the speci�c link. This is

of course in contrast to the formulation in [5] where it was mentioned that pmark

should be proportional to N���, essentially to provide a bu�er occupancy that is

175

relatively independent of the number of connections. While that observation cer-

tainly holds when a single bottleneck queue is present on a path, such a mechanism

does not directly translate to any well-de�ned fairness criterion in a multi-hop gen-

eral network where multiple bottlenecks might be present for a speci�c
ow (and

di�erent
ows might have di�erent bottleneck nodes). On the other hand, adapt-

ing the marking probability based on the number of active
ows (as in SRED [19])

is an interesting approach to stablizing the queue occupancy. While we do not

investigate such possibilities in this chapter, we should point out that our mark-

ing function can certainly be enhanced to incorporate such modi�cations. As a

possible example, we can make � in equation (6.37) a function of N (� increases

with N) rather than a constant to achieve behavior similar to that of SRED. In-

corporating such enhancements in a generalized ECN algorithm and evaluating

their performance over multi-hop links remains another promising area for future

research.

6.3 Summary

In this chapter, we have analyzed the interaction between ECN-based congestion

feedback and generalized TCP
ow control as a special case of an optimization

of a network cost function. We identi�ed the relationship between the window

adjustment parameters and the fairness objectives achieved by a distributed
ow

control among multiple TCP connections. In particular, we showed how modifying

176

the current congestion avoidance paradigm of TCP, to incorporate an estimate of

the round-trip time in the window increase phase, achieves the minimum potential

delay fairness objective.

The framework also helped us to relate the marking probability in individual

router queues to the derivative of the cost associated with congestion on the out-

going link. The relation helped us to establish why the marking probability should,

in general, be an exponentially increasing function of the bu�er occupancy. By

assuming a Poisson process for packets arrivals at each bu�er, and by relating the

instantaneous bu�er occupancy to the average tra�c load, we were able to derive

the shape of the marking function, when the average packet delay is chosen as the

link cost.

While the analysis in this chapter presents a framework for analyzing conges-

tion control algorithms, signi�cant opportunities for research exist in determining

practical parameter values for ECN-aware Internet routers.

177

Chapter 7

Conclusions

In this dissertation, we have used mathematical techniques for analyzing and pre-

dicting the behavior of generalized TCP congestion avoidance when subject to

congestion indication through either random packet dropping or random packet

marking algorithms.

We developed an analytical-cum-numerical technique for obtaining the TCP

window distribution when the packet dropping (marking) probability is not con-

stant, but state-dependent (a function of the window size). The technique uses a

non-uniform time rescaling technique to derive an associated process in subjective

time, where the congestion events are proved to be a realization of a constant-

rate Poisson process. We further prove the stability and rapid convergence of our

numerical technique. The technique is subsequently generalized to provide the

window distribution of a process performing generalized TCP congestion control,

under which the window is increased by c1W
� in the absence of congestion and

decreased by c2W
� in the presence of congestion. We also use the analytical tech-

nique to provide a very accurate estimate of the window distribution when a TCP

178

ow interacts with random packet dropping queues, such as RED and ERD.

We next developed a �xed-point based iterative solution for predicting the

mean TCP window sizes (and their throughputs) and the queue occupancy, when

multiple TCP
ows (with di�erent segment sizes and round-trip times) are bu�ered

in a random dropping (or marking) queue, such as RED. Simulations establish

the accuracy of our solution; by combining this mean-value analysis with earlier

work, we are also able to predict the window distributions of the TCP
ows with

reasonable accuracy.

Based on our studies of random dropping queues, we established the existence of

negative correlation among the TCP windows and explained why this `out-of-phase'

behavior is caused by the closed-loop TCP adaptation scheme. We established

why the use of memory, in the exponentially-weighted moving average process

suggested in RED, for determining the queue occupancy leads to increased TCP

synchronization (lower negative correlation) and hence, increases the variability

in the queue occupancy. We also showed how specifying a minimum separation

between consecutive packet drops (use of `drop-biasing') increases the negative

correlation signi�cantly and leads to a smoother variation of the queue occupancy.

