
ENSE 623 Systems Validation and Verification

Established Approaches to System Validation/Verification

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/60

Table of Contents

1. Definition and Importance

2. Flowdown from UML Diagrams

3. Types and Levels of Validation and Verification

4. Detection of System Defects

5. Coverage- and Specification-Based Testing

• General approach, specification-based testing in DAS-BOOT.

6. Role of Traceability in Validation/Verification

7. Writing Verification Requirements

8. Verification Traceability Matrices

– p. 2/60

Definition

Definition and Complementary Roles

• Verification → “are we building the product right?”

• Validation → “are we building the right product?”

Validation

Requirements /
Specifications

System
Design

Customer
Needs

Verification

Historical Role

The Department of Defense glossary for defense acquisition (DoD, 1991) states:

Validation is the process of testing for technical appropriateness and adequacy near
the end of the system life cycle process.

– p. 3/60

Importance

Changes in System Development 1990-2010

During the past two decades:

• Systems have become orders of magnitude more complex.

• Validation and verification of the complete system may require many tests to ensure
the actual system has performance/behavior as intended.

• The associated costs may be prohibitive.

To help counter these trends:

Planning for validation and verification needs to begin in the early stages of
requirements development.

– p. 4/60

Errors in Small-/Large-Scale Systems Development

The overall goal is to maximize quality and minimize risk.

33%

Small−Scale System Large−Scale System

Design 40%

Imple−
mentation
39%

Implementation
< 20%

Requirements > 40%
Requirements

27%

Design

Common Errors in Small-Scale Systems Development

1. Lack of separation between requirements, design, code.

2. Wide variations in quality of the system architecture.

3. Lack of attention to deal with abnormal conditions.

4. Incomplete interfaces.

5. System designer bias.

– p. 5/60

Errors in Small-/Large-Scale Systems Development

Common Errors in Large-Scale Systems Development

For large-scale systems the common errors are:

1. Incomplete requirements.

2. Failure to deal with emergent behaviors.

3. Information and data coupling among systems having concurrent behaviors.

4. Lack of attention to events and timing/data dependencies.

Development Strategy

Work towards:

Formal approaches to validation and verification, where savings come through
lowering the cost to fix problems by finding them sooner.

– p. 6/60

Flowdown from UML Diagrams

Flowdown from UML diagrams to Requirements and Verification Matrices

System

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

High−Level Requirements.

Req 2.

Req 1.

Verification Matrix

Derives Refines

Evaluation

and Scenarios

−− scenario 4
−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence Diagrams

Individual Use Cases

– p. 7/60

Types of System Validation/Verification

Types of Validation

The key purpose of validation is to check satisfaction of stakeholders. (i.e., Have you
done the right job?).

Checking that a project has not strayed from its intended purpose can be
interpreted as looking for faults in the development.

If no failures are found then a certain degree of confidence in the design is justified.

Validation procedures fall into two types:

1. Requirements Validation

Check for traceability. Have we missed any requirements? Do we have extraneous
requirements?

2. Product Validation

Check that product/system meets the needs and expectations of the stakeholders.

Requirements validation increases our confidence in the ability to synthesize a design.

– p. 8/60

Types of System Validation/Verification

Types of Verification

The key purpose of verification is to check compliance against specified requirements.
(Have you done the job right?).

There are two types:

1. Product and Process Qualification

Check for full compliance to specification.

Product requalifications may be necessary when product is redesigned.

2. Product Acceptance

Check for full compliance of key criteria.

Done on every unit or on a sample basis (in the case of mass manufacturing).

Can be done before shipping or after installation.

– p. 9/60

Types of System Validation/Verification

Levels of Validation/Verification

Design Problem Definition

Component
Test

Subsystem
Test

System
Test

Test
Stakeholder

Verify the system

Validate the system

Flowdown of
Requirements

Stakeholder
Requirements

System
Requirements

System−Level
Design

Subsystem
Requirements

Component
Requirements Design

Component

Subsystem−Level
Design

Validate the system

Allocate requirements
to components.

