
ENSE 623 Systems Validation and Verification

Formal Approaches to System Validation/Verification with

Logic

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/68

Table of Contents

1. Working with Timed Systems

2. Mathematical Logic

3. Role of Logic in Systems Engineering

4. Long-Term Goals

5. Hierarchies of Logic

6. Propositional and First-Order Logic

7. Temporal Logic

8. Linear- and Branching-Temporal Logic

9. Examples. Microwave and Traffic Intersection Controller

– p. 2/68

Working with Timed Systems

Definition

Timed systems are those where ...

... timing and scheduling of events are relevant to correct operations

Hard Real-Time Systems

• Correct operation depends of satisfaction of hard deadlines.

Soft Real-Time Systems

• Correct operation depends of satisfaction of "average time" constraints.

Time plays an essential role in the correct operation of:

• Safety-critical systems (i.e., missing a deadline may be disastrous),

• Embedded systems (i.e., systems are part of a larger device), and

• Control systems (i.e., control of some physical system).

– p. 3/68

Working with Timed Systems

Aspects of Development

1. Requirements Specification.e.g., representations for timing of system
inputs/outputs; response times; assumptions about the surrounding

environment.

2. Design.e.g., representations for behavior in high-level architectures ...

3. Implementation. e.g., real-time programming languages

4. Realization. e.g., worst-case execution time, co-ordination and scheduling

of events.

5. Testing. e.g., real-time programming languages.

6. Validation/Verification. e.g., mechanisms to represent timing properties.

– p. 4/68

Mathematical Logic

Mathematical (or formal) logic is ...

... any common framework for building theories.

Theories can be reduced to axioms and rules for inference. A theory "T" is
called a formal theory if:

An algorithm exists for checking the correctness of reasoning using the

principles of T.

Systems of logic provide insight into the nature of design knowledge by
providing a framework in which facts about systems can be formally expressed.

Logic allows for the organization of knowledge and information about
design, which in turn can make evident logical flaws that would otherwise

remain hidden.

– p. 5/68

Mathematical Logic

Example. The Game of Chess

The game of chess falls into the framework of a formal theory.

1. Axioms are the initial positions.

2. Propositions are all the possible positions on the chess board.

3. Rules of inference are the rules of the game.

Rules allow us to ...

... go from one proposition of chess to other ones.

Using the rules of inference, the theorems are all possible positions one can
legally obtain.

– p. 6/68

Working with Logic

Working with Logic ...

1. Logic provides a framework for representing knowledge and reasoning.

2. Knowledge is represented in a declarative way. These expressions state ...

... what is true.

3. Reasoning processes correspond to operations that ...

... state the validity or consistency of a logical assertion.

Inference procedures can ...

... establishnewrelationships from old.

– p. 7/68

Working with Logic

Working with Logic ...

4. Static assertions have a truth value that does not depend of time (e.g.,
1 < 3 is always true).

5. Dynamic assertions are time dependent (e.g., the logical proposition "I am

sleepy" is time varying).

6. Automated reasoning checks for the validity/consistency of a logical
assertions (e.g., Prolog).

Logic is useful for describing ...

... what it means to achieve a task, independent of the details of
operational implementation.

– p. 8/68

Role of Logic in Systems Engineering

Example. Sorting an Array ..

The following schematic

--- -

System that sorts <-------- What is means to

an array. sort an array.

=== =

(HOW) (WHAT)

(Programming Language) (Logic)

=== =

shows the difference between ...

... what it means to sort an array (expressed in terms of logic) and a

specific implementations (step-by-step details for how an array would be
organized).

– p. 9/68

Role of Logic in Systems Engineering

Traditional and Desired Pathways of System Development

Engineering Analysis

Informal
Specification

Detailed
Design

Implementation
Running
System

Traditional Pathway of Development

Desired Pathway of Development

Formal
Specification

Informal
Specification

Implementation
Running
System

Proof / Test

In the testing approach to development, we say ...

... the system is correct because it does this and that, then it does this and

that, ... and so forth.

– p. 10/68

Role of Logic in Systems Engineering

Note ..

• Testing relies on actions and temporal sequences.

• Engineering analysis plays a central role in verifying system functionality.

