AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

Sulaimin Barrett Liyan Gu Henry Yi
Sulaimin Barrett

- Introduction
- Tradeoff
- Conclusion
Presentation Outline

• Scope of Work
• Project Objective/Major Goals of ALPS
• System Overview
• Goals, Scenarios, Use Cases
• System Structure and Design
• Requirements
• Verification and Validation
• Tradeoff Analysis
• Conclusion
Scope of Work

Today’s mom and pop dry cleaning business rely heavily on manual labor, especially the manual tagging, cataloging and searching of hundreds of customers’ clothing. In a nutshell, a typical cleaner’s business process consists of tagging the clothes, cleaning the clothes, cataloging and grouping the clean clothes based on the tags assigned to the clothes and to the customer, and searching for customers’ clothes. Every step of the process involves manual cataloging and tracking of customer’s clothes. These manual processes work well but are prone to errors and are taxing to dry cleaning staff. Computers have been introduced to the dry cleaning business to reduce errors, but there still exists a heavy reliance on manual labor in the cataloging and searching of clothes. As any manual process, human errors still exist in the process even with use of computers.
We are proposing an automated system that will:

• Eliminate manual cataloging of clothes
• Eliminate manual searching for customer’s clothes
• Eliminate such error as misplaced/miscataloged clothes
• Reporting of any missing or late clothes
• Must be safe for end users
• Have manual backup if the system fails

All through the use of Smart Tag!
The overview of Automated Laundry Processing System (ALPS) consists of the same standard process of picking up, dropping off, and cleaning clothes without the use of paper receipts. The normal procedure of dropping off and picking up clothes remains the same but once the customer leaves ALPS take over to automate the logging process. As the customer drops off his or her clothes for cleaning, instead of a paper ticket given out the clothes are scanned and input into the system matching the customer's personal information. The customer is assigned a unique ID given by ALPS for pick up of clothes. ALPS uses SmartTags and a sophisticated ID system to track clothes from drop off through laundering to pick up. It uses these Smart Tags to allow hands free control of the clothes conveyer allowing quick and easy pick up of clothes by the customer.
AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

Customer Pick Up

Clerk

User Screen

Empty Conveyor

Clothes Cataloging With Scanner
AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

RF Chips

RFID Buttons

Clothes Cataloging With Scanner
Operator/User Characteristics

Typical operators or users of the system are expected to have at least rudimentary education consisting of at least middle school education. The operators are required to read and understand written English language be proficient in usage of modern personal computers and its operations.

Definitions

Laundry Transaction: atomic action that starts with customer dropping off articles of clothes to be cleaned and ends with customer picking up the cleaned clothes.

Transaction id/Parent id: an identifier associated with Laundry Transaction

Child id: an identifier attached to each article of clothes in a laundry transaction

Tagging: an act of attaching a unique child id to an article of clothing

Tag: marker that can be identified with scanner

Abnormal child id: all ids that does not belong to the laundry transaction id
Henry Yi
• System Overview
• Major System Use Cases
Name: Receiving Scan

Description: Customer brings in clothes to get them dry-cleaned. The employee takes the clothes and hands a receipt to the customer.

Actors: Employee

Trigger: Customer brings clothes to get cleaned

Precondition: None

Post-condition: System has the printed receipt in the system’s data store.

Normal Flow:
1. Employee prints a receipt and scans the receipt
2. System stores the scanned receipt’s id
3. Receipt is handed to customer
4. Employee bags the clothes and the receipt

Alternate Flow: None

Notes:
AUTOMATED LAUNDRY PROCESSING SYSTEM (ALPS)