Implementation and Test

– p. 10/60

Types of System Validation/Verification

Verification Planning

The detailed model of requirements flowdown is as follows (Source: Martin, 2003):

sub−system

requirements

Allocation and flowdown
of requrements

of requrements
Allocation and flowdown

requirements

requirements
Component
level
development

level
development

Sub−system

System−level

development

Component−level

Sub−system

Design

Design

feedback

feedback

Other

requirements

requirements

Other

System−level verification

verification

verification

component

– p. 11/60

Types of System Validation/Verification

Verification Execution

Testing and product delivery procedures begin at the component level and work toward
the system and stakeholder tests (Source: Martin, 2003).

Check against

Component
Products

Products

System
level
products

Sub−system
level

component−level

requirements

Deliver products

Validate against assigned
requirements.

Validate against assigned

Deliver products

requirements.

system−level verification
requirements

sub−system verification
requirements

Check against

Check against

verification

– p. 12/60

Types of System Validation/Verification

Compliance Verification Procedures

Compliance and verification procedures (CVPs) are developed to ensure that each
requirement is satisfied.

Performed on:

Requirements

Allocated to:

System and Subsystem Components

External Systems

Interfaces with:

Satisfy

Depend on:

Complienace Verification
Procedures (CVPs).

Timely application of the verification procedures will help to unearth problems in the
system development as early as possible.

– p. 13/60

Types of System Validation/Verification

Role of Simulation in Compliance Verification

Comparison of desired and modeled behavior

Behavior (desired)

Domain Model Dictionary

Class
Diagram

Behavior (as modeled)

E
xe

cu
ta

bl
e

M
od

el

State
Diagram

Sequence Diagram Sequence Diagram

At the end of each interaction, the “desired” and “as modeled” behaviors are compared:

1. When the comparison is good, we can proceed to the next (lower) level of object
decomposition and/or to modeling of a new behavior (i.e., use case).

2. When the comparison is bad (or insufficient), the object classes and their state
diagrams need to reengineered.

– p. 14/60

Detection of System Defects

Fundamental Law of Faults

• Failures

A failure is an externally visible incorrect behavior of a system.

• Errors

An error is an incorrect internal (system) state, which may or may not be externally
detectable as a failure.

• Faults

A fault is a mistake in a system which causes one or more errors and failures.

At a glance, it would appear that the purpose of system validation and verification
procedures is the detection of system failures.

..But actually, we need to find and fix the cause of the failures(i.e., the underlying
faults).

– p. 15/60

Detection of System Defects

Relationship between Faults and Failures

Generally, a single fault can cause many types of system failure – this actually makes the
detection of faults easier.

Dependency between faults and failures

Failure 2

Failure 1

Failure 3

Fault

Find failuresFind faults

Strategy for finding faults....

It follows from the aforementioned definitions that testing procedures will be unable to
determine the existence of a fault unless they can first identify any of the failures it
causes.

– p. 16/60

Detection of System Defects

Identifying Faults in Hardware and Software

Statistics

Design faults
Systematic faults

Solution: diversity

Software

Hardware
Random faults
Physical faults

Solution: redundancy

Software failures:

• Design failures due to faulty logic.

Hardware failures:

• Can use statistical analysis to quantify design failures due to physical
faults/weaknesses.

– p. 17/60

Detection of System Defects

Detection and Removal of Defects

Normal techniques for the detection and removal of defects include:

• Consistency Checking

Attempts to find inconsistencies between ...

... different parts of the specification and/or between the specification and a
formal model of the design.

• Simulation

Simulation procedures can detect inconsistencies between ...

... a user’s notion of the required system behavior and the system behavior
captured by the requirements specification.

– p. 18/60

Inspection and Testing

Inspection Procedures

• Inspection is a form of validation where one or more people study a system and its
specification and attempt to satisfy themselves that the system is correct.

Common measures of quality assurance include product/system finish, fit, location,
dimensions, and so forth.

• Inspection procedures are most effective when they are conducted by individuals who
were "not" part of the system development.

