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Main points:
 1) Complex infrastructure systems models - display characteristics of 

“real” data => very important implications for risk analysis
 2) Reduced models are complementary to detailed models and can be used 

to investigate the impact of design and mitigation schemes on risk (can be 
counter intuitive) => control can increase risk of large failures

 3) Decision making can be modeled with controlling agents responding to 
perceived risk of failure and other factors

The economy (and nation) are also large complex systems!!
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UW-MadisonMotivation

• Large cities as well as society as a whole function on a complex web of 
interdependent infrastructure systems (power transmission and distribution 
systems, communication/IT systems, transportation and pipeline systems, 
economic markets and even human decision making systems).

• Power law tails and long time correlations in many of these complex 
infrastructure systems [(NERC) blackout data, communications systems data, 
etc.] suggest need for dynamical model (systems sit near critical point)

• Need models that capture these characteristics to investigate design and 
mitigation techniques to improve resilience and robustness of the system

• Individual infrastructure systems are tied to other infrastructure systems in a 
often symbiotic relationship (failure in one can cause, or increase probability of, 
a failure in the other)

• Need models that capture coupling characteristics to investigate impact of 
interactions between systems (strength, symmetry, homogeneity)

• What are implications of interdependent interacting infrastructures on the risk 
of failure in each system?
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• What is a complex system
• Characteristics of a complex system
• Why should you care about complex systems
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Complex Systems

What we mean by a Complex System
Many nonlinearly interacting parts => overall 
behavior (dynamics) not the sum of the individual 
behaviors

Importance of nonlinear terms (dynamics)
Temporal evolution (dynamics) and steady state 
(equilibrium) 

Low dimensional vs. high dimensional dynamics
Chaos vs. complex dynamics

Usefulness of study of “Complex Systems”
Fashionable
Universality of dynamics

Implies universality of underlying physics?
Predictive capabilities?
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UW-MadisonComplex vs Complicated

• Systems can be complicated without being 
complex  and complex without being 
complicated

The real world is usually both

(Cars are complicated, traffic is complex)
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Complex vs. Complicated:
 Complimentary approaches to modeling System 

Dynamics

Complexity
(nonlinear dynamics, interdependences)

Complicated
(Model detail

increasing details
in the models,
structure of 
networks, 
Economics, 

Psychology, Biology, 
Chemistry, Physics 

…)

Single system
 model

By using models with fewer details => can investigate the complex behavior to extract 
universal features (critical points, power tails, measures…).

Coupled
systems

Holy grail

Analytic 
 model
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UW-MadisonComplex Systems

• Include among others

• Infrastructure systems
• Power transmission
• Communication (IT)
• Pipelines
• Transportation

• Human systems
• Markets
• Policy and decision 

making
• Social behavior - 

trends, learning and 
reacting

• Physical
• Plasmas
• materials
• biological
• ecological
• chemical
• meteorological and 

climitalogical

• Coupled systems
• Take any from the 

above and mix and 
match

Some of these have complicated parts, some do not
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Assessing and managing the risk of large blackouts 
is an example of a complex critical infrastructure

• Large blackouts typically involve complicated series of cascading rare 
events that are often impossible to anticipate in detail:
– An example: August 14th, 2003

• These blackouts have important economical and social consequences.

• Our view is that blackouts are inherent to the power grid as well as 
many other infrastructure systems. Efforts to mitigate  or eliminate 
them can backfire and increase the likelihood of the large cascading 
blackouts (note: this does not mean system can not be improved and 
risk lowered).

• We have developed new models and ideas to address the risk of large 
cascading infrastructure failures from a global, dynamical, complex 
systems perspective.
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Characteristics of complex 

systems

• Power law tails (heavy tails)=>large infrequent events can 
dominate the risk

• Long time correlations => what happens today depends on 
what happened years ago
– System often operates near its operational limit
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Probability of large blackouts decreases as a power 
of their size instead of exponentially

• Our analysis of the NERC data 
shows power tails in the 
probability distribution of the 
size of North American 
blackouts.

• A long time correlation between 
the failure events that is found 
to exist.

• An explanation for this 
correlation and heavy tail is that 
the system tends to operate 
close to critical. (August 14 blackout is consistent with 

this power tail)



UW-MadisonLong-Time Correlation

• R/S (long time correlation) analysis of the power grid 
disturbances consistent with a time series of avalanches 
generated from a complex systems running sandpile model 
with the same frequency of events.
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H>0.5 => persistence;
H=0.5 => random;
H<0.5 => anti-persistence

H ~ 0.7
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UW-MadisonElectricity Demand in the U.S.

• The demand for electrical 
power has increased as a 
rate of 2% a year for the 
last two decades.

• Power generation has 
respond to this demand. 
However, the increase in 
generation is not as fast 
as the demand.

• The generation capability 
margin is decreasing.

• Similar problem in 
transmission capacity

• In this and many critical 
systems we are operating 
closer to the edge
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UW-MadisonRisk from Power Tails in PDF

• To find the risk of failure (ie blackout), we 
need to know both the PDF (frequency, 
F(Size))  of the failure and its costs, C(Size).

