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ABSTRACT 
 
We propose a new formal approach for the design process of 
computer games, which involves the modeling of 
spatiotemporal relationships. Logical and temporal 
transactions are modeled using Petri Nets and topological 
relationships of the game universe by hypergraphs. For 
splicing these structures, we introduce connections which 
relate hyperedge replacement with the reachability tree of 
the Petri Net. By using these constructs flexible changes and 
the validation of certain properties of the missions can be 
accomplished.  
 
INTRODUCTION 
 
Game design is a difficult task that combines artistic and 
technical processes. Considering the interactive nature of 
computer games and, especially, their main goal (to 
entertain), the author must leave controlled freedom to the 
player (Bates 2001). The player has to be confronted with 
complex problems which are neither too easy nor too 
difficult to solve, making sure that game experience leads to 
a succession of goals within a reasonable time (Gal et al. 
2002). In addition, the player must have a feeling of freedom 
in this interactive world, even when he is guided towards a 
solution in an unconscious way. To accomplish this, the 
game designer has to create “one or more causally linked 
series of challenges in a simulated environment” (Rollings 
2003). This is not an easy job, as the following example 
shows.  
 
Example: (room-key error) Two rooms A and B are only 
connected by a closed door, the avatar of the player is 
located in room A and its task is to get into room B. To 
achieve this he has to unlock the door with the help of a key. 
But the key is located in room B, thus the avatar will never 
be able to open the door.  
 
 
 
* The author wants to express his sincere gratitude to Prof. Natkin and the 
CEDRIC-CNAM for the invitation to a research visit as Professeur Invité at 
the CEDRIC-CNAM during summer 2004.  
 

Although this seems to be a trivial example, in real games 
different tasks can change the topology of the virtual space 
in a quite complex way, such that it is not easy to prevent the 
game designer from these or similar errors.  
 
In this article, we concentrate on the modeling of 
spatiotemporal relationships of games. We start by giving a 
short overview of common design practices. The 
differentiation into game and level design is reflected by the 
two following sections. Special Petri Nets are used to define 
the missions of a game, and hypergraphs for characterizing 
the topology of the virtual space. To bring these two 
structures together we define after that connections and 
describe their basic applications.  
 
GAME AND LEVEL DESIGN 
 
In this article we consider the design process of a computer 
game from industry’s classical point of view. This process is 
decomposed into two phases: Game Design and Level 
Design. For the description of both a common method is to 
use game design documents. These documents define the 
different elements of game design and illustrate the game 
concept: scenario, game and level missions, character 
description, etc. (Bates 2000, Rollings 2003). It becomes the 
reference document for all production team members. 
 
Game creation starts in most of the cases by an original idea 
and the development of its scenario. Thus in a first 
conceptional stage the principal aspects of the game universe 
are defined (Gal et al. 2002): Epoch and style, context, goals 
to be reached, main type of objects involved, users game 
perception, etc. The definition of the game at this stage is 
known as the Game Design.   
 
Level Design is the next specification stage. A game level 
consists of a virtual space, puzzles, main actions and a set of 
objects to interact with in order to complete a given goal. 
The difficulty of puzzles can be defined by the geometry and 
topology of space, logic, action sequences and objects 
localization. Each level has to be meaningful for the game, 
and goals have to be the central element unifying the level 
theme (Bates 2001). With this in mind, a game designer’s 
task is to motivate the player by balancing objects behavior 
and game rules. Thus he has to take into account at each 
stage the space description, the positioning of objects in the 
virtual world, the logic of actions sequences relating these 
objects and the constraints caused by the topology of the 
virtual world. 



 
PETRI NETS 
 
We use Petri nets to model the ordering of action sequences 
in a game. This approach allows us to describe the logic 
structure of the missions in the game. The advantage of 
using Petri Nets (PN) is that they can be represented either 
by graphical or mathematical models, depending on model 
complexity and application context. (Peterson 1981). The 
following discussion is based on (Natkin and Vega 2003) 
approach. 
 
PN game models are composed of transactions (cf. Figure 
1). Transactions represent the atomic actions of the player, 
i.e. only one transaction can be executed at a time. 
Transactions can be in one of tree states: not started, 
executing or finished.  

 
Figure 1. Basic Model of a Transaction.  

 
A transaction net N = (T,G) is a set of transactions T, which 
are combined by three basic constructs. A relation between 
two transactions is denoted by G. Transaction nets describe 
possible choices the player has during the game. Given two 
transactions a and b, they can be combined as shown in 
Figure 2. Each construct represents the possible sequence in 
which a and b can be executed. In Figure 2, the left construct 
show the case where a and b are not related (i.e. they can be 
executed in any order). In the center construct a is before b, 
which means that b can only be executed if a has been 
executed. In the right construct if a is executed b cannot be 
executed.  