Limitations of Inspection Procedures

• People are quite limited in the total amount of detail they can synthesize and reason
with at any given moment.

As a result

... inspection procedures are really only suitable for validation of simple system
architectures.

– p. 19/60

Inspection and Testing

Design of Test Procedures

The most common form of system verification is testing – that is ...

... given the specification of a system, test cases are created which embody the fine
microscopic facets of the specification.

At each level of development, the goal of testing is to

... identify faults in the system development.

It is important to note that ...

... testing can show the presence of faults or bugs ... but nottheir absence.

– p. 20/60

Inspection and Testing

Testing Procedure

Testing requires a test specification, a suite of test rules, and a test protocol.

Test results

Specification Test Procedure

Test Rules

Inplementation

Testing can only reveal errors (and not the lack of them).

– p. 21/60

Inspection and Testing

Systems Engineering View of Testing

Test InputsTest Automation
System

Application
Modeling

System
Under Test

Test Design

Application requirements,
System Design

Application−specific
Test Methods General Test Methods

Test Suites

Actual Results

Post−release bugs

Pass / No pass

– p. 22/60

Inspection and Testing

Guidelines for Design of Test Procedures

The key steps in test design development are as follows (Binder, 2000):

1. Identify, model and analyze the responsibilities of the system under test;

2. Design test cases based on this external perspective;

3. Add test cases based on system/code analysis, suspicions, and heuristics;

4. Develop expected results for each test case or choose an approach to evaluate the
pass/no pass status of each test case.

There needs to be:

1. A description of the expected behavior,

2. A way of observing it, and

3. A way for determining whether the observed behavior conforms with the expected
behavior.

– p. 23/60

Inspection and Testing

Test Execution and Automation

Typically, test execution will involve the following steps (Binder, 2000):

1. Establish that the implementation under test is minimally operational by exercising
the interfaces between its parts, components, and/or sub-systems.

2. Execute the test suite; the result of each test is evaluated and classified as pass or
no pass.

3. Use a coverage tool to instrument the implementation under test. Rerun the test
suite and evaluate the reported coverage.

4. If necessary, develop additional tests to exercise uncovered system functionality (or
code).

5. Stop testing when the coverage goal is met and all tests pass.

A test automation streamlines (the many steps in) the testing procedure.

– p. 24/60

Inspection and Testing

Interpretation of Test Outcomes

When the tests are executed, we should be able to ...

... conclude with confidence whether or not the design concept, together with
currently available technology, offer a viable solution tothe requirements item.

When a test fails, then ...

... we can say with complete confidence that a failure has beendetected.

But what can we say when a system passes a test?

At the very minimum, we can say that ...

... the system passes the test for the specific specification (i.e., input data).

The benefit of this observation can be small....

– p. 25/60

Integration Test Design

Integration Test in the V-Model of Development

Most large-scale software systems are built with components that must interoperate.

– p. 26/60

Integration Test Design

Integration Test Plan Questions

This strategy leads naturally to the following integration test plan questions (Binder, ch
13):

• What component interfaces will be the focus of the integration?

Which sub-systems will be tested?

• In what sequence will the components and their interfaces be exercised?

• What stubs or drivers will be developed?

A stub is a partial implementation of a component.

A driver is a test program external to the component that will apply test cases to the
component.

• What test pattern will be used?

• When will the integration testing be considered complete?

– p. 27/60

Top-Down versus Bottom-Up Testing

Finding the Right Approach ...

– p. 28/60

Top-Down versus Bottom-Up Testing

Comparison of Top-Down and Bottom-Up Integration Strategies

Criteria Comparison

Architectural
Validation

1. Top-down testing is better suited than bottom-up testing for early
detection of system architecture errors and high-level design er-
rors.

2. Early detection reduces the cost of fixing the errors.

System De-
mostration

1. A top-down approach to testing allows the organization to quickly
gain confidence in a skeletal system that can then be used for
demonstration purposes.

