
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

MASTER’S THESIS

New Neural Network Design for Approximate Dynamic
Programming and Optimal Multiuser Detection

by Xiaozhong Pang
Advisor: John S. Baras

CSHCN M.S. 98-1
(ISR M.S. 98-1)

ABSTRACT

Title of Thesis: NEW NEURAL NETWORK DESIGN FOR

APPROXIMATE DYNAMIC PROGRAMMING

AND OPTIMAL MULTIUSER DETECTION

Degree candidate: Xiaozhong Pang

Degree and year: Master of Science, 1997

Thesis directed by: Professor John S. Baras

Department of Electrical Engineering and

Institute for Systems Research

In this thesis we demonstrate that a new neural network design can be used to

solve a class of di�cult function approximation problems which are crucial to the

�eld of approximate dynamic programming(ADP). Although conventional neu-

ral networks have been proven to approximate smooth functions very well, the

use of ADP for problems of intelligent control or planning requires the approxi-

mation of functions which are not so smooth. As an example, this thesis studies

the problem of approximating the J function of dynamic programming applied

to the task of navigating mazes, in general, without the need to learn each indi-

vidual maze. Conventional neural networks, like multi-layer perceptrons(MLPs),

cannot learn this task. But a new type of neural networks, simultaneous recur-

rent networks(SRNs), can accomplish the required learning as demonstrated by

successful initial tests. In this thesis we investigate also the ability of recurrent

neural networks to approximate MLPs and vice versa. Moreover, we present a

comparison between using SRNs and MLPs to implement the optimal CDMA

multiuser detector (OMD). This example is intended to demonstrate that SRNs

can provide fast suboptimal solutions to hard combinatorial optimization prob-

lems, and achieve better bit-error-rate (BER) performance than MLPs.

NEW NEURAL NETWORK DESIGN FOR

APPROXIMATE DYNAMIC PROGRAMMING

AND OPTIMAL MULTIUSER DETECTION

by

Xiaozhong Pang

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial ful�llment

of the requirements for the degree of
Master of Science

1997

Advisory Committee:

Professor John S. Baras, Chairman/Advisor
Professor Carlos A. Berenstein
Professor Leandros Tassiulas

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor John S. Baras, my

advisor, for his support to my graduate study and research at the Institute for

Systems Research in the University of Maryland at College Park. The work for

this thesis could not have been �nished without Professor Baras' supervision.

I am very grateful to Dr. Paul J. Werbos for his help, suggestions and

encouragement while I was doing the research on this thesis.

I would equally thank Professor Carlos A. Berenstein and Professor Leandros

Tassiulas for their support and valuable comments that led to generating the �nal

version of this thesis.

My thanks also go to Bernard A. Frankpitt and Wei Luo, with whom I

discussed some problems related to this thesis, and all the people who work in

the Systems Engineering and Integration Laboratory, where I �nished most of

my research work.

ii

The �nancial support provided by the National Science Foundation Engineer-

ing Research Centers Program Grant NSFD CDR 8803012 through the Institute

for Systems Research (ISR) and by NASA under contract NCC3-528 through the

Center for Satellite and Hybrid Communication Networks (CSHCN) are most

greatly appreciated.

Finally, and most importantly, I wish to thank Chengyin Ye, for his love,

help and understanding.

iii

TABLE OF CONTENTS

LIST OF FIGURES vii

1 Introduction 1

1.1 Goals/Objectives : 1

1.2 Background : 2

1.3 Summary and Organization of the Thesis : : : : : : : : : : : : : : 3

2 Motivation 8

2.1 What is ADP and J Function? : 10

2.2 Intelligent Control and Robust Control : : : : : : : : : : : : : : : 12

2.3 Importance of the SRN to ADP : : : : : : : : : : : : : : : : : : : 13

3 Alternative Forms of Recurrent Networks 15

3.1 Purpose : 15

3.2 Structure of Discrete-Time Recurrent Networks : : : : : : : : : : 17

3.3 Training of SRNs and TLRNs : 21

3.3.1 Backpropagation through time(BTT) : : : : : : : : : : : : 23

iv

3.3.2 Truncation for SRN : 27

3.3.3 Simultaneous Backpropagation : : : : : : : : : : : : : : : 30

3.3.4 Error Critic : 31

3.3.5 Forward Propagation : 32

4 Three Test Problems and Details on Architecture and Learning

Procedures 33

4.1 Net A/Net B : 33

4.2 The Maze Problem : 35

4.3 Details for the Net A/Net B Problem : : : : : : : : : : : : : : : : 38

4.4 Weight-sharing and Cellular Architecture : : : : : : : : : : : : : : 38

4.4.1 What is Weight-sharing? : : : : : : : : : : : : : : : : : : : 38

4.4.2 Lie Group Symmetry and Weight-sharing : : : : : : : : : : 39

4.4.3 How We implemented Weight-sharing : : : : : : : : : : : : 40

4.5 Adaptive Learning Rate : 43

4.6 An SRN receiver for OMD : 45

4.6.1 Multiuser Detection Schemes : : : : : : : : : : : : : : : : 46

4.6.2 Neural net receiver : 49

4.6.3 An SRN receiver : 52

5 Simulation Results and Conclusions 53

5.1 Results for the Net A/Net B Problem : : : : : : : : : : : : : : : : 53

5.2 Results for the Maze Problem : 56

5.3 Comparison of the performance of MUD using OMD, SRN and

MLP : 57

5.4 Conclusions : 61

v

A Appendix: The program of the maze problem using SRN trained

by BTT 64

vi

LIST OF FIGURES

1.1 What is supervised learning? : 1

3.1 Recurrent networks : 16

3.2 Time lagged recurrent network (TLRN) : : : : : : : : : : : : : : : 18

3.3 Simultaneous recurrent network (SRN) : : : : : : : : : : : : : : : 18

3.4 Time delayed neural network (TDNN) : : : : : : : : : : : : : : : 21

3.5 Types of SRN Training : 22

3.6 Error Critics : 23

3.7 Backpropagation through time(BTT) : : : : : : : : : : : : : : : : 24

3.8 BTT for TLRN : 26

3.9 BTT for SRN : 26

3.10 Truncation : 29

4.1 Net A/Net B : 34

4.2 Desired J function of a maze : 37

4.3 General Idea of the Cellular Network : : : : : : : : : : : : : : : : 41

4.4 Inputs, Outputs and Memory of Each Cell : : : : : : : : : : : : : 42

4.5 The general structure of multiuser detection(MUD) : : : : : : : : 47

4.6 A neural network receiver for multiuser demodulation : : : : : : : 49

vii

4.7 Hop�eld neural network : 50

5.1 The MLP learned the SRN : 54

5.2 The SRN learned the MLP : 54

5.3 The last 1000 trials of Figure 5.1 : : : : : : : : : : : : : : : : : : 55

5.4 The last 1000 trials of Figure 5.2 : : : : : : : : : : : : : : : : : : 55

5.5 J function as predicted by SRN-BTT(I) : : : : : : : : : : : : : : 56

5.6 J function as predicted by SRN-Truncation(I) : : : : : : : : : : : 57

5.7 Error curve of itJ function as predicted by SRN-BTT(II) : : : : : 58

5.8 Error curve of itJ function as predicted by SRN-BTT(III) : : : : 58

5.9 Error curve of J function as predicted by SRN-Truncation(II) : : 59

5.10 Error curve of J function as predicted by SRN-Truncation(III) : : 59

5.11 Error curve of J function as predicted by MLP(I) : : : : : : : : : 60

5.12 Error curve of J function as predicted by MLP(II) : : : : : : : : : 60

5.13 Bit error rate versus E1/N for 5-user channel with the SNR of the

other users �xed at 8dB, where solid line is the OMD, the dash

line is the SRN and the dash-dot line is the MLP. : : : : : : : : : 61

5.14 Bit error rate versus Ei/E1 for 5-user channel with the SNR of

user 1 �xed at 8dB, where the solid line is OMD, the dash-dot

line is the SRN and the dotted line is the MLP. : : : : : : : : : : 62

viii

CHAPTER 1

Introduction

1.1 Goals/Objectives

This thesis has three goals:

First, to demonstrate the value of a new class of neural networks which

provide a crucial component needed for brain-like intelligent control systems for

the future.

Second, to demonstrate that this new kind of neural networks provide better

function approximate ability for use in more ordinary kinds of neural network

applications for supervised learning.

Third, to demonstrate some practical implementation techniques necessary

to make this kind of networks actually work in practice.

X(t) Y(t)Supervised Learning

System

Actual Y(t)

^

Figure 1.1: What is supervised learning?

1

1.2 Background

At present, in the neural network �eld, perhaps 90% of neural network appli-

cations involve the use of neural networks designed to perform a task called

supervised learning (Figure 1.1). Supervised learning is the task of learning a

nonlinear function which may have several inputs and several outputs based on

some examples of the function. For example, in character recognition, the inputs

may be an array of pixels seen from a camera. The desired outputs of the net-

work may be a classi�cation of characters being seen. Another example would

be intelligent sensing in the chemical industry where the inputs might be spec-

tral data from observing a batch of chemicals, and the desired outputs would be

the concentrations of the di�erent chemicals in the batch. The purpose of this

application is to predict or estimate what is in the batch without the need for

expensive analytical tests.

The work in this thesis will focus totally on certain tasks in supervised learn-

ing. Even though existing neural networks can be used in supervised learning,

there can be performance problems depending on what kind of function the net-

work is trying to learn. Many people have proven many theorems which show

that neural networks, fuzzy logic, Taylor theories and other function approxima-

tions have a universal ability to approximate functions on the condition that the

functions have certain properties and that there is no limit on the complexity

of the approximation. In practice, many approximation schemes become useless

when there are many input variables because the required complexity grows at

an exponential rate.

For example, one way to approximate a function would be to construct a table

of the values of the function at certain points in the space of possible inputs.

2

Suppose there are 30 input variables and we consider 10 possible values of each

input. In that case, the table must have 1030 numbers in it. This is not useful

in practice for many reasons. Actually, however, many popular approximation

methods like radial basis functions (RBF) neural networks are similar in spirit

to a table of values.

In the �eld of supervised learning, Andrew Barron [30] proved several function

approximation theorems which are much more useful in practice. He has proven

that the most popular form of neural networks, the multi-layer perceptron(MLP),

can approximate any smooth function. Unlike the case with the linear basis

functions (like RBF and Taylor series), the complexity of the network does not

grow as rapidly as the number of input variables grows.

Unfortunately there are many practical applications where the functions to

be approximated are not smooth. In some cases, it is good enough just to add

extra layers to an MLP [1] or to use a generalized MLP [2]. However, there

are some di�cult problems which arise in �elds like intelligent control or image

processing or even stochastic search, where feed-forward networks do not appear

powerful enough.

1.3 Summary and Organization of the Thesis

The main goal of this thesis is to demonstrate the capability of a di�erent kind

of supervised learning system based on a kind of recurrent networks called si-

multaneous recurrent networks (SRNs). In the next chapter we explain why this

kind of improved supervised learning system will be very important to intelli-

gent control and to approximate dynamic programming. In e�ect, this work on

3

supervised learning, is the �rst step in a multi-step e�ort to build more brain-

like intelligent systems. The next step would be to apply the SRN to static

optimization problems, and then to integrate the SRNs into large systems for

ADP.

