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Limitations of Established Approaches to V&V

Definition and Complementary Roles

• Verification → “are we building the product right?”

• Validation → “are we building the right product?”

Validation

Requirements /
Specifications

System
Design

Customer
Needs

Verification

Limitations of Traditional Approaches

Inspection procedures and testing procedures both suffer from diminishing returns.

• The diminishing returns from testing stem from the fact that testing is good at finding
some kinds of faults, and bad at finding other types of faults.

• The same can be said of inspection.
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Limitations of Established Approaches to V&V

Limitations of Traditional Approaches

Fortunately, inspection and testing approaches are largely orthogonal – that is ....

... the effort needed to find a given fault with testing is largely unrelated to the
effort needed to find the same fault with system inspection.

In particular:

• Faults that are hard to find with testing (e.g., faults linked to unusual situations) are
sometimes much easier to find with inspection.

• Conversely, faults that are hard to find with system inspection (e.g., non-local faults)
are sometimes much easier to find with testing.

These observations suggest that system validation procedures should employ a
combined strategy.
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Growing Importance of Embedded Systems

Increasing Prevalence of Reactive Systems

Transformational System

Input Output
Transformational

Process

Reactive System

Events

Reactive (Event−based) System

Transformational Systems

• Transformational systems transfer inputs to outputs. Correctness of operation is
assessed in terms of:

.. relationships of input to output.

Testing usually involves verification of behavior for some typical and some borderline
cases. In this context, the purpose of analysis is to:

... prove something for all inputs.
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Growing Importance of Embedded Systems

Reactive Systems

• Reactive systems run continously and respond to events in the surrounding
environment.

• Correctness of operation depends not only on the logical ordering of events, but also
on their timing.

• The desired run-time properties of transition systems can be represented by temporal
logic.

Note ...

Traditional software development is simplified by ...

... the lack of physical constraints.

Embedded software must ...

... account for constraints of the physical domain.
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Growing Importance of Embedded Systems

Research: Can we prove that a system is correct?

These difficulties have spurred research into methods that

...attempt to prove a system is correct, in the same sense that a mathematical
theorem is proved correct.

Ideally, an algorithm would ...

... analyze a system model and either conclude was correct orreveal a bug within a
reasonable number of steps.
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Formal Approaches to Validation and Verification

Conceptual Mechanisms

1. Formal Models

We need ways to capture the design representation and it specification in an
unambiguous "formal language" that has precise semantics.

2. Abstraction

Abstraction mechanism eliminate details that are of no importance when checking
that a design satisfies a particular property.

3. Decomposition

Decomposition is the process of breaking a design at a given level of hierarchy into
sub-systems and components that can be designed and verified almost
independently.
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Formal Approaches to Validation and Verification

Big Idea ..
We need methods for the systematic assembly of complex systems from simpler
systems and components.

Solution Approach

Model embedded systems as networks of communicating finite state machines.

Communicating FSM

EFSM

EFSM

EFSM
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Formal Approaches to Validation and Verification

Hierarchies of requirements
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Hierarchies of spatial and temporal
abstractions.

Automated Composition

User−Supplied

Commands

System Response

Constraints

Sensors

Traffic Environment

Model of Traffic Demand

Infrastructure System Surrounding Environment

Constraints

Model of Environment

Framework for Model−Based Design

Framework for Plaform−Based Design

System−Level
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Subsystem−level

Continuous
Components

DiscreteControl

Distributed System Model

Subsystems
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Formal Approaches to Validation and Verification

Representing Requirements as Properties

One idea is to:

...create formal representations of requirements in the form of “properties the
system must satisfy.”

Then, models of system behavior are created in such a way that these properties are
guarenteed to hold.
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Formal Approaches to Validation and Verification

Early validation of system design (Adapted from the work of Natalia Sidorova, 2007).

Implementation

System Architecture

Formal Representation 
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Phase where

issues.
testing here ... to minor
Reduced reliance on 

Build little design logic
models. 
Analyze them thoroughly
for potential violation of 
requirements.
Don’t move forward until
design (or parts of design)
are provably correct.

Traditional Approach to Design and Test....