2. A bottom-up approach uses drivers at the highest system levels
which would likely be more cumbersome to demonstrate.

– p. 29/60

Top-Down versus Bottom-Up Testing

Comparison of Top-Down and Bottom-Up Integration Strategies

Criteria Comparison

Test Imple-
mentation

1. Top-down testing will generally place more of a burden on the de-
velopment team since meaningful stub behavior will be required
for the system to be tested. Stubs can become quite complex.

2. Reusable components provide stable behavior and therefore de-
velopers do not need to be quite as creative when creating the
drivers that drive those low-level components.

Test Obser-
vation

1. Top-down and bottom-up testing are about equal on this criteria.

2. Low-level components may need an artificial environment in order
to probe their internal behavior.

– p. 30/60

Coverage-Based Testing

Exhaustive Enumeration of System Behavior Pathways

Post−conditions

Path 2
Path 3

Path 1

Pre−conditions

– p. 31/60

Coverage-Based Testing

Challenges in Coverage-Based Testing

• Complete coverage may not be possible because some pathways may not be finite
(e.g., infinite loops).

• Existence of infeasible paths – that is, owing to inadvertent system design, system
elements may never play an active role in the system behavior, no matter what
input/data is selected.

Metrics for Coverage-Based Testing

• The percentage of system elements exercised by the test data;

• The percentage of system elements exercised under the application of “all the test
data.”

– p. 32/60

Specification-Based Testing

Ideas and Approach

In specification based testing we ...

... produce a test suite on the basis of a specification.

The existence of a formal specification or model introduces the possibility ...

... of automating test generation, thus making test generation more efficient.

Test Criterion

Test suites are designed to a given property, a test criterion, e.g.,

• A notion of coverage.

• A fault domain.

Given a fault domain F, it is sometimes possible to produce a test suite that determines
correctness relative to F: if the implementation under test really does behave like an
element of F and it passes our test then it must be correct.

– p. 33/60

Specification-Based Testing

Parallel Modeling of System and Verification Requirements

Methodology (proposed by Adrian Marsh, 2004):

• UML models for system behavior and structure are constructed in parallel with
descriptions of verification methods for the system.

• High-level requirements correspond to performance requirements on snippets of
system behavior, interface requirements on system structure, and so forth.

• Verification requirements are described with:

– Verification procedures presented in a tabular format.

– Simplified UML-like diagrams for verification procedures at each step of system
behavior or element of system structure.

Potential benefits include:

• The tight integration of system functionality/structure with verification procedures.

• Verification procedures are derived "directly from" requirements for expected system
behavior/structure.

– p. 34/60

Specification-Based Testing

Parallel Modeling of System and Verification Requirements

System Requirements

Req 1.

Req 2.

High−Level Requirements. Verification Matrix

Refine

Derive

Refine

Derive

Refine

Derive

Verification Requirements

R
ef

in
e

/ A
da

pt

R
ef

in
e

/ A
da

pt

Use Case Diagram

Use Case 1

−− scenario 1
−− scenario 2

Use Case 2

−− scenario 3
−− scenario 4

– p. 35/60

Specification-Based Testing

Simple Example

Requirements for interaction of Crew and Vehicle functionalities.....

Requirement Description

Req. 1.1 The Crew shall be able to manually at-
tach to the CMS dispenser.

Req. 1.2 The CMS shall be lifted by a 2 soldier
crew.

We can create a side-by-side concurrent visualization of the requirement(s), activity
diagram, and verification plan.

– p. 36/60

Specification-Based Testing

Vehicle

Requirement 1.1 and 1.2

Crew

Verification Plan

Crew

Crew: Group of 40 soldiers randomly selected
from operational unit.

Vehicle: Standard issue MIA1, M2, M113, LAV.

Manually lift CMS dispenser
to bracket with 95% first
attempt success.

check of system
Conduct function Power system

accepts dispenser
Mounting system

to mounting system
Secure dispenser

Dispenser
Lift CMS

Standard bracket
accepts

power supply
CMS recognizes

power supply
standard NATO
CMS connects to

Utilize standard 5"
wrench

Vehicle

– p. 37/60

UML Diagram to Verification Matrix Checklist

Idea and Class Diagram Example

We need ...