Even though intelligent control is the main motivation for this work, the

work may be useful for other areas as well. For example, in zip code recognition,

AT&T [3] has demonstrated that feed-forward networks can achieve a high level

of accuracy in classifying individual digits. However, AT&T and others still have

di�culty in segmenting the total zip codes into individual digits. Research on

human vision by von der Malsburg [4] and others has suggested that some kinds

of recurrency in neural networks are crucial to their abilities in image segmen-

tation and binocular vision. Furthermore, researchers in image processing like

Laveen Kanal [41] have showed that iterative relaxation algorithms are necessary

to achieve even moderate success in such image processing tasks. Conceptually

the SRN can learn an optimal iterative algorithm, but the MLP cannot represent

any iterative algorithms. In summary, though we are most interested in brain-

like intelligent control, the development of SRNs could lead to very important

applications in areas such as image processing in the future.

The network described in this thesis is unique in several respects. However, it

is certainly not the �rst serious use of a recurrent neural network. In Chapter 3

of this thesis we provide a review of the existing literature on recurrent networks.

We also describe the relationship between this new design and other designs in

the literature. Roughly speaking, the vast bulk of research in recurrent networks

has been academic research using designs based on ordinary di�erential equations

(ODE) to perform some tasks very di�erent from supervised learning | tasks

4

like clustering, associative memory and feature extraction. The simple Hebbian

learning methods[13] used for those tasks do not lead to the best performance

in supervised learning. Many engineers have used another type of recurrent

network , the time lagged recurrent network (TLRN), where the recurrence is

used to provide memory of past time periods for use in forecasting the future.

However, this type of recurrence cannot provide the iterative analysis capability

mentioned above. There are very few research reports about SRNs, a type of

recurrent network designed to minimize error and learn an optimal iterative

approximation to a function. This is certainly the �rst use of SRNs to learn a J

function from dynamic programming which will be explained in more detail in

Chapter 2. This may also be the �rst empirical demonstration of the need for

advanced training methods to permit SRNs to learn di�cult functions.

In Chapter 4 we explain in more detail the three test problems we have used

for the SRN and the MLP, as well as the details of the architecture and of the

learning procedure.

The �rst test problem was used mainly as an initial test of a simple form of

SRNs. In this problem, we tried to test the hypothesis that an SRN can always

learn to approximate a randomly chosen MLP, but not vice versa. Although

our results are consistent with that hypothesis, there is room for more extensive

work in the future, such as experiments with di�erent sizes of neural networks

and more complex statistical analysis.

The main test problem in this work was the problem of learning the J func-

tion value searching of dynamic programming. For a maze navigation problem,

many neural network researchers have written about neural networks which learn

an optimal policy of action for one particular maze [5]. This thesis addresses the

5

more di�cult problem of training a neural network to input a picture of a maze

and output the J function for this maze. When the J function is known, it is

a trivial local calculation to �nd the best direction of movement. This kind of

neural network should not require retraining whenever a new maze is encoun-

tered. Instead it should be able to look at the maze and immediately \see" the

optimal strategy. Training such a network is a very di�cult problem which has

never been solved in the past with any kind of neural network. Also it is typical

of the challenges one encounters in true intelligent control and planning. This

thesis identi�es a working solution to this problem for the �rst time. Now that

a system is working on a very simple form for this problem, it would be possible

in the future to perform many tests of the ability of this system to generalize its

success to many mazes.

In order to solve the maze problem, it was not su�cient to use an SRN.

There are many choices to make when implementing the general idea of SRNs

or MLPs. In Chapter 4 we describe also in detail how these choices were made

in this work. The most important choices were:

1. Both for the MLP and for the feed-forward core of the SRN we used the

generalized MLP design [2], which eliminates the need to decide on the number

of layers.

2. For the maze problem, we used a cellular or weight-sharing architecture

which exploits the spatial symmetry of the problem and reduces dramatically

the number of weights. In e�ect we solved the maze problem using only �ve

distinct neurons. There are interesting parallels between this network and the

hippocampus of the human brain.

3. For the maze problem, an adaptive learning rate (ALR) procedure was

6

used to prevent oscillation and ensure convergence.

4. Initial values for the weights and the initial input vector for the SRN were

chosen essentially at random, by hand. In the future, more systematic methods

are available. But this method was su�cient for success in the present case.

The third test problem is to use SRNs for implementing the optimum mul-

tiuser detector (OMD) in code division multiple access (CDMA). This is an

example to use SRNs for static optimization, and show that SRNs have better

functional approximate abilities than MLPs, as we have shown in the NetA/NetB

and maze problem. In this problem, we tried to use SRNs to approach the opti-

mal bit-error-rate (BER) performance while avoiding the NP-completeness that

characterizes the OMD computations, i.e. to reduce the computational complex-

ity.

Finally in Chapter 5 we discuss the simulation results in more detail, give

the conclusions of this thesis and mention some possibilities for future work.

7

CHAPTER 2

Motivation

In this chapter we will explain the signi�cance of this work. As discussed above,

the thesis shows how to use a new type of neural network in order to achieve

better function approximation than what is available from the types of neural

networks which are popular today. In this chapter we explain why better func-

tion approximation is important to approximate dynamic programming (ADP),

intelligent control and understanding of the brain. Image processing and other

applications have already been discussed in the Introduction. These three topics

| ADP, intelligent control and understanding of the brain | are all closely

related to each other and provide the original motivation for the work of this

thesis.

The purpose of this thesis is to make a core contribution to developing the

most powerful possible system for intelligent control.

In order to build the best intelligent control systems, we need to combine

the most suitable mathematics together with some understanding of natural

intelligence in the brain. There is currently strong research interest in intelligent

control world-wide. Some control systems which are called intelligent are actually

8

very quick and simple designs. There are many researchers who attempt to move

step by step to add intelligence into control, but a step-by-step approach may

not be enough by itself.

Sometimes, to achieve a complex and di�cult goal, it is necessary to have

a plan; thus some parts of the intelligent control community have developed a

more systematic vision or plan about how it could be possible to achieve real

intelligent control. First, one must think about the question of what is intelligent

control. Then, instead of trying to answer this question in one step, we try to

develop a plan to reach the design. Actually there are two questions:

1. How could we build an arti�cial system which replicates the main capa-

bilities of brain-like intelligence, somehow uni�ed together as they are uni�ed

together in the brain?

2. How can we understand what are the capabilities in the brain and how

they are organized in a functional engineering view? i.e. how are those circuits

in the human brain arranged to learn how to perform di�erent tasks?

It would be best to understand how the human brain works before building

an arti�cial system. However, at the present time, our understanding of the

brain is limited. But at least we know that local recurrence plays a critical role

in the higher parts of the human brain [6][7][8][4].

Another reason for using SRNs is that SRNs can be very useful in ADP

mathematically. Now we will discuss what ADP can accomplish for intelligent

control and understanding of the brain.

The remainder of this chapter will address three questions in order:

1. What is ADP?

2. What is the importance of ADP to intelligent control and understanding of

9

the brain?

3. What is the importance of SRNs to ADP?

2.1 What is ADP and J Function?

To explain what is ADP, let us consider the original Bellman equation[9]:

J(R(t)) = max
u(t)

(U(R(t); u(t))+ < J(R(t + 1)) >)=(1 + r)� U0 (2.1)

where r and U0 are constants that are used only in in�nite-time-horizon problems,

and where the angle brackets refer to expectation value. In this thesis we actually

use:

J(R(t)) = max
u(t)

(U(R(t); u(t))+ < J(R(t + 1)) >) (2.2)

since the maze problem does not involve an in�nite time-horizon.

Instead of solving for the value of J in every possible state, R(t), we can

use a function approximation method like neural networks to approximate the J

function. This is called approximate dynamic programming(ADP). This thesis

is not employing \true ADP" because in \true ADP" we do not know what the J

function is and must therefore use indirect methods to approximate it. However,

before we try to use SRNs as a component of an ADP system, it makes sense to

�rst test the ability of an SRN to approximate a J function, in principle.

Now we will try to explain what is the intuitive meaning of the Bellman equa-

tion (Equation(2.1)) and the J function according to the treatment of dynamic

programming given in [2].

10

To understand ADP, one must �rst review the basics of classical dynamic

programming, especially the versions developed by Howard [28] and Bertsekas

[41]. Classical dynamic programming is the only exact and e�cient method to

compute the optimal control policy over time, in a general nonlinear stochastic

environment. The only reason to approximate it is to reduce computational cost,

so as to make the method a�ordable (feasible) across a wide range of applications.

In dynamic programming, the user supplies a utility function which may take

the form U(R(t); u(t)) | where the vector R is a representation or estimate of

the state of the environment (i.e. the state vector) | and a stochastic model of

the plant or environment. Then \dynamic programming" (i.e. solution of the

Bellman equation) gives us back a secondary or strategic utility function J(R).

The basic theorem is that maximizing U(R(t); u(t))+ < J(R(t + 1)) > yields

the optimal strategy, the policy which will maximize the expected value of U

added up over all future time. Thus dynamic programming converts a di�cult

problem in optimizing over many time intervals into a straightforward problem in

short-term maximization. In classical dynamic programming, we �nd the exact

function J which exactly solves the Bellman equation. In ADP, we learn a kind

of \model" of the function J ; this \model" is called a \Critic" [9]. Alternatively,

some methods learn a model of the derivatives of J with respect to the variables

Ri ; these correspond to Lagrange multipliers, �i , and to the \price variables"

of microeconomic theory. Some methods learn a function related to J , as in the

Action-Dependent Adaptive Critic (ADAC) [29].

11

2.2 Intelligent Control and Robust Control

To understand the human brain scienti�cally, we must have some suitable math-

ematical concepts. Since the human brain makes decisions like a control system,

it is an example of an intelligent control system. Neuroscientists do not yet un-

derstand the general ability of the human brain to learn to perform new tasks and

solve new problems even though they have studied the brain for decades. Some

people compare the past research in this �eld to what would happen if we spent

years to study radios without knowing the mathematics of signal processing.

We �rst need some mathematical ideas of how it is possible for a computing

system to have this kind of capability based on distributed parallel computa-

tion. Then we must ask what are the most important abilities of the human

brain which unify all of its more speci�c abilities in speci�c tasks. It would be

seen that the most important ability of the brain is the ability to learn over

time how to make better decisions in order to better maximize the goals of the

organism. The natural way to imitate this capability in engineering systems is

to build systems which learn over time how to make decisions which maximize

some measure of success or utility over future time. In this context, dynamic

programming is important because it is the only exact and e�cient method for

maximizing utility over future time. In the general situation, where random

disturbances and nonlinearity are expected, ADP is important because it pro-

vides both the learning capability and the possibility of reducing computational

cost to an a�ordable level. For this reason, ADP is the only approach we have

available to imitate the learning ability of the brain.

The similarity between some ADP designs and the circuitry of the brain has

been discussed at length in [10] and [11]. For example, there is an important

12

structure in the brain called the limbic system which performs some kind of

evaluations or reinforcement functions, very similar to the functions of the neural

networks that must approximate the J function of dynamic programming. The

largest part of the limbic system, called the hippocampus, is known to possess

a higher degree of local recurrence [8].

In general, there are two ways to make classical controllers stable despite

great uncertainty about parameters of the plant to be controlled. For example,

in controlling a high speed aircraft, the location of the center of the gravity

is not known. The center of gravity is not known exactly because it depends

on the cargo of the air plane and the location of the passengers. One way to

account for such uncertainties is to use adaptive control methods. We can get

similar results, but more assurance of stability in most cases [16] by using related

neural network methods, such as adaptive critics with recurrent networks. It is

like adaptive control but more general. There is another approach called robust

control or H1 control, which tries to design a �xed controller which remains

stable over a large range in parameter space. Baras and Patel [31] have solved

the general problem ofH1 control for general partially observed nonlinear plants

with set valued dynamics and disturbances. They have shown that this problem

reduces to a problem in nonlinear, stochastic optimization. Adaptive dynamic

programming makes it possible to solve large scale problems of this type.