Early detection of errors and "system operation" that
is "correct−by−construction"...
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Transition Systems

Transition Systems

Transition systems (TSs) are basically directed graphs where the nodes represent
states,and edges model transitions (i.e., state changes).

Mathematical Definition

A transition system is a tuple (S, Act,→, I, AP, L) where:

• S is a set of states.

• Act is a set of actions.

• → ⊆ S × Act × S is a transition relation.

• I ⊆ is a set of initial states.

• AP is a set of atomic propositions, and

• L:S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite. 2AP is the powerset of AP, that is, the set of
all subsets of AP.
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Transition Systems

Example. Preliminary design of a simple beverage vending machine:

Select

InsertCoin

T T
Beer Soda

GetSodaGetBeer

Pay

Points to note:

• The state space S = {Pay, Select, Soda, Beer}.

• The initial state I = {Pay}.

• The set of actions = {InsertCoin, GetSoda, GetBeer, τ}.

• Sample transitions include:

Pay
InsertCoin
−−−−−−−−→ Select Select

τ
−→ Beer
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Finite State Automata

Elements of Automata

Automata are ...

... simple, but useful, models of computation initially proposed as a simple model
for the behavior of neurons.

Summary of Abstractions in Finite State Automata

We keep We drop

• Some notion of state.

• Stepping between states.

• Start and end states.

• Notions of memory.

• Variables, commands, expressions.

• Syntax.
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Finite State Automata

Deterministic Finite State Automata

A deterministic finite automaton (DFA) is ...

... a simple machine that reads an input string (one symbol ata time)...

and then after the input has been completely read ...

... decides whether to accept or reject the input.

Mathematical Definition (pg 38, Slind 2004).

A DFA is a five-tuple (Q,
P

, δ, qo, F ) where:

• Q is a set of states.

•
P

is a finite alphabet.

• δ : Q ×
P

→ Q is the transition function.

• qo ∈ Q is the start state.

• F ⊆ Q is the set of accepting states.

The language recognized by a DFA M is denoted L(M).
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Finite State Automata

Example of DFA (Source: http://www-bcl.cs.may.ie/dfa.html)

The following DFA accepts strings of 0’s and 1’s which end with either "01" or "10".

Start reject

reject

reject accept

accept

0

1

1

0
1

01

1

0

0

For instance, the strings "10", "001", "101", "110", "01010", "00110", "001001", and
"0000101" are accepted,

The strings "" (the empty string), "0", "1", "00", and "0011" are rejected.

– p. 17/50



Finite State Automata

Example of DFA (Source: http://www-bcl.cs.may.ie/dfa.html)

The table of inputs, states, and transitions can be represented:

Start state: state 1

state 1: REJECT state 4: ACCEPT

on 0 - goto state 2 on 0 - goto state 5

on 1 - goto state 3 on 1 - goto state 3

state 2: REJECT state 5: ACCEPT

on 0 - goto state 2 on 0 - goto state 4

on 1 - goto state 4 on 1 - goto state 2

state 3: REJECT

on 0 - goto state 5

on 1 - goto state 3

and implemented using the State design pattern. A computer implementation will return
either REJECT or ACCEPT.

– p. 18/50



Finite State Automata

Non-Deterministic Finite State Automata

Two extensions to DFA are allowed:

1. Multiple Next States

Suppose that a system is in state "q" with symbol "a" – there could be multiple next
states to go to. Formally, we write:

delta(q, a) = {q1, q2} (1)

2. Epsilon-Transitions

Epsilon-transitions allow a machine to move to the next state without consuming any
input. Formally, we write:

delta(q, ǫ) = {q1, q2} (2)
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Finite State Automata

Example of Non-DFA: Tossing and Reading a Coin

read

Scenario ... Behavior Model

Heads TailsStart

read

toss

toss

Set of states = {Start, Heads, Tails}; Set of actions = {toss, read}.

delta(Start, toss) = {Heads, Tails}
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Finite State Automata

Automata Constructions

Automata constructions operate on automata yielding new automata.
Constructions are a way of building automata from components.