... a checklist of things to test for in each type of UML diagram and, of course, this
list will depend on the key concepts conveyed by each type of UML diagram.

UML Diagram views for System Structure and Key Concepts

Diagram Key Concepts

Class Diagram
• Classes
• Associations
• Dependencies
• Generalizations
• Interfaces

– p. 38/60

UML Diagram to Verification Matrix Checklist

Sample Activity Diagram Checklist

• Test all activity nodes.

• Test all control of flow decision points.

• Test all “fork” and “join” points.

• Test all pathways through the activity diagram.

Sample Sequence Diagram Checklist

• Test all messages.

• Test all “conditional fragments” within an interaction.

– p. 39/60

Specification-Based Testing with DAS-BOOT

Background

DAS-BOOT (developed at UC Irvine) is an experimental specification-based tool for
testing object-oriented systems. Typically,

...the “test coverage criterion” will define structures of the component under test
that must be covered to satisfy the criterion.

For example, “branch coverage” requires that every branch in the component under test
be executed by at least one test case.

Current Prototype

• Implements improved specification-based coverage criteria suitable for testing
object-oriented software systems whose behavioral specification is modeled as a
finite state machine (FSM);

• Generates test cases, test drivers and embedded test oracles with little interaction
required by the human tester.

– p. 40/60

Specification-Based Testing with DAS-BOOT

Flowchart for the DAS-BOOT Testing Process

Test Driver

UML Statechart Diagram
Class Specification

Generation
Test Driver Result

Visualixation

Class Implementation

Representation
Mapping

DAS−BOOT

Result
MonitoringExecuting

Coverage Criterion

DAS-BOOT takes as input:

• A Java class to be tested,

• A Statechart specification of the class behavior, and

• A FSM-based test coverage criterion.

– p. 41/60

Specification-Based Testing with DAS-BOOT

Screenshots:Main window in DAS-BOOT.

– p. 42/60

Specification-Based Testing with DAS-BOOT

Screenshots:Statechart corresponding to state-transition matrix.

– p. 43/60

Specification-Based Testing with DAS-BOOT

Screenshots:Statechart transitions, implementation operations, and mapping transitions.

Representation mappings associate the following:

1. Statechart transitions with Java class operations(s).

2. Statechart states with Java class attribute(s).

3. Specific states of an object with ranges of attribute values.

– p. 44/60

Specification-Based Testing with DAS-BOOT

Screenshots:Execution and evaluation of test cases.

– p. 45/60

Role of Traceability in Validation/Verification

Traceability mechanisms ...

... support the capture and usage of trace data (i.e., to document, parse, organize,
edit, interlink, change, and manage) requirements and traceability links between
them.

Prior to the Development of Requirements

Two types of traceability mechanism are important:

• Looking forward to requirements

When the stakeholder needs change (and/or assumptions on technology are
modified), traceability mechanisms enable systems engineers to identify the
requirements that need to be updated.

• Looking backward from requirements

Looking backward from requirements helps the systems engineers and stakeholders
understand the need for particular requirements.

– p. 46/60

Role of Traceability in Validation/Verification

Traceability Mechanisms linking Requirements to the System Design

• Looking forward from requirements

Mechanisms connect requirements to individual sub-systems/components.

• Looking backward to requirements

Mechanisms connect individual sub-systems/components to requirements.

Early Validation of Requirements

Early validation of requirements ...

... improves the likelihood that the stakeholders’ needs have been properly
understood and accounted for in the high-level requirements.

Traceability mechanisms from goals/scenarios through to high-level requirements ...

... help the stakeholders to see how their needs have been transformed into
requirements (and before the expensive production begins).

– p. 47/60

Role of Traceability in Validation/Verification

Phase 1: From Goals/Scenarios to Requirements

Pathway from use cases to scenarios, activity diagrams, system objects, and sequence
diagrams.