2.3 Importance of the SRN to ADP

ADP systems already exist which perform relatively simple control tasks like

stabilizing an aircraft as it lands under windy conditions [12]. However, such

13

tasks do not really represent the highest level of intelligence or planning. True

intelligent control requires the ability to make decisions when future time periods

will follow a complicated, unknown path starting from the initial state. One

example of a challenge for intelligent control is the problem of navigating a maze

which we will discuss in Chapter 4. A true intelligent control system should

be able to learn this kind of task. However, the ADP systems in use today

could never learn this kind of task. They use conventional neural networks to

approximate the J function. Because the conventional MLP cannot approximate

such a J function, we may deduce that ADP systems constructed only from

MLPs will never be able to display this kind of intelligent control. Therefore,

it is essential that we can �nd a kind of neural network which can perform

this kind of task. As we will show, the SRN can �ll this crucial gap. There

are additional reasons for believing that the SRN may be crucial to intelligent

control as discussed in chapter 13 of [9].

14

CHAPTER 3

Alternative Forms of Recurrent Networks

3.1 Purpose

There is a huge literature on recurrent networks. Biologists have used many

recurrent models because the existence of recurrence in the brain is obvious.

However, most of the recurrent networks implemented so far have been clas-

sic style recurrent networks, as shown on the left hand of Figure 3.1. Most

of these networks are formulated from ordinary di�erential equation (ODE) sys-

tems. Usually their learning is based on a restricted concept of Hebbian learning.

Originally in the neural network �eld, the most popular neural networks were

recurrent networks like those which Hop�eld [14] and Grossberg [15] used to

provide associative memory.

Associative memory networks can actually be applied to supervised learning.

But in actuality their capabilities are very similar to those of look-up tables and

radial basis functions. They make predictions based on similarity to previous

examples or prototypes. They do not really try to estimate general functional

relationships. As a result these methods have become unpopular in practical

15

FEATURE EXTRACTION
ART,SOM, ...

MINIMIZATION

HOPFIELD, CAUCHY

CLASSICAL RECURRENT NETWORKS

RECURRENT NETWORKS

TLRN

SRN

(Dynamic Systems,
 Prediction)

(Better function
approximation)

ASSOCIATIVE MEMORY

STATIC FUNCTION

CLUSTERING

HOPFIELD, HASSOUN

Figure 3.1: Recurrent networks

applications of supervised learning. The theorems of Barron [30] discussed in

the Introduction show that MLPs do provide better function approximation

than do simple methods based on similarity.

There has been substantial progress in the past few years in developing new

associative memory designs. Nevertheless, the MLP is still better for the speci�c

task of function approximation which is the focus of this thesis.

Actually the problem of static optimization will be considered more in future

stages of this research. When people use the classic Hop�eld networks for static

optimization, they specify all the weights and connections in advance [14]. This

has limited the success of this kind of networks for large scale problems where

it is di�cult to guess the weights. With the SRN we have methods to train the

weights in that kind of structure. Thus the guessing is no longer needed.

There have also been researchers using ODE neural networks who have tried

16

to use training schemes based on a minimization of error instead of Hebbian

approaches. However, in practical applications of such networks, it is important

to consider the clock rates of computation and data sampling. For that reason,

it is both easier and better to use error minimizing designs based on discrete

time rather than ODEs.

In a similar way, classic recurrent networks have been used for tasks like

clustering, feature extraction and static function optimization. But these are

di�erent problems from the ones we are trying to solve here.

3.2 Structure of Discrete-Time Recurrent Networks

If the importance of neural networks is measured by the number of words pub-

lished, then the classic networks dominate the �eld of recurrent networks. How-

ever, if the value is measured based on the economic value of practical applica-

tions, then the �eld is dominated by time-lagged recurrent networks (TLRNs).

The purpose of the TLRNs is to predict or classify time-varying systems using

recurrence as a way to provide memory of the past. The SRNs have some re-

lation with the TLRNs but it is designed to perform a fundamentally di�erent

task. The SRNs use recurrence to represent more complex relationships between

one input vector X(t) and one output Y (t) without consideration of the other

times t. Figure 3.2 and Figure 3.3 show us more details about the TLRNs and

the SRNs.

In control applications, u(t) represents the control variables which we use to

control the plant. For example, if we design a controller for a car engine, theX(t)

variables are the data we get from our sensors. The u(t) variables would include

17

Z -1

X(t)

R(t)

X(t+1)
u(t)

TLRN

Figure 3.2: Time lagged recurrent network (TLRN)

X

 f

y

Figure 3.3: Simultaneous recurrent network (SRN)

the valve settings which we use to try to control the process of combustion. The

R(t) variables provide a way for the neural networks to remember past time

cycles, and to implicitly estimate important variables which cannot be observed

directly. In fact, the application of TLRNs to automobile control is the most

valuable application of recurrent networks ever developed so far.

A simultaneous recurrent network (Figure 3.3) is de�ned as a mapping:

Ŷ (t) = F (X(t);W) (3.1)

which is computed by iterating over the following equation:

18

y(n+1)(t) = f(y(n)(t); X(t);W) (3.2)

where f is some sort of feed-forward network or system, and Ŷ is de�ned as:

Ŷ (t) = lim
n!1

y(n)(t) (3.3)

When we use Ŷ in this thesis, we use n = 20 instead of 1 here.

In Figure 3.3, the outputs of the neural network come back again as inputs to

the same network. However, in concept there is no time delay. The inputs and

outputs should be simultaneous. That is why it is called a simultaneous recurrent

network (SRN). In practice, of course, there will always be some physical time

delay between the outputs and the inputs. However if the SRN is implemented

in fast computers, this time delay may be very small compared to the delay

between di�erent frames of input data.

In Figure 3.3, X refers to the input data at the current time frame t. The

vector y represents the temporary output of the network, which is then recycled

as an additional set of inputs to the network. At the center of the SRN is actually

the feed-forward network which implements the function f . (In designing an

SRN, you can choose any feed-forward network or system as you like. The

function f simply describes which network you use). The output of the SRN at

any time t is simply the limit of the temporary output y.

In Equations (3.1) and (3.2), notice that there are two integers | n and t

| which could both represent some kind of time. The integer t represents a

slower kind of time cycle, like the delay between frames of incoming data. The

integer n represents a faster kind of time, like the computing cycle of a fast

19

electronic chip. For example, if we build a computer to analyze images coming

from a movie camera, \t" and \t+1" represent two successive incoming pictures

with a movie camera. There are usually only 32 frames per second. (In the

human brain, it seems that there are only about 10 frames per second coming

into the neocortex.) But if we use a fast neural network chip, the computational

cycle | the time between \n" and \n+1" | could be as small as a microsecond.

In actuality, it is not necessary to choose between time-lagged recurrency

(from t to t+1) and simultaneous recurrency (from n to n+1). It is possible to

build a hybrid system which contains both types of recurrency. This could be

very useful in analyzing data like movie pictures, where we need both memory

and some ability to segment the images. [9] discusses how to build such a hybrid

system. However, before building such a hybrid system, we must �rst learn to

make SRNs work by themselves.

Finally, we note that TLRNs are not the only kind of neural networks used in

predicting dynamical systems. Even more popular are the time delayed neural

networks (TDNNs), shown in Figure 3.4. The TDNNs are popular because they

are easy to use. However, they are less capable, in principle, because they have

no ability to estimate unknown variables. They are especially weak when some

of these variables change slowly over time and require memory which persists

over long time periods. In addition, the TLRNs �t the requirements of ADP

directly, while the TDNNs do not [9][16].

20

 X(t)

 X(t-1)

X(t-k)

 TDNN
X(t+1)

 u(t-k)

u(t-1)

u(t)

Figure 3.4: Time delayed neural network (TDNN)

3.3 Training of SRNs and TLRNs

There are many types of training that have been used for recurrent networks.

Di�erent types of training give rise to di�erent kinds of capabilities for di�erent

tasks. For the tasks which we have described for the SRNs and the TLRNs, all

proper forms of training involve some calculation of the derivatives of error with

respect to the weights. Usually after these derivatives are known, the weights

are adapted according to a simple formula as follows:

newWi;j = oldWi;j � LR �
@Error

@Wi;j

(3.4)

where LR is called the learning rate.

There are �ve main ways to train SRNs, all based on di�erent methods for

calculating or approximating the derivatives. Four of these methods can also be

used with TLRNs. Some can be used for control applications. But the details

of those applications are beyond the scope of this thesis. These �ve types of

training are listed in Figure 3.5. For this thesis, we have used two of these

methods: Backpropagation through time (BTT) and Truncation.

The �ve methods are:

21

 Types of SRN

Simultaneous Backpropagation

Backpropagation Through Time

Forward Propagation

 Training

Truncation

Error Critics

Figure 3.5: Types of SRN Training

1. Backpropagation through time (BTT). This method and forward

propagation are the two methods which calculate the derivatives exactly. BTT

is also less expensive than forward propagation.

2. Truncation. This is the simplest and least expensive method. It uses

only one simple pass of backpropagation through the last iteration of the model.

Truncation is probably the most popular method used to adapt SRNs even

though the people who use it the most, call it just ordinary backpropagation.

3. Simultaneous backpropagation. This is more complex than trun-

cation, but it still can be used in real time learning. It calculates derivatives

which are exact in the neighborhood of equilibrium but it does not account for

the details of the network before it reaches the neighborhood of equilibrium.

22

4. Error Critics (Figure 3.6). This provides a general approximation to

BTT which is suitable for use in real-time learning [9].

TLRN

TLRN

CriticError

CriticError

Error

Error

R(t)

X(t)

u(t)

X(t+1) X(t+1)X(t=1)

u(t+1)

R(t+1)

λ̂ (t)

λ̂

λ (t)

(t+1)

Figure 3.6: Error Critics

5. Forward propagation. This, like BTT, calculates exact derivatives.

It is often considered suitable for real-time learning because the calculations go

forward in time. However, when there are n neurons and m connections, the

cost of this method per unit of time is proportional to n � m. Because of this

high cost, forward propagation is not really brain-like any more than BTT.

3.3.1 Backpropagation through time(BTT)

BTT is a general method for calculating all the derivatives of any outcome or

result of a process which involves repeated calls to the same network or networks

used to help calculate some kind of �nal outcome variable or result E. In some

applications, E could represent utility, performance, cost or other such variables.

But in this thesis, E will be used to represent error. BTT was �rst proposed

23

and implemented in [17]. The general form of BTT is as follows:

1)for k = 1 to T do forward calculation(k);

2) calculate result E;

3) calculate direct derivatives of E with respect to outputs of forward calcula-

tion;

4) for k = T to 1 backpropagate through forward calculation(k), calculating run-

ning totals where appropriate.

k=T

k=1

k=2

Result
(Error, Utility

Calculation

Calculation

Error

Error

Error

Calculation

)

Figure 3.7: Backpropagation through time(BTT)

These steps are illustrated in Figure 3.7. Notice that this algorithm can

be applied to all kinds of calculations. Thus we can apply it to cases where

k represents data frames t as in the TLRNs, or to cases where k represents

internal iterations n as in the SRNs. Also note that each box of calculation

receives input from some dashed lines which represent the derivatives of E with

24

respect to the output of the box. In order to calculate the derivatives coming out

of each calculation box, one simply uses backpropagation through the calculation

of that box starting out from the incoming derivatives. We will explain in more

detail how this works in the SRN case and the TLRN case.

So far as we know BTT has been applied in published working systems for

TLRNs and for control, but not yet for SRNs until now. However, Rumelhart,

Hinton and Williams [18] did suggest that someone should try this.