Reducing the queue variability leads to a signi�cant reduction in the packet jitter

experienced by constituent
ows.

The possibility of altering TCP's current congestion avoidance to avail of the

bene�ts of Explicit Congestion Noti�cation (ECN) based feedback was analyzed.

The analytical technique in chapter 3 was extended to the case of TCP
ows

179

performing generalized congestion avoidance and subject to a minimum rate guar-

antee as per the Assured Service model. The analysis established why an `additive-

increase multiplicative-decrease' (AIMD) algorithm leads to a paradigm for sharing

of excess bandwidth that is closer to the proportional bandwidth sharing model.

Based on studies of the window distribution as a function of the generalized control

parameters, we established why providing a smaller � (a less drastic decrease in

the window on detecting congestion) is the single-most critical improvement to the

current congestion avoidance algorithm.

We have also provided a rigorous analytical framework that interprets conges-

tion control as an iterative algorithm for minimizing global network cost objectives.

We showed the relation between the interaction of TCP congestion control with

randomized congestion feedback measures (such as ECN and RED), and the solu-

tion of the global optimization problem. In particular, we proved that the station-

ary rates obtained through a minor modi�cation of the current TCP congestion

avoidance algorithm achieves the minimum potential delay fairness objective. Fi-

nally, we showed how the marking function in a bu�er is exponentially related

to the derivative of the congestion cost associated with the outgoing link. Using

this relation, we have showed that, under the assumption of Poisson arrivals on a

link, using the average total delay (bu�ering + transmission) as the link congestion

measure leads to a marking (dropping) function given by: f(Q) = 1�e��Q2

, where

Q is the bu�er occupancy and � is a constant.

180

7.1 Future Research Directions

Our investigations and results throw open several interesting issues for future re-

search.

Our results enable us to determine the window distribution (and indirectly the

distribution of the short-term transmission rates) of generalized TCP congestion

avoidance as a function of the dropping (marking) probability for persistent TCP

tra�c. It would be interesting to extend this technique to incorporate the TCP

transients (such as the slow-start phase) in the analysis and thereby determine the

window distribution as a function of both the transferred �le sizes and the drop

probability. Such a determination would provide us a model of the behavior of

TCP-controlled adaptive tra�c for applications such as Web-based �le transfers,

where the sizes of the transferred �les can show appreciable variance.

We have also established techniques to compute the mean value of the window

sizes and the queue occupancies when multiple TCP
ows interact with a single

bottleneck bu�er. It appears possible to extend such �xed-point techniques to

consider a network of queues and derive the mean window sizes, the mean queue

occupancies and the average drop probabilities in this case. Using hierarchical

techniques, such as multi-grid algorithms, to derive such �xed-point solutions could

provide us very-fast approximation algorithms to determine network performance

with such closed-loop adaptive tra�c, without resorting to expensive simulation

studies. Another promising possibility is to use the analytically obtained distri-

181

bution of the window sizes to specify parametric models for the behavior of TCP

tra�c. Such parametric models could be used to provide more realistic models for

`background adaptive tra�c' in large-scale simulations.

While our analysis has established the theory behind the determination of the

shapes of marking (dropping) functions in Internet queues, we have not provided

practical speci�cations for the arbitrary constants in the marking (dropping) al-

gorithms. Extensive studies for typical network loads and topologies (including

satellite and low bit-rate links) appear to be required before the optimal parame-

ter sets can be determined for di�erent scenarios. It would be necessary to use such

simulation-based studies to establish the e�ectiveness of randomized marking as a

strategy for providing end-to-end congestion control, at least for adaptive tra�c.

Finally, our study of randomized congestion feedback mechanisms considered

queues where the marking function is dependent on the queue occupancy alone.

More sophisticated algorithms, such as SRED and BLUE, which adapt the mark-

ing probabilities to changes in the estimate of the number of
ows (or the o�ered

load) have been recently proposed and shown to o�er better functionality over

a wider range of operating conditions. Integrating our suggestions on the shape

of the marking function (and well as our recommendations on the use of average

queue occupancies and drop-biasing strategies) with such algorithms appears to

provide a very promising research topic of immediate interest to the Internet com-

munity. On a more abstract note, modifying such randomized congestion control

algorithms to provide e�ective safeguards to adaptive
ows against non-adaptive

182

(or misbehaving) tra�c continues to remain one of the most signi�cant unresolved

problems in Internet congestion control.