Desired Pathway of System Development

By making "logic" the main tool for model/system construction, we hope that ...

... a system operation will be correct by construction (i.e., the system does

exactly what it’s supposed to do).

We say:

The system is correct because this is true at that point, and this is true at
that point and so forth.

– p. 11/68

Role of Logic in Validation/Verification

The use of logic in validation and verification serves three purposes:

1. Logic promotes structured thinking and development of frameworks for

thinking about complex problems.

2. Logic helps prune the search space of possible designsby eliminating designs

that are logically inconsistent or logically unattainable.

3. Logic can be used to construct improved computer-based tools.

We need formal specifications that are capable of ...

....building models of system behavior (in an unambiguous manner)

and then

... examining the properties of these models.

– p. 12/68

Role of Logic in Systems Engineering

Traffic Light Example

1. Once green, the traffic light cannot immediately become red.

2. Eventually the light will be red again.

3. Once green, the light becomes red after being yellow for some time,
between being green and red.

Elevator Example

1. An elevator request must ultimately be satisfied.

2. The elevator never misses a floor for which a request is pending.

– p. 13/68

Long-Term Goals

What we need to learn

To address these concerns, we need to learn how to:

1. Reason logically,

2. Describe reasoning processes with a formal notation,

3. Build proofs with this notation...

4. Formalize English/Mathematical statements in logic.

5. Formalize a system specification...

Specification techniques must be ...

... formal enough to verify and validate the system specification with
respect to the requirements.

– p. 14/68

Hierarchies of Logic

Logic Purpose and Support

Propositional Propositional logic deals with sentences (propositions)

that are either true or false. Complex sentences are con-
structed from simple sentences using logical connectives.

First Order First order logic is an extension of propositional logic. For-
mulas are constructed from predicates (called truth func-

tions), plus universal (for all) (A) and extensional (there
exists) (E) quantifiers.

Temporal Temporal logic describes how conditions of a system

change over time – that is:

We want not only to know what is true, but when?

– p. 15/68

Hierarchies of Logic

Logic Purpose and Support

Spatial Spatial logic is concerned with regions and their connec-

tion, allowing one to address issues of the form:

We want not only to know what is true, but where?

Spatio-
Temporal

When spatial logics are combined with temporal logic (i.e.,
producing a so-called spatio-temporal logic), the resulting

theory allows one to address concerns of the form:

We want not only to know what is true, but when

and where?

– p. 16/68

Propositional Logic

Propositional logic deals with sentences that are either true or false.

Sentences are composed of ...

... propositions, logical connectives and left/right parentheses.

Together, these components ...

... define the propositional logic alphabet.

Atomic sentences consist of a single propositional symbol, e.g., A is true is

written:

A =| true

– p. 17/68

Propositional Logic

Connectives in Propositional Logic

Complex sentences are constructed from simple sentences ...

Connective Symbol Formal Name

not ¬ negation

and ∧ conjunction

or ∨ disjunction

if .. then → conditional

...if and only if ↔ biconditional

The conjunction and disjunction symbols act on pairs of propositions.

– p. 18/68

Propositional Logic

Semantics/Reasoning

Reasoning is the process of drawing (inevitable) conclusions from facts. Often,

reasoning involves statements of the form:

If S takes on the value true, then T is true as well.

In mathematical notation we write:

S −→ T (1)

The converse statement S is implied by T is written:

S ←− T (2)

– p. 19/68

Propositional Logic

Semantics/Reasoning

• Propositional logic does not require any relation causation or relevance
between "S" and "T".

• Hence, S −− > T may evaluate to true even if in an "English sense" they

seem completely unrelated.

– p. 20/68

Propositional Logic

Syntactical Abbreviations

1. A, B, C instead of A1, B1, ... C1.

2. (F1 → F2) instead of (¬F1 ∨ F2)

3. (F1 ↔ F2) instead of (F1 ∧ F2) ∨ (¬F1 ∧ ¬F2)

4. V i=n

i=1 instead of (...((F1 v F2) v F3)...Fn)

5. Ai=n

i=1 Fi instead of (...((F1 ∧ F2) ∧ F3)...Fn)

At this point, formulae are just strings without a meaning.

Downstream, we need to ...

... add semantics (meaning) to logic.