Figure 2. Relations between two Transactions a and b. 
 
By combination of constructs, more complex semantics can 
be generated e.g. mutual exclusion between two transactions 
(i.e. if one transaction is executed, then the other one can 
not). 
 
The reachability tree of a Petri Net generates a Petri Net 
language (cf. Diaz 2001). A sequence of firing transitions 
generates the corresponding strings. The reachability tree of 
a transaction net describes all possible sequences of atomic 

player-choices. In transaction nets, transactions are atomic, 
thus we can merge the Begin and End transition of a 
transaction into one letter, generating the language L(N). 
Applying these concepts to the transaction net on Figure 2, 
the left construct in Figure 2 generates the strings {a, b, ab, 
ba}, the middle construct {a, ab} and the right construct {a, 
b, ba}.  
 
Example: The former approach is applied to Silent Hill 2 
(Konami 2002), a horror-adventure game that takes place in 
a mysterious and almost deserted town. The player controls 
an avatar (James) with unclear goals at the beginning. To 
accomplish his mission, he must explore the environment, 
fight against enemies and collect objects (keys, notes, 
information, etc.) to solve puzzles. The game starts at a 
parking bathroom outside town. 
 

 
Figure 3. Silent Hill 2 First Level Transaction Net. 

 
The main action sequence the player needs to execute to 
complete the first level is explained next (cf. Figure 3):  
 
(a) get the map from James car and hit the road to Silent 
Hill.  Once in the town, (c) win the fight against a creature 
in order to be able to continue. (b) Loosing the fight means 
that the game is over. After winning the fight, James can 
execute the next four actions in arbitrary order: 
(d) Recover an unclear inscription from a weird monument.  
(e) Look at the map in the trailer.  
(f) Find a second map in Neely’s Bar.  
(g) Find the apartment key on a dead body. 
(d), (e) and (f) are optional actions that can be repeated an 
infinite number of times with out changing the course of the 
game. (g) is mandatory and marks the end of the first level. 
After this, James is able to (h) enter the apartment to begin 
the next level. 



 
SPATIAL RELATIONSHIPS 
 
Besides describing the mission’s logical structure (cf. the 
previous section), describing the game world topological 
properties and its evolution is also important.  
 
There are different approaches to describe spatial 
relationships. One is to use visual languages (Haarslev, 
1996) where description logic is used to combine topological 
and spatial relations and applications can be found in 
geographical information systems. A common way for 
describing topological relationships is to use the usual point-
set topology with open and closed sets. In (Haarslev, 1996) 
an overview of different concepts is given, where often the 
interior and the boundary of sets are also taken into account. 
We do not follow this fine grained typology, but use instead 
a much simpler concept where we do not take into account 
the boundaries of sets. 
 
In (Flury et al. 2003) an overview of location models in 
pervasive computing is given, where they establish the term 
locus / loci for location entities (e.g. regions of physical 
space) and locants for locatable entities, which can be 
passive or active objects (like a user). We adopt these terms 
and will denote a region of the virtual space as locus. In our 
approach, we do not model locants explicitly, but we 
concentrate instead only on the connections between 
different loci. The representation we introduce is a locus 
graph, where loci represent some subsets of space and their 
structural relationships are described by edges. These 
relationships are expressed here by (directed) hypergraphs.  
 
Hypergraphs are generalizations of graphs, for a formal 
description and a thorough discussion of hypergraphs cf. 
(Drewes et al. 1997). For the presentation in the article, we 
take the somewhat simpler definition of (Gallo et. al. 1992). 
A hypergraph H is a pair H=(V,E), where V is a finite set of 
vertices (or nodes) and 1{ , , }mE E E= K  with iE V⊆ for 

i=1…m is the set of hyperedges. Clearly, when | | 2iE =  for 

all i, then the hypergraph is a standard graph. Additionally, 
by a finite nonempty set C of labels and a function 

:lab E C→ the hyperedges can be labeled. 
 
A directed hyperedge is an ordered pair E=(X,Y) of (possibly 
empty) disjoint subsets of vertices. X is the tail of E and Y its 
head. A directed hypergraph is a hypergraph with directed 
hyperedges, which we will denote hypergraph in the 
following for simplicity. Petri Nets can be modeled by 
hypergraphs and also (ordinary) directed graphs. Given a set 
of vertices V and labels C the class of all directed 
hypergraphs over C with these vertices is denoted by H(C).  
 