183

Appendix

A Proof of Convergence of H(x)

To see that H(x) in equation (2.22) indeed converges to a limit, let us de�ne

C(x) by C(x) =
R1
x
J(u)du. Now, assume that there exists a � > 1, such that

A(x) � x

�
8 x (i.e., a(x) � �x). This is a stronger requirement than A(x) < x; in

the case of the TCP model, � = 2. Now since q(u) is a non-decreasing function of

u, Z
a(u)

u

q(�)d� �
Z

�u

u

q(�)d� � �u � u

�u

Z
�u

0
q(�)d�

so that Z
a(u)

u

q(�)d� � � � 1

�

Z
�u

0
q(�)d� (A.1)

Hence, C(x) � �
R1
x
q(u)e�
Q(�u) du where
 = ��1

�
. Thus,

C(x) � �
Z 1

x

q(�u)e�
Q(�u) du (A.2)

� �(1�
)
Z 1

�x

q(u)e�
Q(u) du (A.3)

� �(1�
)

e�
Q(�x) (A.4)

This shows that C(x) is upper bounded by C(0). (Note that for the case of TCP,

� = 2 and � = 1, so that C(0) = 1; in other cases, C(0) is some �nite value.) Now,

184

consider a random variable with density f(x) = J(x)

C(0)
and let X1; Xk; : : : ; Xk be k

i.i.d realizations of this random variable and let X(1); X(2); : : : ; X(k) be the order

statistic. Then,

k�foldz }| {Z
x1>x

: : :
Z
xk>a(xk�1)

J(x1) : : : J(xk)dxk:::dx1 =

fC(x)gk
k!

�

Prob(X(j) > a(X(j�1)) for j�(2; : : : ; k)jXj > x; 8 j): (A.5)

Hence, if we denote the sum of the �rst l terms in the RHS of equation (2.22) as

Hl(x), we see that

kH(x)�Hl(x)k � �H
1X
j=l

C(x)j

j!
; (A.6)

which proves that H(x) is indeed convergent.

B Di�erences between ERD and RED

In this appendix, we discuss the di�erences between the Early Random Drop

(ERD) and the Random Early Detection (RED) algorithms. Noting these di�er-

ences is important in understanding the applicability of our model for randomized

congestion feedback to such algorithms. The important di�erences are:

� RED operates on the average (and not the instantaneous) queue length. The

drop probability, p, is thus a function of the weighted average (Qavg) of the

queue occupancy i.e., p is a function not just ofQn but of (Qn; Qn�1; Qn�2; : : :)

185

with an exponential decay. Qavg closely mirrors the instantaneous occupancy

only if the queue varies slowly.

� To prevent large inter-drop durations, RED increases the drop probability

for every accepted packet. (This property, which we call drop biasing, is

achieved by using a variable, cnt, which increases with every successive ac-

cepted packet; the true dropping probability is then given by p(Q)

1� cnt:p(Q)
.

This results in an inter-drop period that is uniformly distributed between

(1; : : : ; b 1
p(Q)

c), as opposed to the independent drop model in ERD which

results in geometrically distributed inter-drop periods.

� Some RED con�gurations have a sharp discontinuity in drop probability:

when the average queue exceeds maxth, p(Q) becomes 1 so that all incoming

packets are deterministically dropped. This contrasts with our assumption

that random drop occurs throughout the entire range of the bu�er occupancy.

Our analysis applies to RED queues only if the TCP
ows almost never builds

up queues that exceed maxth.