Types of Automata Construction

• Product Construction

A product construction takes two DFAs and generates a single DFA that
conceptually runs its two component machines in parallel on the same input string.

• Concatenation Construction

A concatenation construction wires two DFA machines together in series.

• Subset Construction

The subset construction can be used to map any NFA N to a DFA M, such that L(N)
= L(M).
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Automata Constructions

Properties of Automata Constructions

To be useful ...

... operations associated with automata constructions need to be precise.

General Characteristics

• Closure under union.

• Closure under intersection.

• Closure under complement.

• Closure under concatenation.

For details, see pg’s 52-58 of Slind 2004.
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Automata Constructions

Product Construction

A product construction takes two DFAs and generates a singleDFA that
conceptually runs its two component machines in parallel onthe same input string.

Mathematical Definition

Let M1 = (Q1,
P

, δ, q1, F1) and M2 = (Q2,
P

, δ, q2, F2) be two DFAs.

The product of M1 and M2 is written M1 × M2 = (Q,
P

, δ, q, F ) where:

• Q = Q1 × Q2.

•
P

is unchanged.

• δ is defined by behavior on pairs of states.

• q = (q1, q2), the pair of initial states.

• The set of accepting states (F) is built either through a union construction or an
intersection construction.

For complete details, see pg 52 of Slind 2004.
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Automata Constructions

Simple Example of Product Construction

Combined behavior of two independent traffic lights ...

Traffic Light 2

Green

Red

Red

Green

Red Red

Red Green Green Red

Green Green

Composed Product: Traffic Light 1 || Traffic Light 2Traffic Light 1

The parallel composition corresponds to an interleaving of the states and transitions for
the individual traffic lights.
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Model Checking

Mathematical Problem Formulation

Given a state-transition graph (M) and a formula (f), the model checking problem aims to
decide ...

... whether the formula (f) is true for all possible runs.

In mathematical terms, model checking solves the problem

M, s| = f.

That is, ...

... find all states ”s” of ”M” such that formula ”f” holds.

If the property does not hold, then a counter example will be provided.
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Model Checking

Simplified Problem Formulation

Model checking problems are composed of variables (V) and transition relations (R) as
described below:

• Variables

V is the set of state variables in the model. Each state variable vi has an associated
domain (D).

A state is simply an assignment to the variables in the set V from their domain.

• Transition Relations

The transition relation (R) captures all possible/valid transitions in the model.

We say that states (s, s*) belong to R, meaning that from state "s" it is possible (or
valid) to transition to state (s*).

The set of all possible states is called the state spaceof the model as is denoted "S".
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Model Checking

Simplified Problem Formulation (Cont’d)

A path is a finite or infinite sequence of states

(so, s1, s2, s3, ...)

such that states (si, si+1) is a valid transition.

We use atomic properties to describe local properties about states.

A basic atomic property has the form:

• Atomic Property

vi = x, or, vi > x, or vi < x. Here x is another variable from variables (V) or a
constant from the domain (D) associated with the variable vi.

More complicated atomic property are constructed from basic atomic properties via
conjunction (∧), disjunction (∨) and negation (¬).
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Model Checking

Simple Example: Two-Variable Problem

Suppose that a simple system has two variables/domains.

Variable Domain

----------------------------------

x {1,2,3}

y {a,b}

----------------------------------

At some point in time, so = (x=2,y=b) could be the state of the system.

A valid transition might be written

( (x=2,y=b), (x=1,y=a) )

A valid path might look like ...

( (x=2,y=b), (x=1,y=a), (x=1,y=b), (x=2,y=a) )
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Model Checking

Atomic Property for Two-Variable Problem

An atomic property might take the form:

f = (x > 1) ∧ (y = b). (3)

We can construct a table of states to see when property f is satisfied.

State (x > 1) (y = b) (x > 1)ˆ(y = b)

===============================================

(x=2,y=b) true true true

(x=1,y=a) false false false

(x=1,y=b) false true false

(x=2,y=a) true false false

-----------------------------------------------

Clearly, only state (x=2,y=b) satisfies the property "f"...
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Flowchart for Model Checking Procedures

Property Satisfied....