– p. 21/68

Propositional Logic

Example. Truth Table

A truth table for a complex sentence specifies the truth value for each possible
assignment of values to its components.

p q p ∨ q p ∧ q p→ q p↔ q

T T T T T T

T F T F F F

F T T F T F

F F F F T T

Note. Propositional logic is not powerful enough to study and reason about

individual objects.

– p. 22/68

Propositional Logic

Example. Truth Table. Key Points ...

In the p and q columns are listed all four possible combinations of truth values

for p and q, and in the (p ∧ q) (conjunction) and (p ∨ q) (disjunction) columns
we find the associated truth values.

Reading across the third row tells us that,

1. If p is false (F) and q is true (T), then p ∧ q is false (F) (i.e., at least one of p
and q is not true).

2. If p is false (F) and q is true (T), then p ∨ q is true (T) (i.e., at least one of p

and q is true).

– p. 23/68

Propositional Logic

Propositional Calculus and Horn Clauses

A Horn clause in Propositional Calculus is a formula of the form:

B1 ∧B2 ∧ ∧Bn −−− > H. (3)

Here, Bi and H are atomic formulae.

The corresponding clause in Prolog (see examples below) takes the form:

H : −B1, B2,∧ · · · ∧Bn (4)

– p. 24/68

Propositional Logic

Logic of Horn Clauses

The logic of Horn clauses has ...

... a sound and complete proof theory which uses a single inference rule,

called resolution, to infer new clauses.

Given the pair of clauses:

A1A2 ∧ ∧An −−− > H
′

. (5)

and B1B2 ∧ ∧Bn −−− > H. (6)

If H’ is equal to Bi for some reason, then we may infer the clause:

B1B2 ∧A1 ∧ ∧An... ∧Bn −−− > H. (7)

– p. 25/68

Propositional Logic

Limitations of Propositional Logic

• It’s simple!

• Sentences are either true or false.

Propositional logic is not powerful enough to ...

... study and reason about individual objects, their properties and

relationships (e.g., as they occur in number theory, groupsand sets).

– p. 26/68

First-Order Logic

The basic ingredients to number theory, groups and sets are:

• A domain,

• Designated individuals from the domain,

• Relations and functions.

First order logic is an extension of propositional logic.

Formulas are constructed from ...

... predicates (called truth functions), plus universal (A) and extensional

(E) quantifiers.

• The universal quantifier (A) denotes "for all" or "for each".

• The extensional quantifier (E) denotes "there exists"

– p. 27/68

First-Order Logic

Predicate Calculus

Predicate calculus extends propositional calculus.

In this new setting, the Horn clause is now defined as a formula of the form:

forall(x1)forall(x2)B1B2 ∧ ∧Bn → H. (8)

The arguments x1, x2, and so forth are variables that occur in ...

... any of theBi or H.

– p. 28/68

First-Order Logic

Example. Poor Students

The English statement

”All students are poor”

can be written/translated:

forall(S) [student(S)→ poor(S)] (9)

Here S can be replaced by many different unique students.

– p. 29/68

First-Order Logic

Example. Statements about Brothers

General statements about things can ...

... reduce the number of facts that need to be written.

For example:

forall(A, B)[brother(A, B)→ brother(B,A)] (10)

replaces half the possible statements about brothers.

– p. 30/68

First-Order Logic

Inference Rules

In first order logic,

... new facts can be inferred from stated facts via inferencerules.

For example:

1. Universal Elimination.

If (Ax)P(x) is true, then P(c) is true, where "c" is a constant in x.

2. Existential Introduction.

If P(c) is true, then (Ex)P(x) is inferred.

3. Existential Elimination.

From (Ex)P(x) infer P(c).

– p. 31/68

First-Order Logic

Example. What Mark eats?

Consider the statement and set

(Ax) Eats (Mark, x)

and

x is the set { cereal, toast, eggs, sausage }

we can infer that all of the statements

Eats (Mark, cereal)

Eats (Mark, toast)

Eats (Mark, eggs)

Eats (Mark, sausage)

– p. 32/68

Rule-Based Approaches to Problem Solving

Benefits of Rule-Based Approaches to Problem Solving

1. Rules that represent policies are easily communicated and understood,

2. Rules retain a higher level of independence than logic embedded in systems,

3. Rules separate knowledge from its implementation logic, and

4. Rules can be changed without changing source code or underlying model.

A rule-based approach to problem solving is particularly beneficial when ...

