
ENSE 623 Systems Validation and Verification

Model-Based Design with LTSA

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/37

Table of Contents

1. Model-Based Design with LTSA

2. Behavior Modeling in LTSA

3. Finite State Processing Language

4. Compositional Model Checking with LTSA.

5. Examples .. lots of examples.

– p. 2/37

Model-Based Design with LTSA

The labeled transistion system analyzer (LTSA) is a tool for:

...validating communication and sequencing among entities in systems containing
concurrent behaviors. LTSA mechanically checksthat the specification of a
concurrent system satisfies the properties required of its behavior.

In LTSA ...

... processes correspond to sequences of actions.

The power of LTSA lies in its ability to link processes through

... shared actions and compose processes side by side to create systems running
concurrently on many levels.

Spatial/temporal design is deliberately abstracted from from modeling consideration.

The textual representation is the finite state process (FSP) language. Labeled transition
systems (LTSs) are the graphical representation.

This tool runs as an applet on JAVA Runtime Environment 1.3 or higher.

– p. 3/37

Model-Based Design with LTSA

Pathway from Requirements to Architecture-Level Design

Check traces of interest ...

Requirements

Check properties of interest
Model

Identify main events, actions, and interactions
Identify and define main processes ...
Identify and define properties of interest ...
Structure processes into an architecture

Scenarios / Use case models....
Properties of interest

Goals of the system...

A top-down specification of required behavior for components can be specified through
the use of visual modeling languages such as UML.

– p. 4/37

Behavior Modeling with LTSA

Systems are modeled as networks of interacting finite state machines

communication.

FSM FSM

communication.

Models of system-level behavior are synthesized from component- and subsystem-level
behaviors.

Input from
surrounding environment

Messages

Interface

Systems correspond to a network
of communicating objects.

O O O O
1 2 3 4

Component
Behavior
Models

System−Level
Behavior
Models

from Component−Level Behavior Models
Synthesis of System−Level Behavior Models

S
yn

th
es

is
 o

f B
eh

av
io

r
M

od
el

s

– p. 5/37

Behavior Modeling with LTSA

Schematic of components in LTSA

– p. 6/37

Behavior Modeling with LTSA

The LTSA Components

1. LTSA Editor

The LTSA editor is used to write FSP models and check them for deadlocks.

2. LTSA Draw

Draws the state diagram of the model and animates with LTSA LTSA animator.

When the state of an object changes in the LTSA animator, the corresponding state
in the LTS Draw diagram also changes.

3. LTSA Animator

Simulates behavior of the model/system by stepping through the system actions and
events.

A node corresponds to a possible state in the system. Edges correspond to a change of
state in the system due to an event.

– p. 7/37

Finite State Processing Language

The Finite State Processing Language (FSP) contains:

Actions (including shared and guarded actions),

• Identify with a name each possible event of importance.

• If concurrent actions have common elements, then there will be interleaving of their
behaviors linked through common actions.

Traces (and sets of Traces)

• System execution corresponds to a step-by-step sequence of actions.

• Some systems will execute different ways on different occastions – therefore, all
traces of actions are important.

To understand how a process executes we can build ...

... a state machine representation of the FSP execution.

– p. 8/37

Finite State Processing Language

FSP also supports:

Parallel Composition of Processes

• Given two labeled transition systems (LTSs) P1 and P2, we denote the parallel
composition P1‖P2 as the LTS that synchronizes actions common to both processes
and interleaves the remaining actions.

• By extension the architectural-level behavior model is defined by:

Architecture-Level Behavior Model = P1‖P2‖P3 · · ·Pn

where Pi is the finite state model for the i-th component among n interacting
components.

• Joint behavior is the result of all LTSs executing asynchronously, but synchronizing on
all shared message labels.

• At the architecture level, labeled transition system nodes represent system-level
states, which, in turn, correspond to specific combinations of component-level states.

– p. 9/37

Behavior Modeling with LTSA

Example 1. Behavior of a Three-Way Switch

Consider the concurrent behavior of three switches working together.

The FSP model for behavior of a single switch is:

SWITCH = (on->off->SWITCH).