Requirements

Formal Representation

Property Specification

Process

Process Modeling

Selection of Model

Model Checking

counter example
Not satisfied plus

Simulation

Location of error

Memory
Insufficient 
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Model Checking

Model Checking Outcomes

Three outcome are possible:

• The property specification is satisfied.

• The property specification fails.

Modeling checking procedures will generate a counterexample, which can then be
simulated to locate the source of the error.

• The model checking procedure fails because of insufficient computer memory.

Iterations of model checking continue until all of the property specification violations have
been repaired.
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Model Checking

Advantages of Model Checking

• No proofs!,

• Fast and automatic,

• Produces counterexamples, and

• No problem handling partial specifications.

• Can find subtle errors that might not be found by conventional testing and simulations.

Weaknesses of Model Checking

• Mainly appropriate for control-intensive applications; less suited to data-centric
applications.

• Only verifies a model of the system, not the system itself.

• It only checks the stated requirements – there is no guarantee of completeness.
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Model Checking

Key Technical Challenges

How to:

• Devise algorithms and data structures that allow us to handle large search spaces?

• Make ...

... design verification procedures an integral part of the design process,

without also causing ...

... unacceptable delays in production or excessive cost?
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Model Checking

Desirable Properties of System Behavior

We would like to design systems having properties that are guaranteed to be satisfied,
including:

• Safety

A safety property asserts that nothing bad happens.

• Liveliness

A liveliness property asserts that eventually something good happens.

A complete treatment of liveliness involves reasoning with temporal logic.

• Progress

A progress property asserts that it is always the case that an action is eventually
executed.

Progress is the opposite of starvation, that is, an action is never executed. (It is also
a restricted form of liveliness).
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Synthesis of Automata from Sequence Diagrams

Definition of Basic- and High-Level Message Sequence Charts

Object 1 Object 2 Object 3

message 3

message 1

message 2

Task 1

Task 2

message 5

message 4

Object 1 Object 2 Object 3

Task 1

Task 2

High−Level Message Sequence Chart

Basic Message Sequence Chart for Task 2

Basic Message Sequence Chart for Task 1

Send Event Receive Event
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Synthesis of Automata from Sequence Diagrams

Processing Basic- and High-Level Message Sequence Charts

3

Task 1 Task 2

intAction

intAction

intAction

message 1

message 2

message 3 message 4 message 5

message 1 message 3 message 4

message 5message 1

Labeled Transition System for Object 1

0 1 2

– p. 36/50



Incremental Synthesis of Automata/Architectures

Incremental Synthesis of Scenarios, Architectures and Constraint Models

Flowchart for incremental synthesis of positive and negative scenarios, architecture,
trace and constraint models:

Architectural Model

Model Checking

Synthesis of Models

Trace Model

Constraint Model

Implied ScenariosPositive or Negative Scenarios

Positive
Scenarios

Negative
Scenarios

Architecture

Traces

Traces

Traces

Source: S. Uchitel (2003).

– p. 37/50



Case Study: Management of Narrow Passageways

Problem Statement

Efficient management of the world’s narrow passageways is needed to relieve
congestion, and facilitate global transportion of goods, e.g., Panama Canal:
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Case Study: Management of Narrow Passageways

Step-by-Step Procedure

Step-by-step procedure for synthesis and validation of concurrent bbject-based models
for management of narrow passageways.

Synthesis

Scope of this paper

High−Level Requirements.

Req 2.

Req 1.

Behavior
Component−Level

System−Level Design

Model Checking

Behavior
Architecture−Level

Composition

Functionality of Management System

Functionality of Vessel System

−− scenario 7

Use Case 4

−− scenario 6
−− scenario 5

Use Case 3

Sequence of messages
between ohjects.

Sequences of tasks

Activity Diagrams

Revise Use Cases and Scenarios .......

Incremental Improvement ......