High−Level Requirements.

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence Diagrams

Individual Use Cases
and Scenarios

−− scenario 4

– p. 48/60

Role of Traceability in Validation/Verification

Phase 2: From Requirements to System Architectures and Physical Design

Trace

Sub−System Level

System Level

Component

Module

LAYERS OF REQUIREMENTS DESIGN

Design Versions

Trace

Trace

Product-related traceability is supported by two types of traceability link:

• Satisfies Links

Ensures requirements are satisfied by the system.

• Dependency Links

Manage dependencies among objects.

– p. 49/60

Role of Traceability in Validation/Verification

Phase 3: From Requirements to Derived Requirements

Engineering analyses are conducted to gain insight into the likely behavior of a system.

Derived Requirements

Engineering Analysis

Preliminary Sysem Desgin

Detailed System Design

Primary Requirements

���������

���������

���������

���������

�����������
�����������
�����������
�����������
�����
�����
�����

�����
�����
�����

These estimates of performance are, in effect, derived requirements for expected system
performance.

– p. 50/60

Writing Verification Requirements

Definition

Verification requirements define ...

... the method for determining whether or not a particular (design) requirement has
been fully complied with in the design.

For each design requirement, there should be ...

...one or more verification requirements and ideally, both should be written at the
same time by engineers who have the specialized design and verification knowledge.

This strategy of requirements development ...

... reduces the likelihood of vague requirements because itforces the author to
articulate how the design requirement will be quantitatively evaluated.

– p. 51/60

Writing Verification Requirements

Example (from O’Grady, 1998)

Suppose that a weight requirement is:

Design Require-
ment

Item Description

Req. 1.1 Weight Weight of the item shall be less than
or equal to 134 pounds.

– p. 52/60

Writing Verification Requirements

Example (from O’Grady, 1998)

The verification requirement could be:

Verification Re-
quirement

Item Description

Req. 2.1 Weight The item weight shall be determined
by a scale, the calibration for which
is correct, with an accuracy of plus
or minus 6 ounces. The item shall
be placed on the scale located on
a level, stable surface and a read-
ing taken. The measured weight
shall be less than 134 pounds and
11 ounces.

– p. 53/60

Writing Verification Requirements

Guidelines for Writing Good Verification Requirements

• Is the requirement stated correctly?

In addition to correct use of the language, the requirement should avoid using
unnecessarily difficult and overly specialized words.

• Is the requirement unambiguous?

The requirement should be perfectly clear so that multiple people cannot have
multiple interpretations of its meaning.

• Are the values of the requirement correct?

Design-Requirements to Verification-Requirements Traceability

In addition:

• Traceability mechanisms are needed to connect the “design requirements” to the
“verification requirements” and associated compliance verification procedures.

– p. 54/60

Verification Traceability Matrices

Sample Verification Traceability Matrix

Design Verification Method Verification Level of

Requirement Test Analysis Demo Exam Requirement Application

Req 1.1 ... X

Req 1.2 X

Req 1.3 X

Points to note:

• The traceability matrix coordinates (design) requirements verification methods, textual
descriptions of the verification requirements, and the levels at which the verification
action will be applied.

• Appropriate verification methods for each requirement are indicated by an X.

– p. 55/60

Verification Traceability Matrices

Testing

• Evidence that stated requirements have been met is established by subjecting the
system item (or a mathematical representation of the system) to a series of planned
simulations.

• These simulations will be based on scientific principles.

• Their execution may involve test equipment.

• Performance is quantitatively measured in response to external stimuli applied to the
system under consideration.

Analysis

• Evidence that stated requirements have been met is established through the use of
technical or mathematical models or simulations, algorithms, equations, charts,
diagrams ... derived from scientific principles.

• At each level of system abstraction, appropriate features of behavior are studied to
see if they comply with the required characteristics.

– p. 56/60

Verification Traceability Matrices

Demonstration

• Evidence that stated requirements have been met is established through the use of
technical or mathematical models or simulations, algorithms, equations, charts,
diagrams ... derived from scientific principles.