To construct the topological relationships, the virtual space 
of a game is divided into loci, which are represented by 
nodes V in a hypergraph. Each locus is a pathconnected 
subset of the virtual space, which means that the avatar can 
move to every point in the locus at any time of the game if 
he is within the locus. Typical examples for loci are the 
rooms of a house, or special zones in an outdoor area. The 

set of loci does not change during the game, it is fixed. 
Therefore the partitioning of the virtual world into loci 
defines all the possible places of interest which have to be 
taken into account for the game. Note, that loci do not have 
to be maximal with respect of the pathconnection property, 
which means that it is e.g. possible to divide a room into two 
loci (the left and the right half) while the avatar is able to 
move freely within the room.  
 
The ability for an avatar to move from one locus to another 
at a certain state of the game is modeled by an hyperedge iE . 

Because the hypergraph we use is directed, it is possible to 
model one-way connections, where it is only possible to 
move an object from one locus (the tail of the hyperedge) to 
another (the head), but not the same way back. Note also, 
that the hypergraph is not unique because there may be 
several ways of defining the corresponding hyperedges. We 
use hyperedges because they have more possibilities for 
presenting spatial relationships than edges from ordinary 
graphs, which can only connect two nodes.  
 
While playing the game, the hypergraphs may change, i.e. 
certain hyperedges can be replaced by others or even vanish. 
Formally this can be described by hyperedge replacement cf. 
(Drewes et.al. 1997). As mentioned before, we assume that 
the decomposition of the virtual space into loci is fixed and 
does not change during the game. 
 
Example:  In Figure 4 a map of the first part of Silent Hill 2 
is given (non-real scale).   
 

 
 

Figure 4. Partial Map of Silent Hill 2. White: Street, 
Grey: Building/Area, Black: Roadblock, 1 Parking 
Place, 2 Fountain, 3 Church, 4 Backyard, 5 Tunnel, 6 
Swamp Monument, 7 Neely’s Bar, 8 Trailer, 9 
Apartment Gate Key, 10 Apartment. 

 
The white stripes represent the streets, the grey areas 
buildings or open areas. The circled numbers represent 
special subsets of the virtual world where the player 
experiences special actions or has to fulfill specific tasks. 
These are taken as nodes in the hypergraph of Figure 5, 
where the corresponding spatial relationships between these 
loci at the beginning of the game are represented. 
Hyperedges are represented as arrows with the label of the 
hyperedge within a square. Note, that the hyperedge A and 
A’ are not connected with any nodes (especially not with 
node 1), which reflects that at the beginning of the game, the 



protagonist can not leave the parking place. For graphical 
representation, we also gather several hyperedges into the 
edge D, which means that you can move freely between any 
of the nodes 3 and 4.  

 
Figure 5. Spatial Relationships at the Start. 

 
CONNECTIONS 
 
The change of the topology of the virtual world can be 
modeled by hyperedge replacement. For a formal definition 
of general hyperedge replacement, we refer to (Drewes et.al. 
1997). For the sake of simplicity we only introduce in this 
article the replacement of one hyperedge at a time. But all of 
the following constructions are also possible for general 
hyperedge replacements on hypergraphs. 
 
Let the set of vertices V be fixed, C a set of labels and H(C) 
denote the corresponding set of hypergraphs over C, let 
A V⊆  be a hyperedge to be replaced by another hyperedge 
B V⊆ . Then the replacement [A/B] is a function [A/B] 
from H to H, where a hypergraph H is mapped to the 
hypergraph H[A/B] by removing A from H and adding the 
hyperedge B to H. If the hyperedge A is labeled, then the 
new hyperedge B inherits this label. 
 
As an example, the hyperedge e = ({},{}) with lab(e) = A in 
Figure 5 does not connect any node. It is replaced by the 
hyperedge e’= ({1}, {2}) with lab(e’)=A in Figure 6, which 
actually connects now the nodes 1 and 2.  
 
In the following we introduce connections relating 
hypergraphs with transaction nets.  
 
Definition: Let V be a set of vertices, C as set of labels, 
H(C) be the corresponding set of hypergraphs and N =(T,G) 
a transaction net with a corresponding language L(N). Let 

{ }ˆ *, ?T T= ∪  be the augmented set of transactions. Then a 
connection is a pair ([A/B], p) where [A/B] is a replacement 
and ˆ *p T∈ . Here ˆ *T  is the set of all strings of T̂ including 
the empty string. We call [A/B] the replacement and p the 
pattern of the connection. 
 
