
A NEW METHODOLOGY FOR SPATIOTEMPORAL GAME DESIGN

Stéphane Natkin and Liliana Vega
Centre De Recherche en Informatique du CNAM

Conservatoire National des Arts et Métiers
292, rue St Martin - 75003 Paris, France

E-mails: {natkin, lvega}@cnam.fr

Stefan M. Grünvogel*
NOMADS Lab

Nonlinear Media: Art, Development and Science
Piusstr. 40, D-50823 Köln, Germany
E-mail: gruenvogel@nomadslab.org

KEYWORDS

Game design, spatiotemporal relations, Petri net, reachability
tree, hypergraph, hyperedge replacement, connection

ABSTRACT

We propose a new formal approach for the design process of
computer games, which involves the modeling of
spatiotemporal relationships. Logical and temporal
transactions are modeled using Petri Nets and topological
relationships of the game universe by hypergraphs. For
splicing these structures, we introduce connections which
relate hyperedge replacement with the reachability tree of
the Petri Net. By using these constructs flexible changes and
the validation of certain properties of the missions can be
accomplished.

INTRODUCTION

Game design is a difficult task that combines artistic and
technical processes. Considering the interactive nature of
computer games and, especially, their main goal (to
entertain), the author must leave controlled freedom to the
player (Bates 2001). The player has to be confronted with
complex problems which are neither too easy nor too
difficult to solve, making sure that game experience leads to
a succession of goals within a reasonable time (Gal et al.
2002). In addition, the player must have a feeling of freedom
in this interactive world, even when he is guided towards a
solution in an unconscious way. To accomplish this, the
game designer has to create “one or more causally linked
series of challenges in a simulated environment” (Rollings
2003). This is not an easy job, as the following example
shows.

Example: (room-key error) Two rooms A and B are only
connected by a closed door, the avatar of the player is
located in room A and its task is to get into room B. To
achieve this he has to unlock the door with the help of a key.
But the key is located in room B, thus the avatar will never
be able to open the door.

* The author wants to express his sincere gratitude to Prof. Natkin and the
CEDRIC-CNAM for the invitation to a research visit as Professeur Invité at
the CEDRIC-CNAM during summer 2004.

Although this seems to be a trivial example, in real games
different tasks can change the topology of the virtual space
in a quite complex way, such that it is not easy to prevent the
game designer from these or similar errors.

In this article, we concentrate on the modeling of
spatiotemporal relationships of games. We start by giving a
short overview of common design practices. The
differentiation into game and level design is reflected by the
two following sections. Special Petri Nets are used to define
the missions of a game, and hypergraphs for characterizing
the topology of the virtual space. To bring these two
structures together we define after that connections and
describe their basic applications.

GAME AND LEVEL DESIGN

In this article we consider the design process of a computer
game from industry’s classical point of view. This process is
decomposed into two phases: Game Design and Level
Design. For the description of both a common method is to
use game design documents. These documents define the
different elements of game design and illustrate the game
concept: scenario, game and level missions, character
description, etc. (Bates 2000, Rollings 2003). It becomes the
reference document for all production team members.

Game creation starts in most of the cases by an original idea
and the development of its scenario. Thus in a first
conceptional stage the principal aspects of the game universe
are defined (Gal et al. 2002): Epoch and style, context, goals
to be reached, main type of objects involved, users game
perception, etc. The definition of the game at this stage is
known as the Game Design.

Level Design is the next specification stage. A game level
consists of a virtual space, puzzles, main actions and a set of
objects to interact with in order to complete a given goal.
The difficulty of puzzles can be defined by the geometry and
topology of space, logic, action sequences and objects
localization. Each level has to be meaningful for the game,
and goals have to be the central element unifying the level
theme (Bates 2001). With this in mind, a game designer’s
task is to motivate the player by balancing objects behavior
and game rules. Thus he has to take into account at each
stage the space description, the positioning of objects in the
virtual world, the logic of actions sequences relating these
objects and the constraints caused by the topology of the
virtual world.

PETRI NETS

We use Petri nets to model the ordering of action sequences
in a game. This approach allows us to describe the logic
structure of the missions in the game. The advantage of
using Petri Nets (PN) is that they can be represented either
by graphical or mathematical models, depending on model
complexity and application context. (Peterson 1981). The
following discussion is based on (Natkin and Vega 2003)
approach.

PN game models are composed of transactions (cf. Figure
1). Transactions represent the atomic actions of the player,
i.e. only one transaction can be executed at a time.
Transactions can be in one of tree states: not started,
executing or finished.

Figure 1. Basic Model of a Transaction.

