
ENSE 623 Systems Validation and Verification

System Behavior Modeling and Validation with UPPAAL

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/42

Table of Contents

1. System Modeling with UPPAAL

2. Time Model

3. Overview of Timed Automata

4. Nodes and Transitions

5. Syntax and Semantics

6. Example 1. Time-Dependent Clock Behavior.

7. Example 2. Operation of a Simple Lamp.

8. Verification in UPPAAL

9. Example 3. Train Crossing Problem.

– p. 2/42

System Modeling with UPPAAL

UPPAAL is ...

... a toolset for simulation, validation (via graphical simulation) and

verification (via automatic model checking) of real time systems.

modeled as ...

... networks of timed automata based on temporal logic.

UPPAAL is appropriate for systems that can be ...

... modeled as a collection of non-deterministic processeswith finite

control structure and real-valued clocks that communicatethrough
channels and/or shared variables.

– p. 3/42

System Modeling with UPPAAL

Networks of Communicating Extended Finite State Machines

Communicating FSM

EFSM

EFSM

EFSM

UPPAAL Modeling Procedure

• Model a system using timed automata.

• Simulate the model.

• Verify properties on the model.

– p. 4/42

System Modeling with UPPAAL

UPPAAL Graphical User Interface

– p. 5/42

System Modeling with UPPAAL

Part 1. Description Language

• The description language is a non-deterministic guarded command
language with data types.

• System behavior can be described as networks of timed automata extended

with variables.

Part 2. Simulator

• The simulator enables examination of possible dynamic

executions/behaviors of a system.

• A particular simulation explores only a:

...particular execution trace (i.e. sequence of states of the system).

and, therefore, privides an inexpensive means for fault detection.

– p. 6/42

System Modeling with UPPAAL

Part 3. Model Checker

• The model checker covers exhaustive dynamic behavior of the system,
covering all possible behaviors of the system. It assertains ...

... whether certain combinations of control nodes and constraints on

clocks and integer variables are reachable from an initial
configuration.

• Other properties such as bounded liveliness can be checked by...

...reasoning about the system in the context of testing automata or
annotating the system description with debugging information and

then checking reachability properties.

• A diagnostic trace can be automatically reported explaining why the
property is satisfied or not. This trace can be visualized by running it

through the simulator.

– p. 7/42

Dense Time Models

Schematic of Discrete and Dense Time

1.60

Discrete Time Model

Real Time Model

210

0.00 0.33 0.55 0.93 1.33

Mathematical Definitions (Furia et al., 2010)

• A discrete set consists of isolated points (e.g., the integers 0, 1, 2, ...)

• A dense set (ordered by <) is such that for every two points t1, t2, such that
t1 < t2, there is always another point inbetween (i.e., t1 < t3 < t2).

– p. 8/42

Time Model

UPPAAL Time Model

• UPPAAL uses a ...

... dense-time modelwhere a clock variable evaluates to a real number.

• All the clocks progress synchronously.

• To avoid the need for dealing with an infinite number of clock values, ...

UPPAAL uses zones defined by sets of constraints on clock values.

• When a system is in a particular state (location), we do not have a concrete

value of time – instead, ...

... differencesdefined byregion boundaries.

– p. 9/42

Timed Automata

Definition of Timed Automata

A timed automaton is a stripped-down finite-state machine extended with clock

variables.

Timed automata correspond to labeled transition systems (LTSs) extended

with time.

– p. 10/42

Timed Automata

Timed Label Transition Systems

• S is the set of states.

• so ∈ S is the initial state.

• Act is the set of observable actions. Aτδ = Act ∪ {τ} ∪ {δ|δ ∈ R+} is the
action set with additional internal τ and delay δ actions.

• → ⊆ S × Aτδ × S is the transition relation satisfying the consistency
relationships:

• Time Determinism. Whenever s
δ
→ s

′

and s
δ
→ s

′′

, s
′

= s
′′

.

• Time Addivity . ∀ s, s
′

∈ S, ∃ s
′

∈ S, s
δ1→ s

′

, s
′ δ2→ s

′′

, iff s
δ1+δ2→ s

′′

.

• Null Delay. ∀ s, s
′

∈ S; s
0
→ s

′

iff s = s
′

.

– p. 11/42

Timed Automata

States and Transitions

The system state is defined by:

• The locations of all automata,

• The clock constraints, and

• The values of the discrete variables.

In general transitions are not allowed to be carried out simultaneously.

Therefore the automata do not really operate in parallel, but rather in an

interleaving way.