C
on

st
ra

in
ts

−− scenario 4
−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence  Diagrams

Use Case Diagram

Individual Use Cases
and Scenarios
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Case Study: Management of Narrow Passageways

Case Study: Statement of Functionality

Usecase diagrams for the vessel and waterway management systems

Coast

Terminate

Transit Inquiry

Drive

Halt

Vessel System

Driver

Vessel

<< uses >>

Traffic
Controller

Coast
Guard

Initialize

Management System

Initialize

GPS Position

Analysis

Terminate

Vessel

<< uses >>

Driver

Guard
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Case Study: Management of Narrow Passageways

Basic- and high-level message sequence chart (MSC) specifications for waterway
system functionality.

High−Level Message Sequence Chart

Vessel Driver
Control
Center

Initialize

Note. Similar Sequence Message Charts can be drawn for use
cases: Analysis, Drive, Halt and Terminate.

On

Transit Inquiry

GPS Position

Position

Inquiry Query

Check
Decision

Vessel

Vessel

Driver

Driver

Control
Center

Control
Center Database

Database

Database

Basic Message Sequence Charts

Terminate Inquiry Analysis

GPS Position

Initialize

Drive

Halt
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Case Study: Management of Narrow Passageways

Case Study: Behavior Modeling for Management of Narrow Waterways

Component models for vessel and driver behavior ...

go

Vessel

4E210

E

0 1 3 42

on position

terminate
Driver

go

endAction

halt

position

inquiry

command

endAction
halt

inquiry

decisioncommand
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Case Study: Management of Narrow Passageways

Synthesis of Behavior Models in LTSA.Details to follow...
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Case Study: Management of Narrow Passageways

Implied Scenario in Model of Waterway Behavior

DriverVessel Database

on

position

terminate1

query

on

Ctrlctr

Basic Negative Scenario

Pre−condition

DriverVessel Database

on

position

terminate1

on

Ctrlctr

query
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Generalized Railroad Crossing Problem

A set of trains travel through a region R on multiple tracks in both directions. A sensor
system determines when each train enters and exits region R.

Overly Simplified Problem Setup

Only one track; only one train; details of time and train velocity omitted.

Gate

Train

Zone of ControlIncoming Leaving

Gate Controller

OnFar Far

Sensor 1

Sensor 2

Sensor 3

Before
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Generalized Railroad Crossing Problem

Events and Actions

• Sensor 1 registers a train → Generate event: approaching

• Sensor 2 registers a train → Generate event: close

• Sensor 3 registers a train → Generate event: exit

Automata for Train, Gate and Controller Behavior

3

Controller BehaviorTrain Behavior Gate Behavior

Down

UpFar

Near

On

approaching

exit

close

raise lower

exit

raise 

approaching

lower

0

1

2
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Generalized Railroad Crossing Problem

Composition of System-Level Behavior

System Behavior = (Train‖Gate‖Controller)

Desirable Properties of System Behavior

Given two “positive tolerance” constants ξ1 and ξ2, the problem is to develop a system to
operate the crossing gate that satisfies the following two properties:

1. Safety Property

The gate is down during all occupancy intervals.

2. Utility Property

If t is not in any occupancy interval, nor within ξ1 prior to an occupancy interval, nor
within ξ2 after an occupancy interval, then the gate is up.

Note. The gate is a physical system that requires time to change states (e.g., Up to
Down).
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Generalized Railroad Crossing Problem

Refined Model for Gate Behavior
Refined Gate Behavior

Up

Raising Lowering

Down

g(t) = 90

g(t) = 0

goUp

goDown

lower

raise 

To describe the system formally, we define:

• A gate function g from real times to the interval [0,90], where:

−− g(t)=0 means the gate is down, and

−− g(t)=90 means the gate is up.

• A sequence of “occupancy intervals” where each occupancy interval is a maximal
time interval during which one or more trains are in I.
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Generalized Railroad Crossing Problem

Length of the Train

• Each sensor will measure the absense or lack thereof of a train, and will be activated
by arrival (i.e. the front of the train), and deactivated by departure (i.e., the rear) of
the train.

• Thus, the sequencing of sensor operations will be affected by the length of the train.

• A practical way of handling this is to validate the gate operations for three lengths of
train:

• A really short train,

• A medium length train, and

• A really long train.

Questions

• What would the refined controller look like?

• What happens if two trains come?
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