A transaction net N = (T,G) is a set of transactions T, which
are combined by three basic constructs. A relation between
two transactions is denoted by G. Transaction nets describe
possible choices the player has during the game. Given two
transactions a and b, they can be combined as shown in
Figure 2. Each construct represents the possible sequence in
which a and b can be executed. In Figure 2, the left construct
show the case where a and b are not related (i.e. they can be
executed in any order). In the center construct a is before b,
which means that b can only be executed if a has been
executed. In the right construct if a is executed b cannot be
executed.

Figure 2. Relations between two Transactions a and b.

By combination of constructs, more complex semantics can
be generated e.g. mutual exclusion between two transactions
(i.e. if one transaction is executed, then the other one can
not).

The reachability tree of a Petri Net generates a Petri Net
language (cf. Diaz 2001). A sequence of firing transitions
generates the corresponding strings. The reachability tree of
a transaction net describes all possible sequences of atomic

player-choices. In transaction nets, transactions are atomic,
thus we can merge the Begin and End transition of a
transaction into one letter, generating the language L(N).
Applying these concepts to the transaction net on Figure 2,
the left construct in Figure 2 generates the strings {a, b, ab,
ba}, the middle construct {a, ab} and the right construct {a,
b, ba}.

Example: The former approach is applied to Silent Hill 2
(Konami 2002), a horror-adventure game that takes place in
a mysterious and almost deserted town. The player controls
an avatar (James) with unclear goals at the beginning. To
accomplish his mission, he must explore the environment,
fight against enemies and collect objects (keys, notes,
information, etc.) to solve puzzles. The game starts at a
parking bathroom outside town.

Figure 3. Silent Hill 2 First Level Transaction Net.

The main action sequence the player needs to execute to
complete the first level is explained next (cf. Figure 3):

(a) get the map from James car and hit the road to Silent
Hill. Once in the town, (c) win the fight against a creature
in order to be able to continue. (b) Loosing the fight means
that the game is over. After winning the fight, James can
execute the next four actions in arbitrary order:
(d) Recover an unclear inscription from a weird monument.
(e) Look at the map in the trailer.
(f) Find a second map in Neely’s Bar.
(g) Find the apartment key on a dead body.
(d), (e) and (f) are optional actions that can be repeated an
infinite number of times with out changing the course of the
game. (g) is mandatory and marks the end of the first level.
After this, James is able to (h) enter the apartment to begin
the next level.

SPATIAL RELATIONSHIPS

Besides describing the mission’s logical structure (cf. the
previous section), describing the game world topological
properties and its evolution is also important.

There are different approaches to describe spatial
relationships. One is to use visual languages (Haarslev,
1996) where description logic is used to combine topological
and spatial relations and applications can be found in
geographical information systems. A common way for
describing topological relationships is to use the usual point-
set topology with open and closed sets. In (Haarslev, 1996)
an overview of different concepts is given, where often the
interior and the boundary of sets are also taken into account.
We do not follow this fine grained typology, but use instead
a much simpler concept where we do not take into account
the boundaries of sets.

In (Flury et al. 2003) an overview of location models in
pervasive computing is given, where they establish the term
locus / loci for location entities (e.g. regions of physical
space) and locants for locatable entities, which can be
passive or active objects (like a user). We adopt these terms
and will denote a region of the virtual space as locus. In our
approach, we do not model locants explicitly, but we
concentrate instead only on the connections between
different loci. The representation we introduce is a locus
graph, where loci represent some subsets of space and their
structural relationships are described by edges. These
relationships are expressed here by (directed) hypergraphs.

Hypergraphs are generalizations of graphs, for a formal
description and a thorough discussion of hypergraphs cf.
(Drewes et al. 1997). For the presentation in the article, we
take the somewhat simpler definition of (Gallo et. al. 1992).
A hypergraph H is a pair H=(V,E), where V is a finite set of
vertices (or nodes) and 1{ , , }mE E E= K with iE V⊆ for

i=1…m is the set of hyperedges. Clearly, when | | 2iE = for

all i, then the hypergraph is a standard graph. Additionally,
by a finite nonempty set C of labels and a function

:lab E C→ the hyperedges can be labeled.

A directed hyperedge is an ordered pair E=(X,Y) of (possibly
empty) disjoint subsets of vertices. X is the tail of E and Y its
head. A directed hypergraph is a hypergraph with directed
hyperedges, which we will denote hypergraph in the
following for simplicity. Petri Nets can be modeled by
hypergraphs and also (ordinary) directed graphs. Given a set
of vertices V and labels C the class of all directed
hypergraphs over C with these vertices is denoted by H(C).