... the application logic is dynamic (i.e., where a change ina policy needs to be
immediately reflected throughout the application)

and ...

... rules are imposed on the system by external entities.

Both of these conditions apply to the design and management of engineering systems.

– p. 33/68

Forward and Backward Chaining

Forward Chaining

Starts with the available data and ...

... uses inference rules to extract more data (from an end user, for example) until a
goal is reached.

Backward Chaining

Starts with a list of goals (or a hypothesis) and ...

... works backwards from the consequent to the antecedent tosee if there is data
available that will support any of these consequents.

– p. 34/68

Example of Backward Chaining

Use backward chaining to determine the color of a pet (from Wikipedia).

The Rules

Rule 1: If X croaks and eats flies Then X is a frog

Rule 2: If X chirps and sings Then X is a canary

Rule 3: If X is a frog Then X is green

Rule 4: If X is a canary Then X is yellow

The Facts

Fact 1: Fritz croaks

Fact 2: Fritz eats flies

Fact 3: Tweety eats flies

Fact 4: Tweety chirps

Fact 5: Tweety is yellow

– p. 35/68

Example of Backward Chaining

The Question?

Who is a frog?

The Evaluation of the Rules

1. ? is a frog

Based on rule 1, the computer can derive:

2. ? croaks and eats flies

Based on logic, the computer can derive:

3. ? croaks and ? eats flies

Based on the facts, the computer can derive:

4. Fritz croaks and Fritz eats flies

The Answer

Fritz is a frog.

– p. 36/68

Reasoning with Prolog

The object of automated reasoning is to ...

... write computer programs that assist in solving problemsand in answering
questions requiring reasoning.

Prolog provides computational assistance via automated reasoning.

Three types of statement are supported:

o FACTS: brother(dave,mike).

o RULES: brother(A,B) :- brother(B,A).

o QUERIES:?-brother(mike,dave).

Prolog takes the query and ...

...starting at the top of the database of FACTS and RULES, looks for a match

– p. 37/68

Reasoning with Prolog

Example. Evaluation of a query ...

o ?-brother(mike,dave) does NOT match 1. but does match 2.

1. brother(dave,mike).

2. brother(A,B) :- brother(B,A).

o ?-brother(mike,dave) matches 2. and instantiates A

to be dave, and B to be mike

1. brother(dave,mike).

2. brother(A,B) :- brother(B,A).

o This gives a new query (goal)

?-brother(dave,mike)

which matches 1. and so returns yes as output.

1. brother(dave,mike).

2. brother(A,B) :- brother(B,A).

– p. 38/68

Reasoning with Jena

What is Jena?

Jena is a Java framework for the development of applications for the the Semantic Web.
It provides ...

... interfaces and classes for reading, processing and writing RDF data in XML,
N-triples and Turtle formats,

and

... a rule-based inference engine for reasoning with RDF andOWL data sources.

Benefits ...

• Problem solving functionality can be implemented with combinations of user-defined
rules and if needed, builtin functions.

• Problems can be solved using forward chaining, backward chaining, and
combinations of forward and backward chaining.

– p. 39/68

Reasoning with Jena

Framework for Ontology-Enabled Traceability and Design Assessment

Pellet Reasoner
Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements
define

System Behavior

System Structure

Engineering Model

Classes

Relationships

Ontologies and Models Design Rules and Reasoner

Design Rules

Examples: See the slides from ENSE 622.

– p. 40/68

Reasoning with Prolog

Limitations of First-Order Logic

1. It is possible to write expressions that cannot be evaluated in polynomial
time.

2. Classical logics (e.g., first-order logic) are good for describing conditions

that are static.

– p. 41/68

Temporal Logic

Purpose ...

Temporal logic describes how so-called "static" conditions change over time –
that is,

We want not only to know what is true, but when.

More formally, temporal logic is (Russell, 2003):

... a specialized logic in which each model describes a complete trajectory

through time (usually linear or branching) rather than a single static
relational structure.

– p. 42/68

Temporal Logic

Usefulness ...

Temporal logic is particularly useful for ...