The application of BTT for TLRNs is described at length in [2] and [9]. The

procedure is illustrated in Figure 3.8. In this example the total error is actually

the sum of the errors over each time t where t goes from 1 to T . Therefore the

outputs of the TLRN at each time t (t < T) have two ways of changing total

errors:

(1)A direct way when the current predictions Ŷ (t) are di�erent from the

current targets Y (t);

(2)An indirect way based on the impact ofR(t) on errors in later time periods.

Therefore the derivative feedback coming into the TLRN is actually the sum

of two feedbacks from two di�erent sources. As a technical detail, note that

R(0) needs to be speci�ed somehow. However, we will not discuss this point

here because the focus of this thesis is on SRNs.

Figure 3.9 shows the application of BTT to training an SRN. This �gure

also provides some explanation of our computer code in the appendix. In this

�gure, the left-hand side (the solid arrows) represents the neural network which

predicts our desired output Y . (In our example, Y represents the true values of

the J function across all points in the maze). Each box on the left represents a

call to a feed-forward system. The vector X(t) represents the external inputs to

25

X(T) Y(T) Y(T)

Y(1)Y(1)X(1)

X(2) Y(2) Y(2)

R(0)

R(T-1)

R(2)

R(1)

TLRN

TLRN

TLRN

^

^

^

Figure 3.8: BTT for TLRN

y(1)

y(0)X(t)

 F_y(2)

F_y(1)

F_y(N)

Error

Y

Y= y(n)^

Figure 3.9: BTT for SRN

the entire system. In our case, X(t) consists of two variables, indicating which

squares in the maze contain obstacles and which contains the goal respectively.

For simplicity, we selected the initial vector y(0) as a constant vector as we

26

will describe below. Each call to the feed-forward system includes calls to a

subroutine which implements the generalized MLP.

On the right-hand side of Figure 3.9, we illustrate the backpropagation cal-

culation used to calculate the derivatives. For the SRN, unlike the TLRN, the

�nal error depends directly only on the output of the last iteration. Therefore

the last iteration receives feedback only from the �nal error but the other it-

erations receive feedback only from the iterations just after them. Each box

on the right-hand side represents a backpropagation calculation through the

feed-forward system on its left. The actual backpropagation calculation involves

multiple calls to the dual subroutine F net2, which is similar to a subroutine in

Chapter 8 of [2].

Notice that the derivative calculation here costs about the same amount as

the forward calculation on the left-hand side. Thus BTT is very inexpensive in

terms of computer time. However, the backpropagation calculations do require

the storage of many intermediate results. Also we know that the human brain

does not perform such extended calculations backward through time. Therefore

BTT is not a plausible model of true brain-like intelligence. We use it here

because it is exact and therefore has the best chance to solve this di�cult problem

(which was never solved before). In future research, we may try to see whether

this problem can also be solved in a more brain-like fashion.

3.3.2 Truncation for SRN

Truncation is probably the most popular method to train SRNs even though the

term truncation is not often used. For example, the \simple recurrent networks"

used in psychology are typically just SRNs adapted by truncation [19].

27

Strictly speaking there are two kinds of truncation | ordinary one-step trun-

cation (Figure 3.10) and multi-step truncation which is actually a form of BTT.

Ordinary truncation is by far the most popular. In the derivative calculation

of ordinary truncation, the memory inputs to the last iteration are treated as if

they were �xed external inputs to the network. In truncation there is only one

pass of ordinary backpropagation involving only the last iteration of the net-

work. Many people have adapted recurrent networks in this simple way because

it seems so obvious. However, the derivatives calculated in this way are not

exactly the same because they do not totally represent the impact of changing

the weights on the �nal error. The reason for this is that changing the weights

will change the inputs to the �nal iteration. It is not right to treat these inputs

as constants because they are changed when the weights are changed.

The di�erence between truncation and BTT can be seen even in a simple

scalar example, where n=2 and the feed-forward calculation is linear. In this

case, the feed-forward calculation is:

y(1) = A � y(0) +B �X (3.5)

y(2) = A � y(1) +B �X (3.6)

In addition,

Error = E =
1

2
(Y � y(2))2 (3.7)

28

y(1)

y(0)X(t)

F_y(N)

Error

Y

Y= y(n)^

Figure 3.10: Truncation

@E

@y(2)
= y(2)� Y (3.8)

In truncation, we use Equation (3.6) and deduce:

@E

@B
=

@E

@y(2)
�
@y(2)

@B
= (y(2)� Y) �X (3.9)

But for an exact calculation, we substitute (3.5) into (3.6), deriving:

y(2) = A2 � y(0) + A �B �X +B �X (3.10)

29

which yields:

@E

@B
= (y(2)� Y) � (A �X +X) (3.11)

The result of Equation (3.9) is usually di�erent from the result of Equation

(3.11), which is the true result, and comes from BTT. Depending on the value

of A, these results could even have opposite signs.

In this thesis, we have used truncation because it is so easy and so popular.

If truncation had worked, it would be the easiest way to solve this problem.

However, it did not work.

3.3.3 Simultaneous Backpropagation

Simultaneous backpropagation is a method developed independently in di�er-

ent forms by Werbos, Almeida and Pineda [20][21][22]. The most general form

of this method for SRNs can be found in chapter 3 of [9] and in [23]. This

method is guaranteed to converge to the exact derivatives for the neighborhood

of the equilibrium y(1) in the case where the forward calculations have reached

equilibrium [20].

As with BTT, the derivative calculations are not expensive. Unlike BTT

there is no need for intermediate storage or for calculation backwards through

time. Therefore simultaneous backpropagation could be plausible as a model

of learning in the brain. On the other hand, these derivative calculations do

not account for the details of what happened in the early iterations. Unlike

BTT, they are not guaranteed to be exact in the case where the �nal y(n)

is not an exact equilibrium. Even in modeling the brain there may be some

30

need to train SRNs so as to improve the calculation in early iterations. In

summary, though simultaneous backpropagation may be powerful enough to

solve this problem, there was su�cient doubt that we decided to wait until later

before experimenting with this method.

3.3.4 Error Critic

The Error Critic, like simultaneous backpropagation, provides approximate deriva-

tives. Unlike simultaneous backpropagation, it has no guarantee of yielding ex-

act results in equilibrium. On the other hand, because it approximates BTT

directly in a statistically consistent manner, it can account for the early itera-

tions. Chapter 13 of [9] has argued that the Error Critic is the only plausible

model for how the human brain adapts the TLRNs in the neocortex. It would be

straightforward in principle to apply the Error Critic to training SRNs as well.

Figure 3.6 shows the idea of an Error Critic for TLRNs. This �gure should be

compared with Figure 3.9. The dashed input coming into the TLRN in Figure

3.6 is intended to be an approximation of the same dashed line coming into the

TLRN in the Figure 3.8. In e�ect, the Error Critic is simply a neural network

trained to approximate the complex calculations which lead up to that dashed

line in the Figure 3.7. The line which ends as the dashed line in Figure 3.6 begins

as a solid line because those derivatives are estimated as the ordinary output of

a neural network, the Error Critic. In order to train the Error Critic to output

such approximations, we use the error calculation illustrated on the lower right

of Figure 3.6. In this case, the output of the Error Critic from the previous

time period is compared against a set of targets coming from the TLRN. These

targets are simply the derivatives which come out of the TLRN after one pass

31

of backpropagation starting from these estimated derivatives from the later time

period. This kind of training may seem a bit circular but in fact it has an exact

parallel to the kind of bootstrapping used in the well known designs for adaptive

critics or ADP.

As with simultaneous backpropagation, we intend to explore this kind of

design in the future, now that we have shown how SRNs can in fact solve the

maze problem.

3.3.5 Forward Propagation

The major characteristics of this method have been described above. This

method has been independently rediscovered many times with minor variations.

For example, in 1981 Werbos called it conventional perturbation [2]. Williams

has called it the Williams { Zipser method [5]. Narendra has called it dynamic

backpropagation.

Nevertheless, because this method is more expensive than BTT, has no per-

formance advantage over BTT, and is not plausible as a model of learning in the

brain, we see no reason to use it.

32

CHAPTER 4

Three Test Problems and Details on

Architecture and Learning Procedures

In this thesis we use three examples to show that the SRN design has more

general function approximation capabilities than does the MLP. Our primary

focus was on the maze problem because of its relation to intelligent control as

discussed in Chapters 1 and 2. However, before studying this more specialized

example, we performed a few experiments on a more general problem which

we call Net A/Net B. In this chapter we discuss these two problems in more

detail. In addition, in this chapter we describe the two special features { cellular

architecture and adaptive learning rate (ALR) used for the maze problem.

4.1 Net A/Net B

In the Net A/Net B problem, our fundamental goal is to explore the idea that

the functions that an MLP can approximate are a subset of those that an SRN

can. In other words, we hypothesize that an SRN can learn to approximate any

functions which an MLP can represent without adding too much complexity,

33

but not vice versa. To consider the functions which an MLP can represent, we

can simply sample a set of randomly selected MLPs, and then test the ability of

SRNs to learn those functions. Similarly we can generate SRNs at random and

test the ability of MLPs to learn to approximate the SRNs.

In order to implement this idea, we used the approach shown in Figure 4.1.

The �rst step in the process was to pick Net A at random. In some experiments,

Net A was an SRN, while in other experiments, it was an MLP. In all these

experiments, Net B was chosen to be the opposite kind of network than Net A.

In picking Net A, we always used the same feed-forward structure. But we used

a random number generator to set the weights. After Net A was chosen and Net

B was initialized, we generated a stream of random inputs between -1 and +1

following a uniform distribution. For each set of inputs, we trained Net B to try

to imitate the output of Net A. Of course Net A was �xed. The results gave an

indication of the ability of Net B to approximate Net A.

Net B

Net A
Random Inputs

Figure 4.1: Net A/Net B

Our preliminary experiments did show that the SRNs have some advantage

over the MLPs. However, in all of these experiments, the SRN was trained with

truncation, not BTT. To fully explore all the theoretical issues would require a

34

much larger set of computer runs. Still, these initial experiments were very useful

in testing some general computer codes in order to prepare for the complexities

of the maze problem.

4.2 The Maze Problem

In the classic form of the maze problem, a little robot is asked to �nd the shortest

path from the starting position to a goal position on a two-dimensional surface

where there are some obstacles. For simplicity, this surface is usually represented

as a kind of chess board, or grid of squares, in which every square is either clear

or blocked by an obstacle. In formal terms, this means that we can describe the

state of the maze by providing three pieces of information:

(1) An array A which has the value 0 when the square is clear and 1 when it is

covered by an obstacle;

(2) The coordinates of the goal;

(3) The coordinates of the starting square.

In our case, we used a large number to represent the obstacles.

As discussed in Chapter 1, many researchers have trained neural networks to

learn an individual maze [5]. Our goal was to train a network to input the array

A and to output the array J for all the clear squares. According to dynamic

programming, the best strategy of motion for a robot is simply to move to that

neighboring square which has the smallest J .

This more general problem has not been solved before with neural networks.

For example, Houillon etc. [24] initially attempted to solve this problem with

MLPs, but were unsuccessful. Widrow in several plenary talks has reported

35

that his neural truck backer upper has some ability to see and avoid obstacles.

However, this ability was based on an externally developed potential function

which was not itself learned by neural networks. Such potential functions are

analogous to the J function which we are trying to learn.

In fact, this maze problem can always be solved directly and economically

by dynamic programming. Why then do we bother to use a neural network on

this problem? The reason for using this test is not because this simple maze

is important for its own sake, but because this is a very di�cult problem for a

learning system, and because the availability of the correct solution is very useful

for testing. It is one thing for a human being to know the answer to a problem.