C Proof that f(Q) is convex

We prove here that the function f(Q) de�ned in equation (3.16) is convex. First,

some notation: let Mi

ci
be denoted by bi and C:RTTi be denoted by di. The function

g(Q) is then given by g(Q) = (
P

i

bi

Q+di
)�1. On di�erentiating this function we

186

obtain

g0(Q) = g(Q)2
X
i

bi

(Q + di)2
(C.7)

Since from above, g0(Q) > 0 8Q, g(Q) is an increasing function of Q. Di�erenti-

ating again, we have the second derivative given by

g00(Q) = 2g(Q)g0(Q)
X
i

bi

(Q+ di)2

�2(g(Q))2
X
i

bi

(Q+ di)3

or on rearranging

g00(Q) = 2(g(Q))3f(
X
i

bi

(Q+ di)2
)2

�(
X
i

bi

(Q+ di)3
)(
X
i

bi

Q + di
)g (C.8)

We now prove that the term in the curly braces in equation (C.8) is negative. To

see this, let � =
P

i bi and let ai = (Q + di) 8 i � f1; 2; : : : ; Ng (note that ai is

always positive). Consider a random variable A which takes on the value ai with

probability �i =
bi

�
. Then, the second derivative can also be written (with E[]

denoting the expectation operation) as

g00(Q) = 2�2(g(Q))3fE2[A2] � E[A3]E[A]g (C.9)

Now, we know if A is a random variable that has Prob(A > 0) = 1, then logE[Am]

is convex in m 8m � 0. Thus, we have logE[A2] � logE[A]+logE[A3]

2
, so that

E2[A2] � E[A3]E[A] � 0. Applying this result to expression (C.9), we see that

g00(Q) is negative and hence, g(Q) is a concave function of Q.

187

As the term
q

2
p(Q)

is easily seen to be convex (its second derivative is positive),

we can conclude that f(Q) is a convex function of Q.

188

BIBLIOGRAPHY

[1] S Floyd and V Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, August 1993.

[2] K K Ramakrishnan and S Floyd. A proposal to add explicit congestion noti-

�cation (ECN) to IP. RFC 2481, January 1999.

[3] B Braden, D Clark, et al. Recommendations on queue management and

congestion avoidance on the internet. RFC 2309.

[4] V Jacobson and M Karels. Congestion avoidance and control. In Proceedings

of SIGCOMM 1988, 1996.

[5] T Ott. ECN protocols and the TCP paradigm.

ftp://ftp.telcordia.com/pub/tjo/ECN.ps.

[6] D Comer and D L Stevens. Internetworking with TCP/IP: Principles, Proto-

cols and Architectures, volume two. Prentice Hall, third edition, 1995.

[7] V Jacobson. Modi�ed TCP congestion avoidance algorithm. end2end-interest

mailing list, April 1990.

189

[8] L Brakmo and L Peterson. TCP vegas: End to end congestion avoidance on

a global internet. IEEE Journal on Selected Areas in Communication, 13,

1995.

[9] Tcp selective acknowledgement options. RFC 2018, April 1996.

[10] M Mathis, J Semke, J Mahdavi, and T Ott. The macroscopic behavior of the

tcp congestion avoidance algorithm. Computer Communications Review, July

1997.

[11] S Floyd. Connections with multiple congested gateways in packet-switched

networks part 1: One-way tra�c. Computer Communication Review, 21,

October 1991.

[12] T Lakshman and U Madhow. The performance of networks with high

bandwidth-delay products and random loss. IEEE/ACM Transactions on

Networking, June 1997.

[13] T V Lakshman, U Madhow, and B Suter. Window-based error recovery and

ow control with a slow acknowledgement channel: a study of TCP/IP per-

formance. In Proceedings of INFOCOM '97, April 1997.

[14] T Ott, M Matthis, and J Kemperman. The stationary behavior of ideal-

ized congestion avoidance. ftp://ftp.telcordia.com/pub/tjo/TCPwindow.ps,

August 1996.

190

[15] J Padhye, V Firoiu, D Towsley, and J Kurose. Modeling TCP throughput: a

simple model and its empirical validation. In Proceedings of SIGCOMM '98,

1998.

[16] A Kumar. Comparative performance analysis of versions of TCP in a local

network with a lossy link. IEEE/ACM Transactions on Networking, August

1998.

[17] S Floyd and V Jacobson. On tra�c phase e�ects in packet-switched gateways.

Internetworking Research and Experience, September 1992.

[18] V Rosolen, O Bonaventure, and G Leduc. A RED discard strategy for ATM

networks and its performance evaluation with TCP/IP tra�c. ACM Computer

Communication Review, July 1999.