... describing required properties of concurrent systems,where individual

processes must be coordinated in order for correct behaviorto occur.

Behavior means ...

... how a system will react to external stimuli and internal events.

Constraints tend to fall into two categories:

• Events and event orderings...

• Quantitative temporal constraints...

– p. 43/68

Mathematical Models of Time

Discrete Time versus Dense Time

1.60

Discrete Time Model

Real Time Model

210

0.00 0.33 0.55 0.93 1.33

Mathematical Notions of Time (Furia, 2010).

• A discrete set consists of isolated points (e.g., the integers 0, 1, 2, ...)

• A dense set (ordered by <) is such that for every two points t1, t2, such that

t1 < t2, there is always another point in-between (i.e., t1 < t3 < t2).

– p. 44/68

Working with Discrete Time

Definition and Consequences

A temporal domain is discrete if ...

... there exists two instants in time between which a third instant cannot

be determined.

In a discrete time domain (Sidorova, 2007):

1. Time is advanced by discrete steps and modeled by non-negative integers.

2. Specific tick events are used to model the advance of one time units,

3. Events can only happen at integer time values,

5. The delay between any two events is always a multiple of one time unit.

The main advantage of discrete-time representations is conceptual simplicity.

– p. 45/68

Working with Dense Time

Definition and Consequences

A temporal domain is ...

... dense with respect to the relationship< if between two instants there is

always a third.

Changes in state can happen at any point in time. As a result:

1. Time is modeled by real numbers,

2. The delay between two events can be arbitrarily small,

3. Invariance against time scale,

Use dense models of time for asynchronous systems. Complicated!

– p. 46/68

Properties of Time

Properties of time can be described through precedence relations.

Relation Mathematical Representation

Transitivity For all x,y,z, if x < y and y < z then x < z.

Nonreflexivity For all x, Not (x) < x.

Linearity For all x,y, x < y or x = y or x > y.

Left Linearity For all x,y,z, y < x and z < x implies y < z or y = z or z < y.

Begin There exists an x and not a value of y such that y < x.

End There exists an x and not a value of y such that x < y.

Predecessor For all x, there exists y such that y < x.

Sucessor For all x, there exists y such that x < y.

– p. 47/68

Properties of Time

A few points to note:

1. The properties "begin" and "end" state that the temporal domain is

bounded in the past (future).

2. The properties "predecessor" and "successor" show that the temporal

domain is unlimited in the past (future).

These relationships dictate the set of formulae that temporal logics can
express.

– p. 48/68

Temporal Logic

Relationships between Time Intervals(Adapted from Bellini et al., 2000).

Operations can also be defined to express relationships between intervals of
time.

B contains A

Interval A

B before A B after A

B meets A B metby A

B finished by A

B during A

B finishes A

B starts A

B equals A

– p. 49/68

Temporal Logic

Everyday Example of Temporal Logic

For example, you frequently hear comments like

..yes, I took care of that task on Tuesday.

or

...yes, the year ends midnight, December 31.

Operators are needed to describe relationships among time intervals (e.g.,
looking forward, looking backward, contained within, separated ...etc).

– p. 50/68

Linear Temporal Logic

Linear Temporal logic (LTL)

Linear time describes a single possible time line.

A model of linear-time temporal logic (LTL) is

...an infinite linear sequence of states...

where each point in time has a unique successor.

Temporal formulas are ...

... evaluated over this sequence of states together with an index i=0,1,2,...

of the i’th state.

– p. 51/68

Branching Temporal Logic

Branching Temporal Logic (BTL)

A model of branching temporal logic (BTL) is ...

... an infinite sequence of states where each point in time mayhave

multiple successors.

For both cases (linear and branching time), ...

... system behavior is described in terms of actions and state sequences.

– p. 52/68

Branching Temporal Logic

Pathway From FSMs to Graphs to Computational Trees

So where to models of branching time come from?

Example path: ABACCCB

CB

A Unfolding

Behavior of a finite state machine corresponds to sequences of states that are
visited .. an example path is: ABACCC...

– p. 53/68

Applications of Temporal Logic

Given a transition system (T) we want to ask questions of the following form

(Merz):

Avoidance of Undesirable States

• Are any "undesired" states reachable in "T", such as those representing a

deadlock or violation of mutual exclusion?