It is a di�erent thing to build a learning system which can �gure out the answer

for itself. Once the simple maze problem is fully conquered, we can then move

on to solve more di�cult navigation problems which are too complex for exact

dynamic programming.

In order to represent the maze problem as a problem for supervised learning,

we need to generate both the inputs to the network (the array A) and the de-

sired outputs (the array B) (Refer to the Appendix). For this basic experiment,

we chose to study the example maze shown in Figure 4.2. In this �gure, G rep-

resents the goal position, which is assigned a value of \1"; the other numbers

represent the true values of the J function as calculated by dynamic program-

ming (subroutine \Synthesis" in the attached code in the Appendix). Intuitively

each J value represents the length of the shortest path from that square to the

goal.

Initially we chose to study this particular maze because it poses some very

unique di�culties. In particular there are four equally good directions starting

36

0

1

2

3

4

5

6

10 2 3 4 5 6

2

2

4 35

4

6

7 8

9

G 2

2 3

5678

8

3

8

9

Figure 4.2: Desired J function of a maze

from one of these squares in this maze | a feature which can be very confusing

to neural networks, even human. If we had used a fully connected conventional

neural network, then the use of a single test maze would have led to over-training

and meaningless results. However, as we will discuss later in this chapter, we

constrained all of our networks to prevent this problem. Nevertheless, a major

goal of our future research will be to test the ability of SRNs to predict new

mazes after training on di�erent mazes.

This problem of maze navigation has some similarity to the problem of con-

nectedness described by Minsky [25]. Logically we know that the desired output

in any square can depend on the situation in any other square. Therefore, it

is hard to believe that a simple feed-forward calculation can solve this kind of

problem. On the other hand, the Bellman equation (Equation(2.1)) itself is a

simple recurrent equation based on relationships between \neighboring" (succes-

37

sive) states. Therefore it is natural to expect that a recurrent structure could

approximate a J function. The empirical results in this thesis con�rm these

expectations.

4.3 Details for the Net A/Net B Problem

In all these experiments, the MLP network and the feed-forward network f in

the SRN was a standard MLP with two hidden layers. The input vector X

consisted of six numbers between -1 and +1. The two hidden layers and the

output layers all had three neurons. The initial weights were chosen at random

according to a uniform distribution between -1 and +1. Training was done by

standard backpropagation with a learning rate of 0:1.

4.4 Weight-sharing and Cellular Architecture

4.4.1 What is Weight-sharing?

In theoretical terms, weight-sharing is a generalized technique for exploiting prior

knowledge about some symmetry in the function to be approximated. Weight-

sharing has sometimes been called \windowing" or \Lie Group" techniques.

Weight-sharing has been used almost exclusively for applications like char-

acter recognition or image processing where the inputs form a two-dimensional

array of pixels [3][26]. In our maze problem the inputs and outputs also form

arrays of pixels. Weight-sharing leads to a reduction in the number of weights.

Fewer weights lead in turn to better generalization and easier learning.

As an example, suppose that we have an array of hidden neurons with volt-

38

ages net[ix][iy], while the input pixels form an array X[ix][iy]. In that case, the

voltages for a conventional MLP would be determined by the equation:

net[i][j] =
X
ix;iy

W (i; j; ix; iy) �X(ix; iy) (4.1)

Thus if each array has a size 20 � 20, the weights form an array of size

20 � 20 � 20 � 20. This means 160,000 weights | a very big problem. In basic

weight-sharing, this equation would be replaced by:

net[i][j] =
X
d1;d2

W (d1; d2) �X(i+ d1; j + d2) (4.2)

Furthermore, if d1 and d2 are limited to a range like [�5; 5], then the number

of weights can be reduced to just over 100. Actually this would make it possible

to add two or three additional types of hidden neurons without exceeding 1,000

weights. This trick was used by Guyon etc. [3]. They used it to develop the

most successful zip code digit recognizer in existence.

Intuitively AT&T justi�ed this idea by arguing that similar patterns in dif-

ferent locations have similar meanings. However, there is a more rigorous math-

ematical justi�cation for this procedure as we will see.

4.4.2 Lie Group Symmetry and Weight-sharing

The technique of weight-sharing in neural networks is really just a special case

of the Lie-group method pioneered much earlier by Laveen Kanal [42] in image

processing. Formally speaking, if we know that the function F to be approxi-

mated must obey a certain symmetry requirement then we can impose the same

39

symmetry on the neural network which we use to approximate F . More precisely,

if Y = F (x) always implies thatMY = F (Mx), where M is some kind of simple

linear transformation, then we can require that the neural network possess the

same symmetry.

Both in image processing and in the maze problem, we can use the symmetry

with respect to those transformations M which move all the pixels by the same

distance to the left, to the right or up and down. In the language of physics,

these are called spatial translations.

Because we know that the best form of the neural network must also obey

this symmetry, we have nothing to lose by restricting our weights as required by

the symmetry.

4.4.3 How We implemented Weight-sharing

In order to exploit Lie group symmetry in a rigorous way, we �rst reformulated

the task to be solved so as to ensure exact Lie group symmetry. To do this, we

designed our neural network to solve the problem of maze de�ned over a torus.

For our purposes, a torus was simply an N by N square where the right-hand

neighbor of [i; N] is the point [i; 0], and likewise for the other edges. This system

can still solve an ordinary maze as in Figure 4.2, where the maze is surrounded

by walls of obstacles.

Next we used a cellular structure for our neural network including both the

MLPs and SRNs. A cellular structure means that the network is made up of a

set of cells each made up of a set of neurons. There is one cell for each square

in the maze. The neurons and the weights in each cell are the same as those

in any other cell. Only the inputs and outputs are di�erent because they come

40

from di�erent locations.

The general idea of our design is shown in Figure 4.3. Notice that each cell is

made up of two parts: a connector part and a local memory part which includes 4

neighbors and the memory from itself in Figure 4.3. The connector part receives

the inputs to the cell and transmits its output to all four neighboring cells. In

addition, the local memory part sends all its outputs back as inputs, but only

to the same cell. Finally the forecast of J is based on the output of the local

memory part.

LocalLocalLocalLocal

Y(ix,iy)
^

goal

CONNECTOR

obstacle

neighbor neighbor

Figure 4.3: General Idea of the Cellular Network

The exact structure which we used is shown completely in Figure 4.4. In this

�gure it can be seen that each cell receives 11 inputs on each iteration. Two of

these inputs represent the goal and obstacle variables for the current pixel. The

next four inputs represent the outputs of the connector neuron from the four

neighboring cells from the previous iteration. The �nal �ve inputs are simply

the outputs of the same cell from the previous iteration. Then after the inputs,

41

memory
from itself

memory
4 neighbors

Inputs

goal obstacle

Ŷ

Ws

Figure 4.4: Inputs, Outputs and Memory of Each Cell

there are only �ve actual neurons. The connector part is only one neuron in our

case. The local memory part is four neurons. The prediction of J [ix][iy] results

from multiplying the output of the last neuron by Ws, a weight used to rescale

the output.

To complete this description, we must specify how the �ve active neurons

work. In this case, each neuron takes inputs from all of the neurons to its left,

as in the generalized MLP design [2]. Except for Ĵ , all of the inputs and outputs

range between -1 and 1, and the tanh function is used in place of the usual

sigmoid function.

To initialize the SRN on iteration zero, we simply picked a reasonable looking

constant vector for the �rst four neurons out of the �ve. We set the initial starting

value to -1. For the last neuron, we set it to 0. In future work, we shall probably

experiment with the adaptation of the starting vector y(0).

In order to backpropagate through this entire cellular structure, we simply

applied the chain rule for ordered derivatives as described in [2].

42

4.5 Adaptive Learning Rate

In our initial experiments with this structure, we used ordinary dynamic pro-

gramming with only one special trick. The trick was that we set the number of

iterations for SRN to only 1 on the �rst 20 trials, and then to 2 for the next 20

trials... and so on up until there were 20 iterations.

We found that ordinary weight adjustment led to extremely slow learning

due to oscillation. This was not totally unexpected because slow learning and

oscillation are a common result of simple steepest descent methods. There are

many methods available to accelerate the learning. Some of these like the DEKF

method developed by Ford Motor Company are similar to quasi-Newton methods

[27] which are very powerful but also somewhat expensive. For this work we chose

to use a method called the adaptive learning rate (ALR) as described in chapter

3 of [9]. This method is relatively simple and cheap, but far more exible and

powerful than other simple alternatives.

In this method, we maintain a single adapted learning rate for each group of

weights. In this case, we chose three groups of weights (refer to the Appendix):

1. The weight Ws used for rescaling of the output;

2. The constant or bias weights ww;

3. All the other weights W .

For each group of weights the learning rate is updated on each trial according

to the following formula:

LR(t + 1) = LR(t) � (0:9 + 0:2 �

P
kWk(t) �Wk(t� 1)P

kWk(t� 1) �Wk(t� 1)
) (4.3)

43

where the sum over k actually refers to the sum over all weights in the same

group. In addition, to prevent overshoot, we would reset the learning rate to:

LR � EP
k (

@E
@Wk

)
2 (4.4)

where the sum is taken over all weights. In this special case where the error on

the next iteration would be predicted to be less than zero, i.e.:

E �
X
k

(Wk(t+ 1)�Wk(t)) �
@E

@Wk

(t)

= E �
X
k

(LR �
@E

@Wk

(t)) �
@E

@Wk

(t)

= E � LR �
X
k

(
@E

@Wk

(t))
2

< 0 (4.5)

where Wk(t + 1) is the new value for the weights which would be used if the

learning rates were not reset. In our case, we modi�ed this procedure slightly to

apply it separately to each group of weights.

After the adaptive learning rates were installed the process of learning became

far more reliable. Nevertheless, because of the complex nature of the function

J , there was still some degree of local minimum problem. For our purposes, it

was good enough to simply try out a handful of initial values which we guessed

at random. However, in future research, we would like to explore the concept of

shaping as described in [9].

44

4.6 An SRN receiver for OMD

Code division multiple access (CDMA) has recently emerged as an access pro-

tocol ideally suited for voice and data transmission. CDMA provides numerous

advantages for a range of multiuser applications, including cellular mobile ra-

dio networks, personal communication systems, and indoor wireless communica-

tions. The only signi�cant limitation of the conventional CDMA system is the

\near-far problem" where strong signals interfere with the detection of a weak

signal, i.e. when the detection received power of the interfering signals becomes

large, severe performance degradation of the system is observed.

Optimum multiuser detectors assume knowledge of all the modulation wave-

form and channel parameters, and exploit this information to eliminate multiple-

access interference and to achieve near-far resistance. However, the computa-

tional complexity of the optimal multiuser detector (OMD) grows exponentially

with the number of users. Since the optimum multiuser demodulation is an

NP-complete problem, research e�orts have concentrated on the development of

suboptimal receivers.

Neural networks have shown their abilities of nonlinear functional approx-

imation, adaptive learning and parallel computing. So far, mainly two kinds

of neural networks, multi-layer perceptrons (MLPs) and Hop�eld neural net-

works (HNNs) have been applied in multiuser detection to construct suboptimal

multiuser receivers.

Hop�eld neural networks (HNNs) have the abilities to solve static optimiza-

tion problems. There have been some research on their implementation of OMD

[33][34] because minimizing the objective function of the OMD can be trans-

lated into minimizing an HNN \energy" function. However, all the weights and

45

connections must be speci�ed in advance when the HNNs are used for static

optimization. This limits the success of HNNs' receiver. So, when we do not

have the information of the matrix of the signal cross-correlations, we have to

use other kinds of neural networks with weight adapting abilities.