Models for two and three switches:

|| TWO_SWITCH = (a:SWITCH || b:SWITCH).

|| SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).

– p. 10/37

Behavior Modeling with LTSA

Example 1. Animator Box for Behavior of a Three-Way Switch

For each switch there is one LTS, labeled:

s.1:SWITCH, s.2:SWITCH s.3:SWITCH.

– p. 11/37

Behavior Modeling with LTSA

Example 2. Modeling Behavior of a Door and Handle

In the fragment of LTS code:

HANDLE = (down -> up -> HANDLE).

DOOR = (open -> close -> DOOR).

defines processes for a handle and a door, each having behavior defined by transitions
between two states.

• The alphabet for the HANDLE process is (down, up).

• The DOOR process has an alphabet (open, close).

• Accordingly, for the handle and door, transitions are up and down and open and
close, respectively.

• Behavior of the handle is constrained to follow the action sequence: down -> up ->

down -> up -> down and so on.

– p. 12/37

Behavior Modeling with LTSA

Example 2. Composition of the Door and Handle Processes

||DOORWAY = (HANDLE || DOOR).

Results in:

– p. 13/37

Behavior Modeling with LTSA

Example 2. Interpretation of Composed Behavior

The doorway process moves among four states having the following interpretation:

Component behaviors Composed behavior

------------------------------ ---------------------------------------

Handle System Door System System Tuple Simplified Notation

============================== =======================================

up close (up, close) State 0

up open (up, open) State 1

down open (down, open) State 2

down close (down, close) State 3

============================== =======================================

Note. Because the alphabet of actions for door (i.e., open, close) and handle (i.e., up,
down) are disjoint, the door and handle processes can advance in any order, subject to
the action-sequence constraints within each process.

– p. 14/37

Behavior Modeling with LTSA

Simultaneous Execution of Shared Actions

When action names in a process composition are common, these actions are said to be
shared.

LTSA uses shared actions as ...

... the mechanism to synchronize interactions among processes.

While the shared actions may be arbitrarily interleaved,

... the shared actions must be executed simultaneously by all participating
processes.

– p. 15/37

Behavior Modeling with LTSA

Example 3. Doorway Process Model with Action Relabeling andShared Actions

Consider the script of FSP code and corresponding LTS:

||DOORWAY1 = (HANDLE || DOOR)/{down/open,up/close}.

||DOORWAY2 = (HANDLE || DOOR)/{open/down,close/up}.

Points to note:

• In DOORWAY1 the action names close and open are changed to up and down,
respectively.

• In DOORWAY2 the action name are switched.

– p. 16/37

Behavior Modeling with LTSA

Deterministic Choice

• If “x” and “y” are actions, then

(x->P | y->Q)

describes a process which initially engages in either the actions x or y.

The execution of action x will have subsequent behavior described by P. Similarly,
the execution of y will have subsequent behavior described by Q.

Non-Deterministic Choice

• The process

(x->P | x->Q)

is non-deterministic because after the action x, behavior may be described by either
process P or process Q.

– p. 17/37

Behavior Modeling with LTSA

Example 4. Sensor Model that involves Deterministic Choice

This scenario can be easily implemented via,

SENSOR = (engaged -> released -> SENSOR

| poling -> SENSOR).

LTS for Sensor Behavior

– p. 18/37

Behavior Modeling with LTSA

Example 4. Toin Tossing Model that involves Non-Deterministic Choice

read

Scenario ... Behavior Model

Heads TailsStart

read

toss

toss

Set of states = {Start, Heads, Tails}; Set of actions = {toss, read}.

FSP code:

START = (toss -> HEAD -> read -> START

| toss -> TAIL -> read -> START).

– p. 19/37

Behavior Modeling with LTSA

Definition of Tagged Processes

Individual processes can be tagged, thereby providing a mechanism ...

... for more than one copy of a process to be used and uniquely identified in a
system model.

The notation a:P prefixes each action label in the alphabet of process P with the label a.

Example 6. Process Behavior in a Two-Sensor System

The fragment of code:

SENSOR = (engaged -> released -> SENSOR

| poling -> SENSOR).

||SENSORSYSTEM = (a:SENSOR || b:SENSOR).

creates a composite behavior model from two individual sensor behaviors (i.e.,
a:SENSOR and b:SENSOR).