<table>
<thead>
<tr>
<th>Description:</th>
<th>After the clothes are received, employees tag the bagged clothes. The tags are scanned into the system along with the parent tag, which is the receipt. The parent tag and the child tags on the clothes are linked.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors:</td>
<td>Employee</td>
</tr>
<tr>
<td>Trigger:</td>
<td>Bagged clothes arrive at tagging station</td>
</tr>
<tr>
<td>Precondition:</td>
<td>Parent receipt is created and scanned into the system</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>Parent tag and child tags are in the system with established relationship between the parent and child tags.</td>
</tr>
</tbody>
</table>

Normal Flow:
1. Bagged clothes are tagged.
2. Parent tag is scanned
3. Parent tag is retrieved from the system and displayed
4. Tags attached to the clothes are scanned and these tags are defined as child tags
5. Child tags are associated with the parent tag

Alternate Flow:
1. Parent tag is not found in the system
2. Scan the parent tag in the bag and save it
3. Flow of normal flow is followed from here on at step 4 of normal flow

| Notes: | |
Automated Laundry Processing System (ALPS)

<table>
<thead>
<tr>
<th>Name</th>
<th>Cataloging Cleaned Clothes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>After the cleaned clothes are returned from the cleaning facility or after cleaned on site, the clean clothes are hanged on the conveyor belt and cataloged into the system.</td>
</tr>
<tr>
<td>Actors</td>
<td>Employee</td>
</tr>
<tr>
<td>Trigger</td>
<td>Cleaned cloth arrives and needs to be cataloged. Cleaned clothes are grouped as a bundle with their parent tag/receipt attached to the bundle.</td>
</tr>
<tr>
<td>Precondition</td>
<td>System has parent and child tag and its relationship stored in the data-store.</td>
</tr>
<tr>
<td>Post-condition</td>
<td>System stores the location where the cleaned clothes/parent tag is hanged.</td>
</tr>
</tbody>
</table>
| Normal Flow | 1. Employee rotates the conveyor belt until open slot is found
 2. Employee hangs the clothes on the open slot
 3. System scans the hanged clothes’ parent tag
 4. System marks the location where of open slot and associates with the scanned parent tag |
| Alternate Flow | None |
| Notes | None |
AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

<table>
<thead>
<tr>
<th>Name</th>
<th>Searching and removing Customer Clothes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Customer comes in to pick up their cleaned clothes and system finds the clothes and rotates the conveyor belt and stop the conveyor belt where the cloths hangs</td>
</tr>
<tr>
<td>Actors:</td>
<td>Employee</td>
</tr>
<tr>
<td>Trigger:</td>
<td>Customer comes in the pick their cloth</td>
</tr>
<tr>
<td>Precondition:</td>
<td>System has the location of the clothes stored in the system’s datastore</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>System marks the parent tag as being picked up and no longer in the system</td>
</tr>
</tbody>
</table>

Normal Flow:
1. Employee scans the customer’s receipt
2. System retrieves the scanned receipt’s tag and location where the clothes are.
3. System rotates the conveyor belt and stop on the location where the clothes are hanging
4. Employee unhooks the clothes from the conveyor belt and hands the clothes to customer
5. System marks the parent tag as being picked up

Alternate Flow:
1. Employee enters customer’s account number
2. System retrieves all the parent tags under the account number
3. System finds first parent tag and rotates the conveyor belt
4. System stops conveyor belt at the location where the clothes are hanging
5. Employee unhooks the clothes
6. System marks the unhooked clothes’ parent tag as being picked up
7. Employee presses “Next” button
8. Go to step 3 until all the clothes are marked as picked up