Multi-layer perceptrons(MLPs) trained with backpropagation have been used

to approximate the optimum function [35]. It has been shown that MLPs have

the capabilities of approximating arbitrary decision regions in the input space

for most classi�cation problems. However, since the SRNs have better functional

approximate abilities than the MLPs, as we have shown in the NetA/NetB and

maze problems, we tried to use the SRNs to solve this problem.

4.6.1 Multiuser Detection Schemes

We consider aK-user binary communication system, employing normalized mod-

ulation waveforms s1, s2, � � � , sk, and signaling through an additive white Gaus-

sian noise channel. The received signal in such a channel can be modeled as

r(t) = S(t) + ��(t) (4.6)

where �(t) is white Gaussian noise with unit power spectral density and S(t)

is the superposition of the data signals of the K users, given by

S(t) =
KX
k=1

Ak

MX
i=�M

bk(i)sk(t� iT � �k) (4.7)

where Ak is the received amplitude of the kth user; (2M + 1) is the frame

length; bk(i) is the ith symbol of the kth user (assumed to be binary, �1); �k is

the relative delay of the kth user; and T is the inverse of the data rate.

46

It is assumed that the sk, the kth user's normalized signaling waveform, is

supported only on the interval [0,T]; and that fbk(i)g is a collection of indepen-

dent equiprobable �1 random variables.

r(t)

Matched Filter
User 1

Matched Filter

Matched Filter

User 2

User K

MUD

Decision

Algorithm

y

y

yk

2

1

(i)

(i)

(i)

Sync2

Sync K

Sync 1
b

b

bk

1

2

Figure 4.5: The general structure of multiuser detection(MUD)

Here we consider the synchronous case of the model (4.7), in which �1 = �2 =

� � � = �K � 0. Since the full model (4.7) can be viewed as a synchronous model

with (2M + 1)K users [32], this restriction is not signi�cant for the purposes of

bit-error-rate analysis. In this synchronous case, it is easily seen that a su�cient

statistic for demodulating the ith data bits of the K users is given by the K-

vector y whose kth component is the output of a �lter matched to sk in the ith

data interval, i.e.,

yk(i) =

Z (i+1)t

it

sk(t� iT)r(t)dt; k = 1; 2; � � � ; K: (4.8)

Statistically, this problem is invariant to the choice of the symbol interval i,

and so, without loss of generality, we consider the case i = 0, and suppress the

index i.

47

This su�cient vector y can be written as:

y = RAb+ �� (4.9)

where R is the K �K matrix of signal cross-correlations:

rk;l =

Z T

0

sk(t)sl(t)dt (4.10)

A = diagfA1; A2; :::AKg; b is a K-vector whose kth component is bk; and �

is a N (0;R) random vector, independent of b.

So far, several demodulators have been studied for this channel [37], including

the conventional detector

b̂k = sgn(yk); (4.11)

and the optimum multiuser detector

b̂ = arg maxb2f�1;+1gK2y
(i)b� bTRb (4.12)

Because of the exponential growth of the computational complexity of the

OMD with the number of active users, suboptimal detection schemes have been

proposed. According to (4.12) and Figure 4.5, the optimum MUD essentially is

to decide and estimate each user transmitted signal b from the viewing vector

Y by the minimum error probability. So the optimum MUD problem is the

problem of decision and classi�cation. One kind of detection scheme is using

neural networks, which have been successfully applied to many classi�cation

48

problems and functional approximation problems. Figure 4.6 is the structure of

a neural network multiuser receiver for multiuser detection.

4.6.2 Neural net receiver

There are mainly two kinds of neural net receivers that have been used. One is

using a multi-layer perceptrons structure trained by back-propagation algorithm;

the other is Hop�eld neural networks(HNNs). In this thesis, we will introduce a

new kind of neural networks { simultaneous recurrent network (SRN) and show

that it can do better than MLPs and HNNs as a kind of suboptimal detection

scheme.

r(t)

Matched Filter
User 1

Matched Filter

Matched Filter

User 2

User K

y1

y2

y3

b1

b2

bk

Neural

Network

Figure 4.6: A neural network receiver for multiuser demodulation

HNNs are single layer networks with output(s) feedback consisting of sim-

ple processors(neurons) that can collectively provide good solutions to di�cult

optimization problems. An HNN is depicted in Figure 4.7. A connection be-

tween two processors in established through a conductance Tij which transforms

the voltage outputs of ampli�er j to a current input for ampli�er i. Externally

supplied bias currents Ii are also present in every processor j.

Each neuron i receives a weighted sum of the activations of other neurons in

49

I

I

I

I

V

V

Vm

2

1 1

2

m

U

U1

2

mU

Figure 4.7: Hop�eld neural network

the network, and updates its activation according to the rule

Vi = g(Ui) = g(
X
j 6=i

TijVj + Ii) (4.13)

The function g(Ui) can be either a binary or antipodal thresholding function

for the case of the McCulloch-Pitts neuron

Vi = g(Ui) = sign(Ui) (4.14)

or any monotonically increasing nonlinear function. One example of such a

nonlinear function often used in simulations is the sigmoid function, de�ned by

Vi = g(Ui) = sigm(�Ui) =
1� e��Ui

1 + e��Ui
(4.15)

where � is a positive constant that controls the slope of the nonlinearity. In

particular, when �!1 , then g(Ui)! sign(Ui).

50

It has been shown [40] that, in the case of symmetric connections (Tij = Tji),

the equations of motion for the activation of the neurons of an HNN always lead

to convergence to a stable state, in which the output voltages of all the ampli�ers

remain constant. Also, when the ampli�er gain curve is narrow, (i.e., the non-

linear activation function g(�) approaches the antipodal thresholding function),

the stable states of a network with N neuron units are the local minima of the

quantity(energy function)

E = �
1

2

NX
i=1

NX
j=1

TijViVj �
NX
i=1

ViIi: (4.16)

The equation of motion for the ith neuron may be described in terms of the

energy function (4.15) as follows:

dUi

dt
= �

@E

@Vi
�
Ui

�
= �

Ui

�
+
X
i6=j

TijVj + Ii (4.17)

Since the OMD objective function is very similar to an HNN energy function,

some work has been done to apply HNNs to solve this di�cult combinatorial op-

timization problem [33][34][36]. The optimum multiuser detection can be clearly

related to the HNN by identifying L and E. As a result, the variables correspond

as follows:

Ii = 2yi; Tij = �2hij; Vi = b̂i; N = K: (4.18)

Thus the number of neurons in an HNN receiver is equal to that of the users

in the CDMA system.

51

However, if we do not have the information of the cross-correlation function

of the signal set s1, s2 .. sK, we can think of the problem as a function approxi-

mation problem, where we try to �gure out the solution of the inverse function

of f given y, and y satis�es the following function:

y = f(b) (4.19)

In [35], a two-layered perceptron trained by back-propagation was used for

2-user and 3-user problems. Though it was shown that this kind of MLP receiver

have better performance than a conventional receiver, for our examples we can

see the MLP does not work so well as the SRN does.

4.6.3 An SRN receiver

Here we consider a system of �ve-users transmitting synchronously, and use the

similar SRN structure trained by BTT as that used for the maze problem with

4 active neurons. Adaptive learning rate technique is also used. However, we

do not need to worry about the neighbor's information here. So we simply have

�ve inputs with one input containing the value of the receiver passed the user's

matched �lter and the other four inputs which keep the outputs as memory.

52

CHAPTER 5

Simulation Results and Conclusions

Later in this chapter, we review some simulation results for the three test prob-

lems discussed before. From analyzing the results, we can conclude that com-

pared to the MLPs, the SRNs are more powerful in nonsmooth function approx-

imation. In addition, our new design | the cellular structure | can really solve

the maze problem.

5.1 Results for the Net A/Net B Problem

From Figure 5.1 to Figure 5.4 we can see that the SRN using the same three-

layered neural network structure (9 inputs, 3 outputs, and 3 neurons for each

hidden layer) as the MLP can achieve better simulation result. The SRN not

only converged more rapidly than the MLP(Figure 5.1 and Figure 5.2, but also

reached a smaller error(Figure 5.3 and Figure 5.4), about 1:25 � 10�4, while the

MLP reached 5 � 10�4. Thus we can say that, in this typical case, an SRN has

better ability to learn an MLP than an MLP to learn an SRN.

53

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.002

0.004

0.006

0.008

0.01

0.012

Trials

E
rr

or

Figure 5.1: The MLP learned the SRN

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Trials

E
rr

or

Figure 5.2: The SRN learned the MLP

54

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

8

9

10
x 10

−4

Trials

E
rr

or

Figure 5.3: The last 1000 trials of Figure 5.1

0 200 400 600 800 1000 1200
0.5

1

1.5

2

2.5

3
x 10

−4

Trials

E
rr

or

Figure 5.4: The last 1000 trials of Figure 5.2

55

0

1

2

3

4

5

6

10 2 3 4 5 6

12.1 2.1

2.92.13.43.9

6.18.49.1

8.4

7.1

9.1 7.9

7.1

7.9

6.1

4.6

3.42.1

3.9

4.6

Figure 5.5: J function as predicted by SRN-BTT(I)

5.2 Results for the Maze Problem

There are two parts of the results for the maze problem.

First, we compare the J function in each pixel of the same maze as predicted

by an SRN trained by BTT and an SRN trained by truncation respectively with

the actual J function for the maze. Figure 5.5 and 5.6 show that the SRN

trained by BTT can really approximate the J function, but the SRN trained by

truncation cannot, respectively. Moreover, the SRN trained by BTT can learn

the ability to �nd the optimal path from the start to the goal as calculated by

dynamic programming. Although there is some error in the approximation of J

by the SRN trained by BTT, the errors are small enough that a system governed

by the approximation of J would always move in an optimal direction.

Second, we show some error curves from Figure 5.7 to Figure 5.12. From the

�gures we can see the error curve of SRN trained by BTT not only converged

56

0

1

2

3

4

5

6

10 2 3 4 5 6

3.03.0

3.7 4.4

2.9

2.5 2.5

2.54.23.92.9

3.5 4.3

4.6

4.5 4.6 3.5 3.0

3.0

2.5

2.6

3.9

Figure 5.6: J function as predicted by SRN-Truncation(I)

more rapidly than the curve of the SRN trained by truncation, but also reached

a much smaller level of error. The errors with the MLP did not improve at all

after about 80 trials(Figure 5.11 and Figure 5.12).

5.3 Comparison of the performance of MUD using OMD,

SRN and MLP

In Figure 5.13, we compare the MLP, SRN and OMD detectors for 5 active

synchronous users by evaluating their bit-error-rate of user 1 via the signal-to-

noise ratio (SNR) of user 1. The SNR of the other users were �xed at 8dB. In

this example, we trained the SRN 5000 times before doing the test.

In Figure 5.14, the comparison of the BER of the MLP, SRN and OMD

detectors for 5 active synchronous users is plotted versus Ei/E1. In this example,

the SNR of the user 1 is �xed at 8dB. The BER of user 1 of the SRN detector

57

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

Figure 5.7: Error curve of itJ function as predicted by SRN-BTT(II)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Trials

E
rr

or

Figure 5.8: Error curve of itJ function as predicted by SRN-BTT(III)

58

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Trials

E
rr

or

Figure 5.9: Error curve of J function as predicted by SRN-Truncation(II)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

114

116

118

120

122

124

126

128

130

132

Trials

E
rr

or

Figure 5.10: Error curve of J function as predicted by SRN-Truncation(III)

59

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

Trials

E
rr

or

Figure 5.11: Error curve of J function as predicted by MLP(I)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4

Trials

E
rr

or

Figure 5.12: Error curve of J function as predicted by MLP(II)

60

is smaller than that of the MLP detector.

100 tests have been done for the above two experiments, where in each test

100,000 random bits have been tested.