– p. 20/37

Behavior Modeling with LTSA

LTS and Composite State Interpretation

--

Sensor System a:SENSOR b:SENSOR Interpretation

==

Composite state 0 state 0 state 0 a and b are poling

Composite state 1 state 0 state 1 a is poling, b is engaged

Composite state 2 state 1 state 1 a and b are both engaged

Composite state 3 state 1 state 0 a is engaged, b is poling

==

– p. 21/37

Behavior Modeling with LTSA

Guarded Actions

An action that is conditional on a particular condition being true is terms a guarded
action.

The FSP syntax for guarded actions is

(when B x->P | y->Q)

When guard B is true, actions x and y are both eligible to be chosen. Otherwise, only
action y can be chosen.

– p. 22/37

Behavior Modeling with LTSA

Example. Convoy of Three Ships Traversing a Lock System

const N = 3 // Number of ships passing through lock ...

const M = 4 // Number of states in holding pattern queue...

range IQ =1..M // Queue count

// Define input/output queues

QUEUEIN = QUEUEIN[1],

QUEUEIN[i:IQ] = (when (i<M) [i].arrive -> QUEUEIN[i%N+1]).

QUEUEOUT = QUEUEOUT[1],

QUEUEOUT[i:IQ] = (when (i<M) [i].depart -> QUEUEOUT[i%N+1]).

// Model spaces in lock

LOCK = SPACES[1],

SPACES[i:0..1] = (when(i>0) [j:1..N].arrive -> SPACES[i-1]

| when(i<1) [j:1..N].depart -> SPACES[i+1]).

// Create model of controled lock system behavior ...

||CONTROL = (LOCK || QUEUEIN || QUEUEOUT).

– p. 23/37

Behavior Modeling with LTSA

Structure Diagram and LTS

The lock is a bounded buffer of maximum capacity one.

[1..3].arrive LOCKQUEUEIN QUEUEOUT

CONTROL

[1..3].depart

– p. 24/37

Behavior Modeling with LTSA

Modeling of Shared Resources

In the previous example, ...

... orderly use of the lock system was enforced through the use of queue processes.

A second possibility is to ...

... to define independent ship processes, and then simply state that the lock system
process is a shared resource that can only be used by one ship process at a time.

With FSP, this is achieved with ...

... the double-colon syntax::, as in{a1, a2, .. ay}::P.

The latter replaces every label n in the alphabet of P with labels a1.n, a2.n through
ay.n.

– p. 25/37

Behavior Modeling with LTSA

Example. Lock Scheduler Modeled as a Shared Resource

// Define ship and scheduler processes, then compose behavior model..

SHIP = (approach -> lock.acquire -> lock.transit -> lock.release ->

depart -> SHIP).

SCHEDULER = (acquire -> transit -> release -> SCHEDULER).

||LOCK = (a:SHIP || b:SHIP || c:SHIP || {a,b,c}::lock:SCHEDULER) \

{a.approach,a.depart,b.approach,b.depart,c.approach,c.depart}.

Structure Diagram for Lock Scheduler

LOCK

c:SHIP

b:SHIP

a:SHIP

lock:SCHEDULER

lock

lock

lock

acquire

transit

release

– p. 26/37

Behavior Modeling with LTSA

LTS for Lock Scheduler

– p. 27/37

Model Checking in LTSA

Compositional Approach to Model Checking

Procedure for definition of property automata in LTSA ...

2

Property Automaton in LTSA

Deterministic Finite State Machine

Property

translation

a b

c
d

a b

d
c

{ b, c, d }

{ a, c, d }

{ a, b }

−1 0

0

1

1

2

– p. 28/37

Model Checking in LTSA

Definition of Safety Properties

Safety properties are specified in FSP by property processes (a.k.a., determinstic
finite-state machines called property automata).

A safety property ”P” defines a deterministic process that asserts any trace,
including actions in the alphabet of P, will be accepted by P.

Thus, if "P" is composed with "S" then the trace of actions in the set:

P intersction S

must also be valid traces of P.