Notes:
<table>
<thead>
<tr>
<th>Name</th>
<th>Re-inventorying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>At set time or when employee request re-inventory, system associates all the parent tags in the system with location of the slot where the clothes are hanging</td>
</tr>
<tr>
<td>Actors</td>
<td>Employee or pre-determined time</td>
</tr>
<tr>
<td>Trigger</td>
<td>Pre-determined time arrives or employee requests re-inventory</td>
</tr>
<tr>
<td>Precondition</td>
<td>System is in working order</td>
</tr>
<tr>
<td>Post-condition</td>
<td>All the clothes/parent tags in the conveyor belt are scanned and its location is logged.</td>
</tr>
<tr>
<td>Normal Flow</td>
<td>1. System rotates the conveyor belt</td>
</tr>
<tr>
<td></td>
<td>2. Scans all the parent tags and associated slot number</td>
</tr>
<tr>
<td></td>
<td>3. Saves the tag and slot number in the system</td>
</tr>
<tr>
<td></td>
<td>4. System stops the conveyor belt until all the slots are accounted for</td>
</tr>
<tr>
<td>Alternate Flow</td>
<td>None</td>
</tr>
<tr>
<td>Notes</td>
<td>None</td>
</tr>
</tbody>
</table>
AUTOMATED LAUNDRY PROCESSING SYSTEM (ALPS)

<table>
<thead>
<tr>
<th>Name:</th>
<th>Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>System scans the data-store and report any missing clothes or overdue clothes</td>
</tr>
<tr>
<td>Actors:</td>
<td>Employee</td>
</tr>
<tr>
<td>Trigger:</td>
<td>Makes request for Report</td>
</tr>
<tr>
<td>Precondition:</td>
<td>System is in working order</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>Report is displayed</td>
</tr>
</tbody>
</table>
| **Normal Flow:** | 1. Employee request a missing/overdue report
 2. System scans the data-store for missing clothes
 3. System scans the data-store for overdue clothes
 4. System display missing clothes and overdue clothes with associated customer info |
| **Alternate Flow:** | None |
| **Notes:** | |
AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

Liyan Gu
• System Design
• Verification & Validation
• Tradeoff Study
ALPS - Automated Laundry Processing System

Subsystems Diagram

ALPS

- Scanner
 - Scanner Com
 - Counter Scanners

- Smart Tags
 - Location Tag
 - Tagging Scanners

- Clothes Tag

- System Controller
 - Data Store
 - User Interface

- Conveyor Controller
 - Conveyor
REQUIREMENTS TRACEABILITY MATRIX

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Goals</th>
<th>Scenarios</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Tags shall be capable of wireless, mid-range (at least ___ meters)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radio- frequency communications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1 The tag shall communicate with manual tag programmers (Employees).</td>
<td>1, 2</td>
<td>1.1/1.4</td>
<td>V_1.0</td>
</tr>
<tr>
<td>1.1.2 The Tag shall communicate with Sensors mounted in a laundry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2.1 Particular number of sensors should be installed in a laundry</td>
<td>1</td>
<td>2.4/3.1/3.2/</td>
<td>V_1.1.4 &</td>
</tr>
<tr>
<td>according to the laundry's area and size.</td>
<td></td>
<td>4.3/5.1/5.3</td>
<td>V_1.1.5</td>
</tr>
<tr>
<td>1.1.2.2 Each Sensor shall be capable of sending and receiving radio</td>
<td>3, 4, 6</td>
<td>5.1/5.3</td>
<td>V_1.6</td>
</tr>
<tr>
<td>frequency (RF) signals in a hemispherical pattern to communicate at a specific range.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification ID</td>
<td>Verification Requirement</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>V_1.0</td>
<td>Using a fully assembled Smart Tag, Sensor/Scanner, and desktop computer running conveyor belt controlling and logistics tracking software, perform the following functions:</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Enter Smart Tag I.D. number, type of ID, Customer account number, and time/date information into database. Send data to Tag, verify that tag responds with acknowledgment of received data. Response must occur in 2 sec. or less.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Use logistics software to read tag data, data queried from tag must appear on computer screen within 2 seconds. Verify that data retrieved from tag matches the original data sent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tradeoff Analysis

• Cost Saved
 - $20K/yr (labor)
 - $5K/yr (compensation)

• Cost Taken
 - Scanner (which & how many)
 - Tag
 - Controller / Printer
AUTOMATED LAUNDRY PROCESSING SYSTEM

ALPS

Cyclone M2000 Scanner - $499 (C1)

M2004-I400-0600ZN

Standard Applications, Synapse Adapter
Cable-6 foot, Straight Cable-25-32463-20,
Single Line: 590 x 22 frames/sec.