From both these two examples we can see that the SRN exhibits better

performance than MLP and can approach that of the OMD.

0 1 2 3 4 5 6 7 8
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

E1/N(dB)

lo
g1

0(
B

E
R

)

Figure 5.13: Bit error rate versus E1/N for 5-user channel with the SNR of the

other users �xed at 8dB, where solid line is the OMD, the dash line is the SRN

and the dash-dot line is the MLP.

5.4 Conclusions

In this thesis, we have described a new neural network design for J function

approximation in dynamic programming. We have tested this design in three

test problems: Net A/Net B, the maze and the multiuser detection problems.

In the Net A/ Net B problem, we showed that SRNs can learn to approximate

MLPs better than MLPs can learn SRNs.

61

0 1 2 3 4 5 6 7 8
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Ei/E1(dB)

lo
g1

0(
B

E
R

)

Figure 5.14: Bit error rate versus Ei/E1 for 5-user channel with the SNR of user

1 �xed at 8dB, where the solid line is OMD, the dash-dot line is the SRN and

the dotted line is the MLP.

In the maze problem, a much more complex problem, we showed that we

can achieve good results only by training an SRN with a combination of BTT

and adaptive learning rates. In addition, we needed to use a special design | a

cellular structure | to solve this problem. On the other hand, neither an MLP

nor an SRN trained by truncation could solve this problem.

In the multiuser detection problem, we have investigated the comparison of

the abilities of the SRN and MLP to provide fast suboptimal solutions to hard

combinatorial optimization problems in CDMA systems. Both the SRN receiver

and the MLP have been evaluated via extensive simulations. It was shown that

the SRN receiver exceeds the performance of the MLP receiver, and approaches

the performance of the OMD.

A paper based on part of the work reported in this thesis has been accepted

by the Journal on Mathematical Modeling and Scienti�c Computing.

62

Now that it has been proven that neural networks can solve these kinds of

problems, the next step in research is to consider several variations of these

problems in order to demonstrate generalization ability and the ability to solve

optimization problems where the J function is not known, or not exactly com-

putable.

63

Appendix A

Appendix: The program of the maze problem

using SRN trained by BTT

/**/

/* The program of the maze problem using SRN trained by BTT; */

/* Using the SRN trained by BTT to learn the optimal path of a 5*5*/

/*maze; */

/* Learning Rate Adaptive --- Lr_Ws,Lr_W,Lr_ww; */

/* When change line 140 and 141 into p=0 then the program will be */

/*MLP; */

/* When change line 237 into F_x[N+i]=0 then the program will be */

/*the SRN trained by Truncation.*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

64

void F_NET2(double F_Yhat, double W[30][30],double x[30],int n,

int m,int N, double F_W[30][30], double F_net[30],double F_Ws[30],

double Ws,double F_x[30]);

void NET(double W[30][30],double x[30],double ww[30],

int n, int m, int N, double Yhat[30]);

void synthesis(int B[30][30],int A[30][30],int n1,int n2);

void pweight(double Ws,double F_Ws_T,double ww[30],

double F_net_T[30],double W[30][30], double F_W_T[30][30],

int n,int N,int m);

int minimum(int s,int t,int u,int v);

int min(int k,int l);

double f(double x);

void main()

{

int i,j,it,iz,ix,iy,lt,m,maxt,n,n1,n2,nn,nm,N,p,q,po,t,TT;

int A[30][30],B[30][30];

double a,b,dot,e,e1,e2,es,mu,s,sum,F_Ws_T,Ws,F_Yhat,wi;

double W[30][30],x[30],ww_O[50],Ws_O,W_O[50][50],F_Ws_O;

double F_net_T[30],F_Ws[30],F_W_O[30][30],F_W[30][30];

double F_W_T[30][30],F_net[30],ww[30],yy[21][12][8][8];

double Yhat[30],F_y[21][12][8][8],F_x[30],F_Jhat[30][30];

65

double S_F_W1,S_F_W2,Lr_W,S_F_net1,S_F_net2,Lr_ww,Lr_Ws;

double y[50][50],F_net_O[50], F_Ws1, F_Ws2;

FILE *f;

/* Number of inputs,neurons and output:7,3,1; */

/* 'n' is the number of the active neurons; */

/* 'm' and 'N' both are the number of inputs; */

/* 'nm' is the number of memory is: 5; */

/* 'nn+1'*'nn+1' is the size of the maze'; */

/* 'TT' is the number of trials; */

/* 'lt' is the number of the interval time; */

/* 'maxt' is the max number for T in figure[8]; */

/* Lr-Ws,Lr_ww and Lr_W are the learning rates for */

/* Ws,ww and W respectively. */

a=0.9; b=0.2;

n=5;m=11;N=11;nn=6;nm=5;TT=30000;lt=50;maxt=20;wi=25;Ws=40;

e=0;po=pow(2,31) -1;

/* Initial values of Old */

F_Ws_O=1;

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++)

F_W_O[i][j]=1;

66

F_net_O[i]=1;

}

Lr_W=Lr_ww=Lr_Ws=10;

/* Initial values of weights */

for (i=1;i<N+n+1;i++)

x[i]=0;

for (i=m+1;i<N+n+1;i++)

for (j=0;j<i;j++){

srand(rand());

W[i][j]=0.2091;

}

for (i=m+1;i<N+n+1;i++){

srand(rand());

ww[i]=0.00678;

}

/* Input Maze */

n2=5*5;

n1=5*5-1;

for (i=0;i<7;i++)

for(j=0;j<7;j++){

if ((i==0)||(j==0)||(i==6)||(j==6))

67

B[i][j]=n2;

else

B[i][j]=n1;

}

/* Generate Obstacle */

B[2][2]=B[3][3]=B[4][4]=n2;

/* Generate Start */

B[2][4]=1;

for (i=0;i<7;i++)

for (j=0;j<7;j++){

A[i][j]=0;

}

/* Desired outputs */

synthesis(B,A,n1,n2);

if ((f=fopen("results5","w"))==NULL) {

printf("Cannot open file");

exit(1);

}

68

/* Learning Pattern */

for (t=0;t<TT;t++){

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++){

F_W_T[i][j]=0;

}

F_net_T[i]=0;

}

for (i=1;i<n;i++)

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++)

yy[0][i][ix][iy]=-1;

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++)

yy[0][n][ix][iy]=0;

e=F_Ws_T=s=0;

/**/

/* If the next two lines are changed into p=0 */

/* then it is MLP */

p=(t/lt)+1;

69

p=(p<maxt ? p:maxt);

for (q=0;q<p+1;q++){

e=0;

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++){

if (B[ix][iy]==25)

x[1]=B[ix][iy];

else if (B[ix][iy]!=1)

x[1]=0;

x[2]=1;

if (ix!=0)

x[3]=yy[q][1][ix-1][iy];

else

x[3]=yy[q][1][nn][iy];

if (iy!=0)

x[4]=yy[q][1][ix][iy-1];

else

x[4]=yy[q][1][ix][nn];

if (ix!=nn)

x[5]=yy[q][1][ix+1][iy];

else

x[5]=yy[q][1][0][iy];

if (iy!=nn)

x[6]=yy[q][1][ix][iy+1];

else

70

x[6]=yy[q][1][ix][0];

for (i=1;i<n+1;i++)

x[6+i]=yy[q][i][ix][iy];

NET(W,x,ww,n,m,N,Yhat);

for (i=1;i<n+1;i++)

yy[q+1][i][ix][iy]=Yhat[i];

}

}

e=0;

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++){

if (t==(TT-1))

y[ix][iy]=yy[p+1][n][ix][iy];

if (B[ix][iy]!=25)

F_Jhat[ix][iy]=Ws*yy[p+1][n][ix][iy]

-A[ix][iy];

else

F_Jhat[ix][iy]=0;

e+=F_Jhat[ix][iy]*F_Jhat[ix][iy];

}

printf("\n t e %d %e",t,e);

fprintf(f,"\n%d %e",t,e);

/* Initialize F_y */

for (q=1;q<21;q++)

71

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++)

for (i=1;i<n+1;i++)

F_y[q][i][ix][iy]=0;

for (q=p;q>-1;q--){

for (ix=0;ix<nn+1;ix++)

for (iy=0;iy<nn+1;iy++){

if (B[ix][iy]==25)

x[1]=B[ix][iy];

else if (B[ix][iy]!=1)

x[1]=0;

x[2]=1;

if (ix!=0)

x[3]=yy[q][1][ix-1][iy];

else

x[3]=yy[q][1][nn][iy];

if (iy!=0)

x[4]=yy[q][1][ix][iy-1];

else

x[4]=yy[q][1][ix][nn];

if (ix!=nn)

x[5]=yy[q][1][ix+1][iy];

else

x[5]=yy[q][1][0][iy];

if (iy!=nn)

72

x[6]=yy[q][1][ix][iy+1];

else

x[6]=yy[q][1][ix][0];

for (i=1;i<n+1;i++)

x[6+i]=yy[q][i][ix][iy];

NET(W,x,ww,n,m,N,Yhat);

if (q==p){

F_Yhat=F_Jhat[ix][iy];

for (i=1;i<n+1;i++)

F_x[N+i]=0;

}

else {

F_Yhat=0;

for (i=1;i<n+1;i++)

F_x[N+i]=F_y[q+1][i][ix][iy];

/*if F_x[N+i] = 0; truncation */

}

F_NET2(F_Yhat,W,x,n,m,N,F_W,F_net,

F_Ws,Ws,F_x);

if (ix!=0)

F_y[q][1][ix-1][iy]+=F_x[3];

else

F_y[q][1][nn][iy]+=F_x[3];

if (iy!=0)

F_y[q][1][ix][iy-1]+=F_x[4];

73

else

F_y[q][1][ix][nn]+=F_x[4];

if (ix!=nn)

F_y[q][1][ix+1][iy]+=F_x[5];

else

F_y[q][1][0][iy]+=F_x[5];

if (iy!=nn)

F_y[q][1][ix][iy+1]+=F_x[6];

else

F_y[q][1][ix][0]+=F_x[6];

for (i=1;i<n+1;i++)

F_y[q][i][ix][iy]+=F_x[6+i];

if (q==p) F_Ws_T+=F_Ws[1];

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++){

F_W_T[i][j]+=F_W[i][j];

}

F_net_T[i]+=F_net[i];

}

}

}

dot=0;

for (i=m+1;i<N+n+1;i++)

74

for (j=1;j<i;j++){

dot+=F_W_O[i][j]*F_W_T[i][j];

}

S_F_W1=S_F_W2=0;

for (i=m+1;i<N+n+1;i++)

for (j=1;j<i;j++){

S_F_W1 += F_W_O[i][j] * F_W_T[i][j];

S_F_W2 += F_W_O[i][j] * F_W_O[i][j];

s+=F_W_T[i][j]*F_W_T[i][j];

}

if ((S_F_W1>S_F_W2) || (S_F_W1==S_F_W2))

Lr_W=Lr_W*(a+b);

else if (S_F_W1<(-2)*S_F_W2)

Lr_W=Lr_W*(a-2*b);

else

Lr_W=Lr_W*(a+b*(S_F_W1/S_F_W2));

S_F_net1=S_F_net2=0;

for (i=m+1;i<N+n+1;i++){

s+=F_net_T[i]*F_net_T[i];

S_F_net1 +=F_net_O[i] *F_net_T[i];

S_F_net2 +=F_net_O[i] *F_net_O[i];

}

75

if ((S_F_net1>S_F_net2) || (S_F_net1==S_F_net2))

Lr_ww=Lr_ww*(a+b);

else if (S_F_net1<(-2)*S_F_net2)

