
Test Driven Development and the
V-Model

Sebastian Venginickal

November 27, 2007

ENPM 643

Introduction

 What is Test Driven Development?

 Where does it fit into the V-Model?

 How can it help us?

 How do I use TDD?

 A practical example from my work
– Multiprobe spectroscopy with a shared detector.

What is TDD?

 MORE than just a “testing” method

 Software design and implementation
technique
– Covers Requirements -> Test

 Many tenants and aspects, but key is:

 WRITE TEST FIRST.

Why Write the Tests First?

 Forces developers to consider “what” each
module must do.
– The Requirements before the production code

 Forces the developer to consider “how” the
module will be used
– The Interface Design before the production code

 Encourages cohesive modules with little
coupling

What is a Test?

 Code written with the specific and only
purpose to test another modules

 Test defines the requirements of the module
being tested

 These tests contain assertions that are either
true or false. (i.e. Pass or Fail)

 Test can be automated
– run fast and get immediate results

Extremely Simple Test

 Simple “MathHelper”
that implements
IKnowMath interface

double sum = IKnowMath.Add(3, 5);

If (sum == 8)
return true; //PASS ASSERT

else
return false; //FAIL ASSERT

What about the V-Model?

 Fits in nicely to the
bottom of the V

 TDD emphasizes a
design approach that
focuses on creating
testable modules

 Do your test design,
and module design,
BEFORE the code.

How does TDD help?

 More likely to write good production code the
first time. (i.e. tests will pass)

 Most code can be tested before it ever gets
into production.

 Code changes, refactorings, etc. can be
quickly validated.

 Process leads to simpler, cleaner designs

Where does it Not help?

 Not a perfect catch all technique

 Bad tests lead to bad code

 Difficult for graphical user interfaces
– Too many input variations to predict and test

 Difficult for Relational Database applications
– Too many interdependencies

 Lots of developer time spent writing Non-
production code

How do I use TDD?

 0. Know the Requirement (Feature)

 1. Write a Test for the feature
– It will fail the first time

 2. Implement the feature quickly
– Just good enough to make the test pass

 3. Refactor the code
– Make the implementation cleaner, quicker, more efficient,

etc.

– All Tests must still pass

Advanced Concepts

 Never as simple as “Add”

 Tests should never access anything
“external” to the module being tested
– Other modules, data stores, processes, internet,

etc.

– Test and modules should be cohesive units

– Hard to do

More Advanced Concepts

 Design by Contract
– Focus on Interface design, “How Modules

Communicate”, for external needs

 Mock Objects
– Implement the interface and validate input or

output data

 Fake Objects
– Simply implement the interface and return a

success.

Practical Example

 Real project I have for Q1 2008

 Show simple use for TDD

 Mettler Toledo Autochem
– Instrumentation for Chemical and Pharmaceutical

Research

 Chemists use our instrument for analysis of
reactions and product development

The Problem

 Multiprobe data collection with a single detector

Use Case

Alternate/ exceptional Flows:
3) The Chemist selects 1, 3, or 4 probes.
5-6) The chemist calibrates each selected probe

Subflows:

…

…

Trigger: Chemist starts the experiments
Type: Overview

Brief Description: Chemist starts two different experiments in two separate reactors at

the same time

Stakeholders and Interests: Chemist

Use Case Type: AssociationPrimary Actor: Chemist

HighImportance Level:1.0ID:StartExperimentUse Case
Name:

Use Case: Normal Flow of Events

1) The Chemist gathers material for both experiments
2) The Chemist starts the software and clicks New

Experiment
3) The Chemist selects the probes for the experiment
4) The Chemist sets the sample interval for each experiment
5) The Chemist calibrates the first probe
6) The Chemist calibrates the second probe
6) The Chemist loads the materials into the reactors
7) The Chemist puts the probes in the reactor
8) The Chemist starts the experiment and begins collecting

data from both vessels at the specified interval.

Requirements

 The system shall allow the chemist to choose which
probes to use in an experiment.

 A probe shall be used for only one experiment.

 The instrument shall collect data at the user
prescribed interval.

 The instrument shall collect data from multiple
probes for multiple, simultaneous experiments

 The instrument shall only collect from 1 probe at any
instant time

Interface and Class Design

The
MUX

The Tests

 A probe can be used for only one
experiment.

– [IMultiProbeDevice.AvailableProbes]

 The instrument shall only collect from 1
probe at any instant time

– [IProbe.InUse]

The Tests: Available Probes

Test Code

The Test: In Use

Test Code

Test Results

Conclusion

 Defined Test Driven Development

 Showed some TDD Techniques for design
and test

 Demonstrated it with simple example from
my work

 Briefly showed where it fits into V-Model

Questions?