Its capabilities include checking invariant and reachability properties by
exploring the state-space of a system.

– p. 12/42

Nodes and Transitions

Nodes

• Nodes can have three special marks:

... initial, committed and urgent.

• When a node is initial the automaton will start in this node – the initial node

is marked by a double circle. Every automaton has only one initial node.

• When a node is committed, a transition from that node to the next node has
to be taken immediately. No other transition in other automata can be

taken in between.

• When a node is urgent it must take the next transition as soon as this is
possible. It does not rule out other actions happening in between but when

it is possible to take the transition it does rule out other possible actions at
that point.

– p. 13/42

Nodes and Transitions

Transitions

• The transitions between the nodes define the behaviour of the system.

• A transition can have three types of labels:

... a guard, a synchronisation and a reset.

• Every transition will have at least one label.

Variables

• UPPAAL uses variables globally.

• The value of a variable will be the same in every automaton. Suppose, for

example, that variable x is reset to n in an automaton p1. Then ...

... if there exists an automaton p2, x also acquires the valuen for that

automaton.

– p. 14/42

Syntax and Semantics

Guards

• A guard is a condition which has to be met in order to take the transition.

• Formally guards are conjunctions of timing and data constraints of the form

• Guards take the form: x "H" n or x - y Ãć n where x and y are variables, n is
a natural number in an integer constraint but an arbitrary integer in a timing

constraint and "H" is an element of the set < , > , = , <=, >=, != .

Reset Operations

• Reset operations set a clock’s value back to zero.

• A reset only takes place after the guards (if any) of the transition is satisfied

and a synchronisation is possible.

– p. 15/42

Syntax and Semantics

Channels and Synchronization

• Channels serve the sole purpose of letting two automata communicate.

... Synchronization mechanisms correspond tohandshaking.

• A synchronisation takes place trough a channel and is always only between

two automata.

• Two processes take a transition at the same time –

... one will have ”a!” the other will have ”a?” (the synchronization
channel).

• If the transition carries a synchronization annotation of the form a? (or a!)

then some corresponding transition (also labeled by a! or a?) of some
other timed automaton has to be taken simultaneously.

– p. 16/42

Syntax and Semantics

Automaton elements may also be classified as being committed or urgent.

Both annotations disallow the passage of time while the location is active.

Committed

• Committed locations require the next system action to involve a transition

whose source state is the committed location (see pg. 398 of Knapp,
2002.)

• Therefore, atomic transactions that involve more than a single transition can
be modeled by labeling the intermediate transitions as committed.

Urgent

• A channel can be declared urgent to disallow the passage of time as soon

as synchronization of the channel is enabled (see pg. 398 of Knapp, 2002).

– p. 17/42

Example 1. Time-Dependent Clock Behavior

Time-Dependent Clock Behavior

Interpretation: If an action “a” occurs while the guard condition evaluates to

true (i.e., the transition is enabled), then the clock “x” will be reset.

– p. 18/42

Example 2. Operation of a Simple Lamp

Operation of the lamp is defined by the following rules:

• If the user presses a button (i.e., synchronizes with press?), then the lamp

is turned on.

• If the user presses the button again, the lamp is turned off.

• If the user is fast and rapidly presses the button twice, the lamp is turned on

and becomes bright.

– p. 19/42

Example 2. Operation of a Simple Lamp

Action-Based View of Lamp and User Behavior

press?
off low bright

idle

User Behavior

Lamp Behavior

press!

press?

press?

press?

– p. 20/42

Example 2. Operation of a Simple Lamp

Add a Real-Valued Clock y to Behavior Model

y := 0

off low bright

idle

User Behavior

Lamp Behavior

press!

press?

press?

press?

press?

y < 5

y >= 5

– p. 21/42

Example 2. Operation of a Simple Lamp

System Composition

System Behavior = (Lamp Behavior ‖ User Behavior)

Declarations (...these are global).

chan press;

clock y;

System Declarations

User1 = User();

Lamp1 = SimpleLamp();

// Compose processes into a system model....

system User1, Lamp1;

– p. 22/42

Example 2. Operation of a Simple Lamp

UPPAAL Editor

– p. 23/42

Example 2. Operation of a Simple Lamp

UPPAAL Simulator

– p. 24/42

Example 2. Operation of a Simple Lamp

A Few Obervations

In our simplified model:

• While user behavior is defined in terms of sequences of press! events,

there is nothing in user model to say how fast these clicks must occur.