Avoiding States/Actions in the Future

• Are there any runs of "T" such that, from some point onwards, some

"desired" state is never reached or some action is never executed?

Reachability

• Is some initial system state of "T" reachable from every state? In other

words, can the system be reset?

– p. 54/68

Temporal Logic Qualifiers

Path Qualifier (same as for fisrt-order logic)

Operator Interpretation

A For every path.

E There exists a path.

State Quantifiers

Operator Interpretation

Fp p holds eventually (or sometimes) in the future.

Gp p holds always in the future.

Xp p holds next time.

pUq p holds until q holds.
– p. 55/68

Temporal Logic Qualifiers

Visual Representation of LTL Semantics

– p. 56/68

Temporal Logic Qualifiers

Visual Representation of CTL Semantics

– p. 57/68

Examples of LTL Semantics

LTL can be used to express constraints on safety, liveness and fairness of

system behavior. e.g.,

Safety

• It never happens that a train is arriving and the road crossing gate is up.

G (¬(train.arriving ∧ gate.up)) (11)

Liveness

• If a system is provide input, then eventually it will generate output.

G(system.input→ system.output) (12)

– p. 58/68

Examples of LTL Semantics

Fairness

• Infinitely often send.

GF (system.send) (13)

Strong Fairness

• Infinitely often send implies infinitely often receive.

GF (system.send)→ GF (system.receive) (14)

– p. 59/68

Example: Operation of a Microwave Oven

Let us assume that the graph of states and transitions for operation of a

microwave is as follows (Source: Adam Porter).

Start

StartStartStart
Close Close

Close Close

Close

Heat

Heat

Error

Error

Error states!!! Error free states.....

1

2

3

4

5

6

7

~ Heat

~ Close

~ Heat
~ Error ~ Error

~ Error

~ Start

~ Error
~ Heat

~ Start

~ Start
~ Close
~ Heat
~ Error

~ Heat

– p. 60/68

Example: Operation of a Microwave Oven

The microwave operation – door position, cooking .. errors – can be captured
has four variables/domains.

Variable Domain

===

operation { ˜start, start }

cooking { ˜heat, heat }

door { ˜closed, closed }

error state { ˜error, error }

----------- --------------------------

• The top state is the initial/start state.

• The oven has not started; the door isn’t closed;

• The oven is not heating;

• There are no errors.

– p. 61/68

Example: Operation of a Microwave Oven

Errors

1. The oven starts, but the door isn’t closed; and

2. The oven starts, but the oven will not heat.

Properties

The properties that we would like to check:

1. The oven doesn’t heat up until the door is closed (safety property). The

translation of no heat up holds until door closedis

(¬heat_up) ∪ door_closed. (15)

– p. 62/68

Example: Operation of a Microwave Oven

Properties (continued ...)

2. If the oven starts, it will eventually start cooking (liveliness property), i.e.,

AG(Start ∧AFHeat) (16)

3. It must be possible to correct errors.

AG(Error ∧AF¬Error) (17)

– p. 63/68

Example: Operation of a Traffic Light Controller

High-Level Statechart Model

Malfunction

Normal Flashing

Reset

Points to note:

• At the high-level of behavior abstraction, the traffic light operation is in either

a normal state of a flashing error state.

• A malfunction event moves the system from normal to flashing state.

Conversely, a reset event moves the system from a flashing state to a
normal state.

– p. 64/68

Example: Operation of a Traffic Light Controller

Detailed Statechart Model

IN (E−W.Red)

Flashing

Normal
N−S Direction

Green Yellow

Red

Red

Green Yellow

MalfunctionReset

tm (N−S−Green−Time)

tm (E−W−Green−Time)

E−W Direction

tm (2)

tm (2)

IN (N−S.Red)

– p. 65/68

Example: Operation of a Traffic Light Controller

Points to note:

• The composite normal state of operation is composed of two concurrent

blocks – the N-S signal and the E-W signal.

Each traffic light can be in one of three states, red, yellow and green.

• Representation of the overall traffic light system operation is simplified
through the use of concurrent behaviors.

A flat state machine representation would require 9 states:

{ red, green, yellow } x { red, green, yellow }.