• At each level of system abstraction, appropriate features of behavior are studied to
see if they comply with the required characteristics.

Examination

• Usually, examination is a non-destructive form of inspection that determines if the
characteristics of system items satisfy the non-functional requirements (e.g,. size,
position. color ..etc).

• Standard procedures include visual inspection, supported by simple instruments (e.g.
a ruler).

– p. 57/60

Test-Driven Development

Motivation

• Standard approaches to system development emphasize development of
requirements and system design alternatives.

• Validation/verification comes after these entities are in place.

Test-driven development procedures have their home in software development and are
based on a very simple tenet (Koskala, 2008):

... you only ever write code to fix failing tests.

– p. 58/60

Test-Driven Development

Traditional versus Test-Driven Development Cycles

Refactor

Tradtional Approach to System Development

Test−driven Development Cycle

Design TestImplementation

Test Implementation

This procedure puts the notion of design on an uncomfortable footing.

Thus, instead of talking about design, we talk about ...

... refactoring to better convey the idea that a current design is transformed toward
a better design.

– p. 59/60

References

• Binder R.V., Testing Object-Oriented Sytsems, Addison-Wesley, 2000.

• DAS-BOOT: Design and Specification-Based Object-Oriented Testing. For details,
see http://www.isr.uci.edu/flyers/pdf/DAS-BOOT.pdf.

• Koskala L., Test-Driven: Practical TDD and Acceptance TDD for Java Developers,
Manning Publications, 2008.

• Marsh A., Visualizing Verification, Scholarly Paper, Master of Science in Systems
Engineering, University of Maryland, College Park, April 2004.

• Martin J.N., Overview of the EIA 632 Standard - Processes for Engineering a System,
Chairman of the EIA 632 Working Group, Raytheon Systems, 2003.

• O’Grady J.O., System Validation and Verification, CRC Press, 1998.

– p. 60/60

	ptsize {14} Table of Contents
	ptsize {14} Definition
	ptsize {14} Importance
	ptsize {14} Errors in Small-/Large-Scale Systems Development
	ptsize {14} Errors in Small-/Large-Scale Systems Development
	ptsize {14} Flowdown from UML Diagrams
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Types of System Validation/Verification
	ptsize {14} Detection of System Defects
	ptsize {14} Detection of System Defects
	ptsize {14} Detection of System Defects
	ptsize {14} Detection of System Defects
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Inspection and Testing
	ptsize {14} Integration Test Design
	ptsize {14} Integration Test Design
	ptsize {14} Top-Down versus Bottom-Up Testing
	ptsize {14} Top-Down versus Bottom-Up Testing
	ptsize {14} Top-Down versus Bottom-Up Testing
	ptsize {14} Coverage-Based Testing
	ptsize {14} Coverage-Based Testing
	ptsize {14} Specification-Based Testing
	ptsize {14} Specification-Based Testing
	ptsize {14} Specification-Based Testing
	ptsize {14} Specification-Based Testing
	ptsize {14} Specification-Based Testing
	ptsize {14} UML Diagram to Verification Matrix Checklist
	ptsize {14} UML Diagram to Verification Matrix Checklist
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Specification-Based Testing with DAS-BOOT
	ptsize {14} Role of Traceability in Validation/Verification
	ptsize {14} Role of Traceability in Validation/Verification
	ptsize {14} Role of Traceability in Validation/Verification
	ptsize {14} Role of Traceability in Validation/Verification
	ptsize {14} Role of Traceability in Validation/Verification
	ptsize {14} Writing Verification Requirements
	ptsize {14} Writing Verification Requirements
	ptsize {14} Writing Verification Requirements
	ptsize {14} Writing Verification Requirements
	ptsize {14} Verification Traceability Matrices
	ptsize {14} Verification Traceability Matrices
	ptsize {14} Verification Traceability Matrices
	ptsize {14} Test-Driven Development
	ptsize {14} Test-Driven Development
	ptsize {14} References