• Thus, the user model really doesn’t do a good job of ...

... driving the critical elements of the lamp behavior.

We can solve this problem by ...

... add a clock to the user behavior and an invariant to force timely
sequences of press events.

– p. 25/42

Example 2+. Operation of a Simple Lamp

Invariants

• An invariant is a progress condition.

Adding an Invariant to the User Behavior

Invariant: y <= 2
Modified User Behavior Time−Dependent Behavior

time

cl
oc

k
y

1

2

Guard: y > 1

Remark. The guard condition activates the transition when clock y > 1. The
invariant states that the system cannot stay in the idle state for more than 2

units of time.
– p. 26/42

Example 2+. Operation of a Simple Lamp

Sequence: Off − Low − HIgh − Off − Low

– p. 27/42

Simulation versus Verification in UPPAAL

Simulation in UPPAAL

• Allows for virtual interaction with the system.

• The simulator shows the states of compound automata and the values of
variables.

• State transitions may be chosen either manually or randomly.

Verification in UPPAAL

• Accepts user formulated properties to be verified on a particular
timed-automata model.

• Displays results of the verification: true or false.

• Provides an event trace example if the property proof requires one.

– p. 28/42

Verification in UPPAAL

Framework for Verification in UPPAAL

Let p and q be state formulas (e.g., y < 2).

UPPAAL understands the following types of queries:

• E < > p: there exists a path where p eventually holds true.

• E [] p: there exists a path where p always holds.

• A < > p: for all paths p will eventually hold.

• A [] p: for all paths p always holds.

• p −→ q: whenever p holds q will eventually hold.

– p. 29/42

Example 2. Verification of Lamp Behavior

Behavior of Simple Lamp and Simple User Model

• There exists a path where Lamp1.high eventually holds true?

Query:

E<> Lamp1.high

Status:

Property is satisfied.

• There exists a path where Lampl.high always holds?

Query:

E[] Lamp1.high

Status:

Property is not satisfied.

– p. 30/42

Example 2. Verification of Lamp Behavior

Behavior of Simple Lamp and Simple User Model

• For all paths Lamp1.high will eventually hold true?

Query:

A<> Lamp1.high

Status:

Property is not satisfied.

• For all paths Lamp1.high always holds true?

Query:

A[] Lamp1.high

Status:

Property is not satisfied.

– p. 31/42

Example 2-2+. Verification of Lamp Behavior

Comparison of Simple Lamp Behavior with Basic and Enhanced User Models

Query Basic User Model Enhanced User Model

E <> Lamp1.high
Property is satisfied. Property is satisfied.

E [] Lamp1.high
Property is not satisfied. Property is not satisfied.

A <> Lamp1.high
Property is not satisfied. Property is satisfied.

A [] Lamp1.high
Property is not satisfied. Property is not satisfied.

Lamp1.low -->

Lamp1.high Property is not satisfied. Property is satisfied.

– p. 32/42

Example 3. Train Crossing Problem

Problem Statement

A railway control system controls access to a bridge for several trains.

Leaving

Controller

Train 2

Train 1

10 10

(stopped)

Can be stopped in time.Approaching Cannot be stopped in time. Crossing.

The bridge is a critical shared resource that may be accessed by only one train
at a time.

– p. 33/42

Example 3. Train Crossing Problem

Key Modeling Parameters(adapted from Behrmann et al.)

• The system is defined by a number of trains (in this case 2) plus a controller.

• A train cannot be stopped instantly. Restarting a train also takes time.

• An approaching train sends an appr! signal to the controller.

• Then, it has 10 units of time to receive a stop signal. This allows the train to
stop safely before the bridge.

• After these 10 units it takes another 10 units of time to reach the bridge if it
is not stopped.

• A stopped train resumes its course when the controller sends a go! signal

after a previous train has left the bridge and sent a leave! signal.

– p. 34/42

Example 3. Train Crossing Problem

UPPAAL Models

Note. The location Appr has the invariant 0 ≤ 20, meaning that the location
must be left within 20 time units. The outgoing transitions are guarded by the

constraints x ≥ 10 and x ≤ 10.

– p. 35/42

Example 3. Train Crossing Problem

More Points to Note

• At exactly x = 10, both transitions are enabled. This enables us to take care
of any race conditions, should they exist.

• If the train can be stopped (i.e., x ≤ 10), then the transtion to the location

Stop is taken, otherwise the train goes to location Cross.

• The transition to Stop is also guarded by the transition e == id, and is
synchronized with stop?