Here, concurrent behaviors can be represented with only six primitive states.

– p. 66/68

Safety and Liveliness for Traffic Light Controller

Safety

• The North-South traffic light and East-West traffic light should never be
simultaneously green:

AG (¬ (N − S.Red ∧ E −W.Red)) (18)

Liveliness

• If a traffic light become yellow, then it should remain yellow and eventually
become green.

AG((N − S.Y ellow→ AF (N − S.Green)) (19)

AG((E −W.Y ellow→ AF (E −W.Green)) (20)

– p. 67/68

References

• Bellini P., Mattolini R., and Nesi P., Temporal Logics for Real-Time System
Specification, ACM Computing Surveys, Vol. 32, No. 1, March 2000.

• Furia C.A., Mandrioli D., Morzenti A., and Rossi M., Modeling Time in
Computing: A Taxonomy and Comparative Survey, ACM Computing Surveys

Paper, Vol. 42, No. 2, February 2010.

• Jain R., Model Checking of State/Event Systems for Control and Data Path
Verification, BS Honours Thesis, IIT Kharagpur, India, May, 2000.

• Russell S., and Norvig P., Artificial Intelligence, Sixth Edition, Prentice-Hall

Series in Artificial Intelligence, Prentice Hall, 2003

• Sidorova N., Lecture Notes in Process Modeling, Department of
Mathematics and Computer Science, Eindhoven University, Netherlands,

2007

– p. 68/68

	ptsize {14} Table of Contents
	ptsize {14} Working with Timed Systems
	ptsize {14} Working with Timed Systems
	ptsize {14} Mathematical Logic
	ptsize {14} Mathematical Logic
	ptsize {14} Working with Logic
	ptsize {14} Working with Logic
	ptsize {14} Role of Logic in Systems Engineering
	ptsize {14} Role of Logic in Systems Engineering
	ptsize {14} Role of Logic in Systems Engineering
	ptsize {14} Role of Logic in Validation/Verification
	ptsize {14} Role of Logic in Systems Engineering
	ptsize {14} Long-Term Goals
	ptsize {14} Hierarchies of Logic
	ptsize {14} Hierarchies of Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} Propositional Logic
	ptsize {14} First-Order Logic
	ptsize {14} First-Order Logic
	ptsize {14} First-Order Logic
	ptsize {14} First-Order Logic
	ptsize {14} First-Order Logic
	ptsize {14} First-Order Logic
	ptsize {14} Rule-Based Approaches to Problem Solving
	ptsize {14} Forward and Backward Chaining
	ptsize {14} Example of Backward Chaining
	ptsize {14} Example of Backward Chaining
	ptsize {14} Reasoning with Prolog
	ptsize {14} Reasoning with Prolog
	ptsize {14} Reasoning with Jena
	ptsize {14} Reasoning with Jena
	ptsize {14} Reasoning with Prolog
	ptsize {14} Temporal Logic
	ptsize {14} Temporal Logic
	ptsize {14} Mathematical Models of Time
	ptsize {14} Working with Discrete Time
	ptsize {14} Working with Dense Time
	ptsize {14} Properties of Time
	ptsize {14} Properties of Time
	ptsize {14} Temporal Logic
	ptsize {14} Temporal Logic
	ptsize {14} Linear Temporal Logic
	ptsize {14} Branching Temporal Logic
	ptsize {14} Branching Temporal Logic
	ptsize {14} Applications of Temporal Logic
	ptsize {14} Temporal Logic Qualifiers
	ptsize {14} Temporal Logic Qualifiers
	ptsize {14} Temporal Logic Qualifiers
	ptsize {14} Examples of LTL Semantics
	ptsize {14} Examples of LTL Semantics
	ptsize {14} Example: Operation of a Microwave Oven
	ptsize {14} Example: Operation of a Microwave Oven
	ptsize {14} Example: Operation of a Microwave Oven
	ptsize {14} Example: Operation of a Microwave Oven
	ptsize {14} Example: Operation of a Traffic Light Controller
	ptsize {14} Example: Operation of a Traffic Light Controller
	ptsize {14} Example: Operation of a Traffic Light Controller
	ptsize {14} Safety and Liveliness for Traffic Light Controller
	ptsize {14} References