Now the semantics of a connection ([A/B], p) is defined as 
follows. Given the overall mission by a transaction net N 
and the initial spatial relationship of the mission by a 
hypergraph H. By walking through the transaction net, a 
string s of increasing length is created. If the string s 
contains the string p then the corresponding replacement 

[A/B] is applied on the hypergraph. The wildcard symbols 
“*” and “?” have the usual semantics known from common 
pattern matching programs, where “*” means “arbitrary 
symbols” and “?” “at most one symbol”.  
 
Example:  We consider again the Silent Hill example. After 
having examined the car, the avatar is able to leave the 
parking lot. This can be modeled in the following way. Let 
W=({},{}) and X=({1},{2}) with lab(W)=lab(X) = A and 
Y=({},{}) and Z=({2},{1}) with lab(Y)=lab(Z) = A’ be 
hyperedges. Then the connectors are defined as 
 

([W/X], a) and ([Y/Z], a), 
 

where a is the transaction from Figure 3. 

 
Figure 6. After investigating car in (1), 
 the player can leave the parking place. 

 
In the same way, that only after killing the monster in the 
tunnel the avatar is able to leave the tunnel is modeled by 
 

([K/L], c) and ([M/N], g), 
 
with K=({},{}), L=({5},{4}) and lab(K) = lab(L) = C’ 
and M=({3,4},{3,4}), N=({3,4,6,7,8,9}, {3,4,6,7,8,9})  and 
lab(M) = lab(N) = D. (cf. Figure 7).  

 
Figure 7. After the fight with the monster is won. 

 
Finally the accessibility of the apartments after receiving the 
key (cf. Figure 8) is expressed by  

 
([P/Q], g) 

 
with P=({3,4,6,7,8,9},{3,4,6,8,9}), and Q=({3,4,6,7,8,9,10}, 
{3,4,6,8,9,10})  and lab(M) = lab(N) = D. (Note that for 



presentation reasons we collapsed the nodes of several 
hypergraphs into D). 
 
Given a transaction net, an initial hypergraph and some 
connectors, it is also possible to add some additional 
conditions on the connectors, e.g. that the pattern of a 
connector appears in every word of the transaction net, or in 
at least one. This can be easily verified by standard 
algorithms on Petri Nets. 

 
Figure 8. After getting the key to the apartment. 

 
These instruments can be used for new methodologies in the 
game design process. One method would be to start with the 
map of a mission and define the replacements corresponding 
to certain transactions. After these are defined by 
connectors, the overall logic can be developed by connecting 
these transactions or adding some additional ones to build 
the overall transaction net. The opposite way is also 
possible: start with a transaction net, construct a map and 
define the connectors. In general, game design is a non-
linear process which will follow neither of the ways in a 
strict manner. For this case it is also possible to switch forth 
and back between changing the transaction net and the 
connectors or even the map during the design.   
 
The formalism can also be used to validate certain 
spatiotemporal relationships. To test if certain nodes in the 
hypergraph are connected after specific transactions where 
activated, one has to create the corresponding hypergraphs 
for all the words where the transactions appear, and test with 
standard algorithms (cf. Gallo, 1993) if the nodes are 
connected. 
 
To test if certain nodes are connected at all, one has to 
check, which kind of patterns of the connectors actually can 
be found in the language of the transaction net, create the 
corresponding hypergraphs and check for connectivity.  
 
Also the room-key problem of the introductory example can 
be solved, by checking if two nodes are connected before 
one applies a connector. More general, one can also think of 
defining a sequence of sets of nodes and a sequence of 
transactions where the interconnections of the nodes are 
conditions for the firing of the transactions. 
 
CONCLUSIONS AND FURTHER RESEARCH 
 
We introduced a new methodology for combining spatial 
and temporal relationships in games. For the modeling of the 

spatial relationships we used hypergraphs. But because Petri 
Nets also can be modeled as hypergraphs, it would be 
interesting supplying hypergraphs also with semantics of 
Petri Nets. In this case it has to be investigated, what 
actually then could be modeled by the tokens in the spatial 
hypergraphs and how this Petri Net can be connected to the 
transaction net in a meaningful way.  
 
Although in principle it is possible to express multiplayer 
missions, the current framework has to be extended to 
support the special needs of multiplayer games (e.g. how to 
support cooperation between players). This is also related to 
the question, how other objects in the game (e.g. equipment, 
weapons or power-ups) can be represented in the 
framework.  
 
For an evaluation it is thought of implementing a test 
environment. However, the task of providing game and level 
designers with an appropriate and intuitive user interface has 
to be taken into account. 
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