• When the controller decides to stop a train, it decides which one (sets e)
and synchronizes with stop!

• The location Stop has no invariant. As such, a train may be stopped for an

unlimited amount of time waiting for the sychronization go?

– p. 36/42

Example 3. Train Crossing Problem

Declarations

const int N = 2; // # trains

typedef int[0,N-1] id_t;

chan appr[N], stop[N], leave[N];

urgent chan go[N];

Reference.Adapted from:

• Yi W., Petterson P., and Daniels M., “Automatic Verification of Real-Time
Communicating Systems by Constraint Solving,” In Proceedings of the 7th

International Conference on Formal Description Techniques, pages
223-238, North-Holland. 1994.

– p. 37/42

Example 3. Train Crossing Problem

UPPAAL Simulator

– p. 38/42

Verification of Train Crossing Properties

Verification of Behavior

• Gate can receive (and store in queue) msg’s from approaching trains.

Query:

E<> Gate.Occ

Status:

Property is satisfied.

• Trains 0 and 1 can reach crossing.

Query:

E<> Train(0).Cross

E<> Train(1).Cross

Status:

Property is satisfied.

Property is satisfied.

– p. 39/42

Verification of Train Crossing Properties

Verification of Behavior (cont’d)

• Train 0 can be crossing bridge while Train 1 is waiting to cross.

Query:

E<> Train(0).Cross and Train(1).Stop

Status:

Property is satisfied.

• Train 0 can cross bridge while the other trains are waiting to cross.

Query

E<> Train(0).Cross and (forall (i : id_t) i != 0 imply Train(i).Stop)

Status:

Property is satisfied.

– p. 40/42

Verification of Train Crossing Properties

Verification of Behavior (cont’d)

• There is never more than one train crossing the bridge (at any time

instance)

A[] forall (i : id_t)

forall (j : id_t) Train(i).Cross && Train(j).Cross imply i == j

• There can never be N elements in the queue (thus the array will not
overflow).

A[] Gate.list[N] == 0

• Whenever a train approaches the bridge, it will eventually cross.

Train(0).Appr --> Train(0).Cross\

Train(1).Appr --> Train(1).Cross

• The system is deadlock-free.

A[] not deadlock

All properties are satisfied.

– p. 41/42

References

• Behrmann G., David A., and Larsen K.G., “A Tutorial on UPPAAL,” Formal
Methods for the Design of Real-Time Systems, Lecture Notes in Computer

Science, 2004, Volume 3185/2004.

• Mikucionis M. and Sasnaunskaite E., “On-the-fly Testing using UPPAAL,”

MS Thesis, Department of Computer Science, Aauborg University,
Denmark, June 2003.

• Furia C.A., Mandrioli D., Morzenti A., and Rossi M., Modeling Time in

Computing: A Taxonomy and Comparative Survey, ACM Computing
Surveys Paper, Vol. 42, No. 2, February 2010.

• UPPAAL 4.0: Small Tutorial, November 2009.

– p. 42/42

	ptsize {14} Table of Contents
	ptsize {14} System Modeling with UPPAAL
	ptsize {14} System Modeling with UPPAAL
	ptsize {14} System Modeling with UPPAAL
	ptsize {14} System Modeling with UPPAAL
	ptsize {14} System Modeling with UPPAAL
	ptsize {14} Dense Time Models
	ptsize {14} Time Model
	ptsize {14} Timed Automata
	ptsize {14} Timed Automata
	ptsize {14} Timed Automata
	ptsize {14} Nodes and Transitions
	ptsize {14} Nodes and Transitions
	ptsize {14} Syntax and Semantics
	ptsize {14} Syntax and Semantics
	ptsize {14} Syntax and Semantics
	ptsize {14} Example 1. Time-Dependent Clock Behavior
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2. Operation of a Simple Lamp
	ptsize {14} Example 2+. Operation of a Simple Lamp
	ptsize {14} Example 2+. Operation of a Simple Lamp
	ptsize {14} Simulation versus Verification in UPPAAL
	ptsize {14} Verification in UPPAAL
	ptsize {14} Example 2. Verification of Lamp Behavior
	ptsize {14} Example 2. Verification of Lamp Behavior
	ptsize {14} Example 2-2+. Verification of Lamp Behavior
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Example 3. Train Crossing Problem
	ptsize {14} Verification of Train Crossing Properties
	ptsize {14} Verification of Train Crossing Properties
	ptsize {14} Verification of Train Crossing Properties
	ptsize {14} References