Cyclone Omnizone
NOTE: Typical performance at 68°F (20°C) on high quality symbols in normal room light.
Vcc = 5V

Width of Field in Inches (cm)

0 in. (0)
2.5 in. (6.35)
5.0 in. (12.7)

0.0 6.0 mil Code 39

0.0 80% UPC

0.3 100% UPC

0.5 20 mil Code 39

0 In. (0 cm) 2 In. (5.1 cm) 4 In. (10.1 cm) 6 In. (15.2 cm) 8 In. (20.3 cm) 10 In. (25.4 cm)

Depth of Field
LS 2200 Series Scanner - $204 (C2)

LS2208-1AZK0100S

Multiple Interface Scanner: Includes 25-62417-20 Keyboard Wedge PS/2 6 Foot Straight Cable, 20-61019-01 Intellistand,

Scan Rate: 100 scans per second typical

Scan Angle: 23 degrees nominal

Note: Typical performance at 73°F (23°C) on high quality symbols in normal room light.
WS 1200-LR Scanner - $999 (C3)

WS1200-LR00

Long Range Scanner: with Plastic Cap, Trigger, Cable and Glove

Scan Rate: 35+5 scans per second

Scan Angle: 33 degrees nominal

WS 1200-LR Decode Zone

Width of Field in Inches (cm)

43.2 in. (109.7)
30 in. (76.2)
20 in. (50.8)
10 in. (25.4)
0 in. (0)

0 in. (0 cm)
20 in. (50.8 cm)
40 in. (101.6 cm)
80 in. (203.2 cm)
120 in. (304.8 cm)
160 in. (406.4 cm)
200 in. (508 cm)
240 in. (609.6 cm)

40 mil (.38 mm)
55 mil (.143 mm)

10 mil (.26 mm)
20 mil (.51 mm)
40 mil (1.02 mm)
70 mil reflective (1.82 mm)
100 mil reflective (2.55 mm)

Note: Typical performance at 68°F (20°C) on high-quality symbols

Typical Depth of Field in Inches/Centimeters
Problem Notation

- $C_1 =$ cost of M2000 Scanner
- $X_1 =$ number of M2000 needed
- $C_2 =$ cost of LS 2200 Scanner
- $X_2 =$ number of LS2200 needed
- $C_3 =$ cost of WS 1200-LR Scanner
- $X_3 =$ number of WS 1200LR needed
- $C_4 =$ potential cost saving
- $FC =$ fixed cost of Tag and Controller
Problem Formulation

Max: \(C4 - (C1 \times X1 + C2 \times X2 + C3 \times X3 + FC) \)
Subject to:
- \(C4 - \text{Cost Taken} > 0 \);
- \((X1, X2, X3)\)
 (2, 8, 3);
 (3, 4, 2);
 (3, 2, 2);

<table>
<thead>
<tr>
<th>GARMENT LENGTH</th>
<th>Up to 60" bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAPES VARIATIONS</td>
<td>Straight, inline, L, & WIDE U</td>
</tr>
</tbody>
</table>
Tradeoff Analysis
Wired versus Wireless

Factors Considered
- Installation
- Total Cost
- Reliability
- Performance

Wired
- Cable lengths are typically fixed for a specific location
- Cost for running cables
- Electrician
- Loose cables most common source of failure

Wireless
- Very minimal construction
- Data/Signal loss
- Small Wiring Cost
- Environmental issues
AUTOMATED LAUNDRY PROCESSING SYSTEM
ALPS

Links for further reading

http://specialevents.com/newsletter/GBS_Linens_uses_RFID_system_to_track_inventory_20060502/index.html
Any Burning Questions