 The cost C(Size) ~ to the size =>  so

 Risk  = F(Size) C(Size)
• For example: the NERC data indicate a power 

law scaling of blackout frequency with 
blackout unserved energy as F(Size) ~ Sα,  

where α ~ −1.2 to -1.6,   => Risk  ~  S-0.2  to 
S-0.6 

• High cost of large blackouts - large blackouts 
dominate the risk

• If coupling makes tails heavier and reduces 
critical point this can have major implications 
for risk (ie large events dominate even more 
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Examples of uses of Complex 

systems models

• OPA Risk analysis
• OPA design/planning analysis (reliability vs redundancy)
• CASCADE and OPA operational analysis (risk averse 

operation)
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UW-MadisonA Dynamical Model (OPA) 

Dynamically self adjusting to near nonlinear critical point
• The OPA model consists of:

– Transmission network model with DC load flow and LP dispatch
– Random initial disturbances and probabilistic cascading line outages and 

overloads
– Underlying load growth and load variations
– Engineering/economic responses to blackouts: upgrade lines involved in 

blackouts 
– Upgrade generation in response to increase demand

• The blackout dynamics are the result of opposing forces:
– Increase demand (and/or economic pressure) => push toward critical point.

– Engineering/Operational responses to failures
Upgrades of the transmission system                 push away from critical point 
Investment in new power plants.

– Regulatory measures may set constraints in this process
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OPA model captures characteristics 

of system

• Useful for investigating 
s y s t e m s t a t e a n d 
relative risks 

• Can now be used to 
explore mitigation and 
design schemes for 
their impact on risk
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Engineering: A tale of two methods for 

improving transmission network robustness

• Reliability (component not network)
– Component reliability is the complement of component operating 

margin [MR vs (1-MR)] in this implementation

– This is point at which new failure probability grows
• Redundancy

– True redundancy (not used until needed)(like the old NASA)
– True doubling but half load carried by each line (danger => 

pressure and aging)
– Capacity redundancy (fatter pipe)(danger=> pressure and 

random)
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Reliability/Margin

• Probability of larger blackouts/more outages increases 
as reliability increases (or margin decreases) 

• Small outages can decrease 
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Redundant lines can improve 

system robustness

• Redundant lines can reduce 
large blackouts

• Triple lines have little 
further effect (good thing!)

• Small blackouts are not 
increased (improved system 
reliability??)
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Operations: Risk aversion 
mechanism within model

• Decisions on how to respond (on both short and long time scales) to an 
incident depend on the real and perceived risk from, and of, the incident
– How bad was it, how bad is another likely to be, how probable is another 

incident
• As society gets “safer” risk of smaller incidents take higher priority 

(moving target)
– This can skew our perception and response => can have important 

implications for real risks
– This stems in part from our natural tendency to assign blame whenever 

something goes wrong
• Need model that captures characteristics of reaction to “risk” in order to 

include in decision making models 
– For coupling to infrastructure systems models
– As a learning tool for improved response 

• How much risk is acceptable?
• What are characteristics of a response to incidents with various levels of 

risk aversion?
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UW-MadisonRisk aversion good or bad?

• Good?                                               Bad!

• Although the averaged number of failing components is reduced, the probability of an 
extreme event increases
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Large events dominate critical risk 

averse operation

Largest events become 
more probable with 
increased risk aversion

PDF of size changes 
from weaker 
exponential in risk 
taking case to 
heavier tail in risk 
averse operation
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Where are we going/what can we learn 

with these types of models

• Relative risk assessment
• Evaluation of mitigation and design schemes
• Metric for system state (non trivial for 

coupled systems)
• More agents
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What are they? What are their characteristics? What can they do for you?
• There is evidence that many infrastructure systems such as power 

transmission systems, communication systems etc, behave as complex dynamical 
systems.   Strong but fragile - house of cards

• Such dynamics imply the intrinsic unavoidability of cascading events in such a 
system when driven(operated) near its operational limits

– Understanding and avoiding a particular failure mode does not necessarily 
reduce the risk of disruption.  (Control and mitigation can have counter 
intuitive effects)

• The characteristic power law PDF implies that blackouts up to the size of the 
full system are possible and Gaussian statistics can not be used in risk analysis

• Agents can be very useful even in the simple CASCADE model for modeling the 
interaction between upgrade and replacement forces and including cost/risk of 
failure

• Risk averse behavior (or response to large events) can be very counter 
productive (even with learning/ forgetting modeled)

• Complex systems models (while not accurately representing the details) are 
very useful in design, characterization and control studies.

Conclusions
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Suppression of small failures can 

increase large failures

• Suppression of failures below size 30 in steady state 
increases the largest events
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Ramifications of Complex System 

Dynamics

• Large events are unavoidable
• Macroscopic dynamics relatively insensitive to microscopic 

dynamics (i.e. overall pattern is insensitive to individual 
changes...this is counter-intuitive)

• Dynamics over many time and space scales 
• long time correlations

• Trends in short time records can be unreliable 

Attempts at control can have unintended consequences
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