[19] T Ott, S Lakshman, and L Wong. SRED: Stablized RED. In Proceedings of

INFOCOM '99, March 1999.

[20] W Feng, D Kandlur, D Saha, and K Shin. BLUE: A new class of active queue

management algorithms. Technical Report UM CSE-TR-387-99, University

of Michigan, Ann Arbor, 1999.

[21] K K Ramakrishnan and R Jain. A binary feedback scheme for congestion

avoidance in computer networks. ACM Transactions on Computer Systems,

8, May 1990.

191

[22] D M Chiu and R Jain. Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks. Computer Networks and ISDN

Systems, 17, 1989.

[23] S J Golestani and S Bhattacharya. A class of end-to-end congestion control

algorithms for the Internet. In Proceedings of ICNP, 1998.

[24] F P Kelly, A K Maulloo, and D K H Tan. Rate control for communication

networks: Shadow prices, proportional fairness and stability. Journal of the

Operational Research Society, 1998.

[25] R J Gibbens and F Kelly. Resource pricing and the evolution of congestion

control. Automatica, 35, 1999.

[26] D Lapsley and S Low. Random early marking for Internet congestion control.

In Proceedings of IEEE GLOBECOM '99, December 1999.

[27] S Low and D Lapsley. An optimization approach to reactive
ow control: I:

Algorithm and convergence. www.ee.mu.oz.au/pgrad/lapsley/odf.html, 1998.

[28] D Clark and W Fang. Explicit allocation of best e�ort packet delivery service.

IEEE/ACM Transactions on Networking, August 1998.

[29] The ns-2 network simulator. http://www-mash.CS.Berkeley.EDU/ns.

[30] E Hashem. Analysis of random drop for gateway congestion control. Technical

Report MIT-LCS-TR-506, MIT, 1990.

192

[31] A Misra and T Ott. The window distribution of idealized TCP congestion

avoidance with variable packet loss. In Proceedings of INFOCOM '99, March

1999.

[32] A Misra, T Ott, and J Baras. The window distribution of multiple TCPs with

random loss queues. In Proceedings of GLOBECOM '99, December 1999.

[33] M Barford and M Crovella. Generating representative workloads for network

and server performance evaluation. Technical Report BU-CS-97-006, Bosotn

University, 1997.

[34] J Fielding, J Gettys, et al. Hypertext transfer protocol- HTTP/1.1. RFC

2616.

[35] H Schulzrinne, S Casner, R Frederick, and V Jacobson. RTP: A transport

protocol for real-time applications. RFC 1889, 1996.

[36] S Blake, D Black, et al. An architecture for di�erentiated services. RFC 2475,

December 1998.

[37] J Heinanen, F Baker, W Weiss, and J Wroclawski. Assured forwarding PHB.

RFC 2597, June 1999.

[38] M Schwartz. Broadband Integrated Networks. Prentice Hall, 1997.

[39] Z Wang. USD: Scalable bandwidth allocation for the Internet. In Proceedings

of HPN'98,, 1998.

193

[40] A Misra, J Baras, and T Ott. Generalized ECN-aware TCP and assured

services framework. Under submission, 2000.

[41] J Crowcroft and P Oechslin. Di�erentiated end-to-end internet services using

a weighted proportional fair-sharing TCP. ACM Computer Communication

Review, 1998.

[42] L Massoulie and J Roberts. Bandwidth sharing: Objectives and algorithms.

In Proceedings of INFOCOM '98, 1998.

[43] D Bertsekas and R Gallager. Data Networks. Prentice Hall, second edition,

1992.

[44] A Parekh and R Gallager. A generalized processor sharing approach to
ow

control in integrated services networks: The single-node case. IEEE/ACM

Transactions on Networking, June 1993.

[45] A Misra, T Ott, and J Baras. Using `drop-biasing' to stabilize the occupancy

of random-drop queues with TCP tra�c. submitted to ICCS 2000.

[46] V A Malyshev. Classi�cation of two-dimensional random walks and almost

linear semi-martingales. Soviet Mathematics, 1972.

194