Lr_ww=Lr_ww*(a-2*b);

else

Lr_ww=Lr_ww*(a+b*(S_F_net1/S_F_net2));

F_Ws1=F_Ws_O*F_Ws_T;

F_Ws2=F_Ws_O*F_Ws_O;

if ((F_Ws1>F_Ws2) || (F_Ws1==F_Ws2))

Lr_Ws=Lr_Ws*(a+b);

else if (F_Ws1<(-2)*F_Ws2)

Lr_Ws=Lr_Ws*(a-2*b);

else

Lr_Ws=Lr_Ws*(a+b*(F_Ws1/F_Ws2));

s+=F_Ws_T*F_Ws_T;

es=e/s;

if ((e-Lr_W*s)<0)

Lr_W=Lr_W*es;

if ((e-Lr_ww*s)<0)

Lr_ww=Lr_ww*es;

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++){

W_O[i][j]=W[i][j];

W[i][j]-=Lr_W*F_W_T[i][j];

}

76

ww_O[i]=ww[i];

ww[i]-=Lr_ww*F_net_T[i];

}

if ((e-Lr_Ws*s)<0)

Lr_Ws=Lr_Ws*es;

Ws_O=Ws;

Ws-=Lr_Ws*F_Ws_T;

sum=0;

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++){

F_W_O[i][j]=F_W_T[i][j];

}

F_net_O[i]=F_net_T[i];

}

F_Ws_O=F_Ws_T;

}

fclose(f);

}

void synthesis(int B[30][30],int A[30][30],int n1,int n2)

{

int k,mini,no,i,j;

77

/* Initialization */

k=0;

for (i=0;i<7;i++)

for (j=0;j<7;j++){

A[i][j]=B[i][j];

}

/* Searching the optimal path */

/* Calculating the Utility */

no = n2-3-1;

while (k!=no){

k=0;

for (i=1;i<6;i++)

for (j=1;j<6;j++){

mini = 1 +

minimum(A[i-1][j],A[i][j-1],A[i+1][j],A[i][j+1]);

if ((A[i][j]!=n2) && (A[i][j]!=1)){

if ((A[i][j]==mini) && (A[i][j]!=n1))

k++;

else

if (mini!=n2)

A[i][j]=mini;

}

78

}

}

}

/* minimum: return the minimum value */

int minimum(int s,int t,int u,int v)

{

int mini;

mini=0;

mini=min(min(min(s,t),u),v);

return mini;

}

void NET(double W[30][30],double x[30],double ww[30],

int n, int m, int N, double Yhat[30])

{

int i,j;

double net;

for (i=m+1;i<N+n+1;i++)

{

net=0;

for (j=1;j<i;j++){

79

net += W[i][j] * x[j];

}

x[i]=f(net+ww[i]);

}

for (i=1;i<n+1;i++){

Yhat[i]=x[i+N];

}

}

double f(double x)

{

double z;

z=(1-exp(-x))/(1+exp(-x));

return z;

}

void F_NET2(double F_Yhat,double W[30][30],double x[30],int n,

int m,int N,double F_W[30][30],double F_net[30],double F_Ws[30],

double Ws, double F_x[30])

/* This subroutine calculates the F_W terms needed to adapt a

fully connected; */

/*generalized MLP. It does not backpropagate through the network

and it does not permit the switching off of weights. */

{

80

int i,j;

for (i=1;i<N+1;i++)

F_x[i]=0;

F_x[N+n]+=F_Yhat*Ws;

F_Ws[1]=F_Yhat*x[N+n];

F_net[N+n]=F_x[N+n]*(1-x[N+n]*x[N+n])*0.5;

for (j=1;j<N+n;j++)

F_W[N+n][j]=F_net[N+n]*x[j];

for (i=N+n-1;i>m;i--)

{

for (j=i+1;j<N+n+1;j++)

{

F_x[i]+=W[j][i]*F_net[j];

}

F_net[i]=F_x[i]*(1-x[i]*x[i])*0.5;

for (j=1;j<i;j++)

{

F_W[i][j]=F_net[i]*x[j];

}

}

for (i=m;i>0;i--)

for (j=m+1;j<N+n+1;j++)

F_x[i]+=W[j][i]*F_net[j];

}

81

int min(int k, int l)

{

int r;

if (k>l) r=l;

else r=k;

return r;

}

void pweight(double Ws,double F_Ws_T,double ww[30],

double F_net_T[30],double W[30][30], double F_W_T[30][30],

int n,int N,int m)

{

int i,j;

for (i=m+1;i<N+n+1;i++){

for (j=1;j<i;j++){

printf("\n W[i][j] F_W_T %e %e",W[i][j],F_W_T[i][j]);

}

printf("\n ww F_net_T %e %e",ww[i],F_net_T[i]);

}

printf("\n Ws F_Ws_T %e %e",Ws,F_Ws_T);

}

82

BIBLIOGRAPHY

[1] E. D. Sontag, Feedback stabilization using two-hidden-layer nets, IEEE Trans.

Neural Networks, Vol. 3, No.6, 1992.

[2] P. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neu-

ral Networks and Political Forecasting, Wiley, 1994.

[3] I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, and Y. Le Cun,

Comparing di�erent neural network architectures for classifying handwritten

digits, Proceedings of the IEEE International Joint Conference on Neural

Networks, June 1989.

[4] Von der Malsburg, C.& Schneider, W. Biol. Cybernetic, Vol. 54, pp. 29-40,

1986.

[5] W. Miller, R. Sutton & P. Werbos (eds.), Neural Networks for Control, MIT

Press, 1990.

[6] V. B. Brooks, The Neural Basis of Motor Control, Oxford press.

[7] K. Pribram, Brain and Perception: Holonomy and Structure in Figural Pro-

cessing, Erlbaum, 1991.

83

[8] H. Chang, W.J. Freeman, Parameter optimization in models of the olfactory

neural system, Neural Networks, Vol. 9, No. 1, pp 1-14,1996.

[9] D.White & D.Sofge (eds.), Handbook of Intelligent Control: Neural, Adaptive

and Fuzzy Approaches, Van Nostrand, 1992.

[10] P. Werbos, The brain as a neurocontroller: New hypotheses and new

experimental possibilities, In K.Pribram (eds.), Origins: Brain and Self-

Organization, Erlbaum, 1994.

[11] P. Werbos, Learning in the brain: engineering interpretation, In K.Pribram,

(eds.), Learning as Self-organization, Erlbaum, 1996.

[12] D. Prokhorov, R. Santiago & D. Wunsch, Adaptive critic designs: a case

study for neurocontrol, Neural Networks, Vol.8, No.9, 1995.

[13] D.O.Hebb, Organization of Behavior, Wiley, New York, 1949.

[14] J. Hop�eld and D. Tank, Computing with neural circuits: A model, Science,

Vol. 233, pp. 625-633, 1986.

[15] S. Grossberg, The Adaptive brain I, North-Holland, 1987.

[16] P. Werbos, Optimization methods for brain-like intelligent control, IEEE

Conference on Decision and Control, 1995.

[17] P. Werbos, Beyond regression: new tools for predictions and analysis in the

behavioral science, Ph.D. dissertation, Committee on Applied Mathematics,

Harvard University, Cambridge, MA, Nov. 1974.

84

[18] D. Rumelhart, G. Hinton and R. Williams, Learning internal representa-

tions by error propagation, in D.Rumelhart and J.McClelland (eds.), Parallel

Distributed Processing, Vol.1, MIT Press, 1986.

[19] L. Fausett, Fundamentals of Neural Networks: architectures, algorithms and

applications, Prentice Hall, 1994.

[20] P. Werbos, Generalization of backpropagation with application to a recurrent

gas market model, neural networks, Vol. 1, pp. 339-365, 1988.

[21] L. B. Almeida, A learning rule for asynchronous perceptrons with feedback

in a combinatorial environment, Proceedings of the IEEE International Con-

ference on Neural Networks, 1987.

[22] F. J. Pineda, Generalization of backpropagation to recurrent and higher oder

networks, Proceedings of the IEEE International Conference on Neural In-

formation Processing Systems, 1987.

[23] P. Werbos, Supervised learning: can it escape its local minimum, WCNN93

Proceedings, Erlbaum, 1993. Reprinted in V. Roychowdhury et al (eds.),

Theoretical Advances in Neural Computation and Learning, Kluwer, 1994.

[24] P. Houillon and A. Caron, Planar robot control in cluttered space by arti�cial

neural network, Math Modeling and Science Computing, Vol. 2, pp. 498{502,

1993.

[25] M. L. Minsky and S. A. Papert, Perceptrons, MIT Press, 1990, expanded

edition.

85

[26] T. Maxwell, L. Giles and Y. C. Lee, Generalization in neural networks: the

contiguity problem, IEEE First International Conference on Neural Networks,

1987.

[27] P.K.H. Phua AND S.B.W. Chew, Symmetric rank-one update and quasi-

Newton methods, Optimization Techniques and Applications, Proceedings of

the International Conference on Optimization Techniques and Applications,

K.H. Phua et al., eds., World Scienti�c, 1992, Singapore, pp. 52{63.

[28] R. Howard, Dynamic Programming and Markov Processes, MIT press, Cam-

bridge, MA, 1960.

[29] P. Werbos, Neural networks for control and system identi�cation, IEEE

Conference on Decision and Control (Florida), IEEE, New York, 1989.

[30] A. Barron, Asymptotically optimal functional estimation by minimum com-

plexity criteria, Proceedings of 1994 IEEE International Symposium on In-

formation Theory, IEEE, New York, 1994.

[31] J. S. Baras and N. S. Patel, Information state for robust control of set-

valued discrete time systems, Proceedings of 34th Conference on Decision

and Control, IEEE, 1995, p. 2302.

[32] Poor, H.V. and Sergio Verd�u, Probability of Error in MMSE Multiuser De-

tection, IEEE Trans. Infom. Theory, Vol. 43, pp. 858-871, May 1997.

[33] Kechriotis, G. I. and Manolakos S., Hop�eld Neural Network Implementa-

tion of the Optimal CDMA Multiuser Detector, IEEE Trans. Neural Net-

works, Vol. 7, pp.131-141, Jan. 1996.

86

[34] Miyajima, T. etc., On the Multiuser Detection Using a Neural Network

in Code-Division Multiple-Access Communications, IEICE Trans. Commun.,

Vol. E76-B, Aug. 1993.

[35] Aazhang, B., Paris B.-P., and Orsak G.C., Neural Networks for Multiuser

Detection in Code-Division Multiple-Access Communications, IEEE Trans.

Commun., Vol 40, pp 1212 -1222, July 1992.

[36] He,G., Tang P. and Pang, X., Neural Network Approaches to Implemen-

tation of Optimum Multiuser Detectors in Code-Division Multiple-Access

Channels, Intl. Journ. of Electronics, Vol. 80, pp.425-431, 1996.

[37] Verd�u, S., Minimum Probability of Error for Asynchronous Gaussian

Multiple-Access Channels, IEEE Trans. Infom. Theory, Vol. IT-32, Jan. 1986.

[38] Duel-Hallen, A., etc, Multiuser Detection for CDMA Systems, IEEE Per-

sonal Communications, April 1995.

[39] Lippmann, R.P., An Introduction to Computing with Neural Nets, IEEE

ASSP Magazine, Vol. 4, April 187.

[40] Hop�eld, J.J., Neurons with graded response have collective computational

properties like those of two-state neurons, Proc. Nat. Acad. Sci. USA, Vol.

81, pp. 3088-3092, 1984.

[41] Bertsekas, D.P., Dynamic programming: deterministic and stochastic mod-

els, Prentice-Hall, 1987.

[42] Laveen, K., On pattern, categories, and alternate realities, University of

Maryland, 1993.

87