Otherwise an error occurs.

Any deviation from this order results in a safety error.

– p. 29/37

Model Checking in LTSA

Procedure for Evaluation of Safety Properties

Visual representation of system C composed from processes A and B, and, validation of
system C via composition with property automata.

Property Automata for System C

C

A B

Evaluation of system properties through fsm unfolding and exhaustive search

Example path: ABACCCB

CB

A Unfolding

– p. 30/37

Model Checking in LTSA

Example 9. Formal Validation for a Model of Polite Conversation

// ===

// Jack and Diane have conversation over coffee

// ===

// Create a person who: (1) talks and drinks coffee, or

// (2) just waits and then drinks coffee

PERSON = (talk -> drink -> PERSON

| wait -> drink -> PERSON).

// Jack and Diane meet

minimal ||JACK_AND_DIANE_MEET = (jack:PERSON || diane:PERSON).

// To learn, conversation needs to be two way

TWO_WAY = (jack.talk -> diane.talk -> TWO_WAY).

– p. 31/37

Model Checking in LTSA

Example 9. FSP code continued

// Define a property for polite conversation ...

property POLITE = (jack.talk -> diane.talk -> POLITE).

// Check that the conversation model is in fact polite ...

minimal ||JACK_AND_DIANE_LEARN = (JACK_AND_DIANE_MEET || TWO_WAY || POLITE) / {

jack.talk/diane.wait, diane.talk/jack.wait }.

// Check progress properties

progress DIANE_TALKS = { diane.talk }

progress JACK_TALKS = { jack.talk }

// ===

// End!

– p. 32/37

Model Checking in LTSA

Example 9. Process Hierarchy for Behavior Model

labeled process

JACK_AND_DIANE_MEET TWO_WAY POLITE

jack:PERSON diane:PERSON

PERSON

JACK_AND_DIANE_LEARN

Safety propertyBehavior model

– p. 33/37

Model Checking in LTSA

Example 9. Behavior Models for Polite Conversation

– p. 34/37

Model Checking in LTSA

Example 9. How do we know that the model checking worked?

Notice that POLITE will ...

... transition to an error state if Diane talks more than onceor, alternatively, Jack
talks more than once.

Key Point. If the composed process

(JACK_AND_DIANE_MEET || TWO_WAY || POLITE)

contains any of these sequences, then ...

... it too will also have an error state indicating that our model of behavior is not
polite.

The progress checks generate

Progress Check...

-- States: 8 Transitions: 16 Memory used: 1951K

No progress violations detected.

Progress Check in: 40ms

– p. 35/37

Case Studies and Follow-Up

Simplified Airpsace Management Tool

• See pages 331-346 of the class notes.

Behavior Modeling for Ships Passing through the Panama Canal

• See pages 347-392 of the class notes.

Follow-Up: Linking LTSA to Animation

• Magee J., et al, Graphical Animation of Behavior Models, ICSE 2000, Limerick,
Ireland, 2000.

Slides from the LTSA Book

• The supplementary material contains a comprehensive set of slides from Jeff Kramer
and Jeff Magee’s book on LTSA, Concurrency: State Models and Java Programs
(2nd Edition), John-Wiley and Sons, 2006.

– p. 36/37

References

• Magee J.L. Kramer J., Uchitel S., Labeled Transition System Analyzer (LTSA) Home
Page, See:http://www.doc.ic.ac.uk/ jnm/book/ltsa/LTSA.html, 2004.

• Magee J.L., and Kramer J., Concurrency: State Models and Java Programs (2nd
Edition), John Wiley and Sons, New York, 2006.

• Thorton K., A Simplified Airspace Management Tool, ENSE 622/ENSE 623 Project,
Spring and Fall Semesters, 2005.

– p. 37/37

	ptsize {14} Table of Contents
	ptsize {14} Model-Based Design with LTSA
	ptsize {14} Model-Based Design with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Finite State Processing Language
	ptsize {14} Finite State Processing Language
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Behavior Modeling with LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Model Checking in LTSA
	ptsize {14} Case Studies and Follow-Up
	ptsize {14} References