To construct the topological relationships, the virtual space
of a game is divided into loci, which are represented by
nodes V in a hypergraph. Each locus is a pathconnected
subset of the virtual space, which means that the avatar can
move to every point in the locus at any time of the game if
he is within the locus. Typical examples for loci are the
rooms of a house, or special zones in an outdoor area. The

set of loci does not change during the game, it is fixed.
Therefore the partitioning of the virtual world into loci
defines all the possible places of interest which have to be
taken into account for the game. Note, that loci do not have
to be maximal with respect of the pathconnection property,
which means that it is e.g. possible to divide a room into two
loci (the left and the right half) while the avatar is able to
move freely within the room.

The ability for an avatar to move from one locus to another
at a certain state of the game is modeled by an hyperedge iE .

Because the hypergraph we use is directed, it is possible to
model one-way connections, where it is only possible to
move an object from one locus (the tail of the hyperedge) to
another (the head), but not the same way back. Note also,
that the hypergraph is not unique because there may be
several ways of defining the corresponding hyperedges. We
use hyperedges because they have more possibilities for
presenting spatial relationships than edges from ordinary
graphs, which can only connect two nodes.

While playing the game, the hypergraphs may change, i.e.
certain hyperedges can be replaced by others or even vanish.
Formally this can be described by hyperedge replacement cf.
(Drewes et.al. 1997). As mentioned before, we assume that
the decomposition of the virtual space into loci is fixed and
does not change during the game.

Example: In Figure 4 a map of the first part of Silent Hill 2
is given (non-real scale).

Figure 4. Partial Map of Silent Hill 2. White: Street,
Grey: Building/Area, Black: Roadblock, 1 Parking
Place, 2 Fountain, 3 Church, 4 Backyard, 5 Tunnel, 6
Swamp Monument, 7 Neely’s Bar, 8 Trailer, 9
Apartment Gate Key, 10 Apartment.

The white stripes represent the streets, the grey areas
buildings or open areas. The circled numbers represent
special subsets of the virtual world where the player
experiences special actions or has to fulfill specific tasks.
These are taken as nodes in the hypergraph of Figure 5,
where the corresponding spatial relationships between these
loci at the beginning of the game are represented.
Hyperedges are represented as arrows with the label of the
hyperedge within a square. Note, that the hyperedge A and
A’ are not connected with any nodes (especially not with
node 1), which reflects that at the beginning of the game, the

protagonist can not leave the parking place. For graphical
representation, we also gather several hyperedges into the
edge D, which means that you can move freely between any
of the nodes 3 and 4.

Figure 5. Spatial Relationships at the Start.

CONNECTIONS

The change of the topology of the virtual world can be
modeled by hyperedge replacement. For a formal definition
of general hyperedge replacement, we refer to (Drewes et.al.
1997). For the sake of simplicity we only introduce in this
article the replacement of one hyperedge at a time. But all of
the following constructions are also possible for general
hyperedge replacements on hypergraphs.

Let the set of vertices V be fixed, C a set of labels and H(C)
denote the corresponding set of hypergraphs over C, let
A V⊆ be a hyperedge to be replaced by another hyperedge
B V⊆ . Then the replacement [A/B] is a function [A/B]
from H to H, where a hypergraph H is mapped to the
hypergraph H[A/B] by removing A from H and adding the
hyperedge B to H. If the hyperedge A is labeled, then the
new hyperedge B inherits this label.

As an example, the hyperedge e = ({},{}) with lab(e) = A in
Figure 5 does not connect any node. It is replaced by the
hyperedge e’= ({1}, {2}) with lab(e’)=A in Figure 6, which
actually connects now the nodes 1 and 2.

In the following we introduce connections relating
hypergraphs with transaction nets.

Definition: Let V be a set of vertices, C as set of labels,
H(C) be the corresponding set of hypergraphs and N =(T,G)
a transaction net with a corresponding language L(N). Let

{ }ˆ *, ?T T= ∪ be the augmented set of transactions. Then a
connection is a pair ([A/B], p) where [A/B] is a replacement
and ˆ *p T∈ . Here ˆ *T is the set of all strings of T̂ including
the empty string. We call [A/B] the replacement and p the
pattern of the connection.

Now the semantics of a connection ([A/B], p) is defined as
follows. Given the overall mission by a transaction net N
and the initial spatial relationship of the mission by a
hypergraph H. By walking through the transaction net, a
string s of increasing length is created. If the string s
contains the string p then the corresponding replacement

[A/B] is applied on the hypergraph. The wildcard symbols
“*” and “?” have the usual semantics known from common
pattern matching programs, where “*” means “arbitrary
symbols” and “?” “at most one symbol”.

Example: We consider again the Silent Hill example. After
having examined the car, the avatar is able to leave the
parking lot. This can be modeled in the following way. Let
W=({},{}) and X=({1},{2}) with lab(W)=lab(X) = A and
Y=({},{}) and Z=({2},{1}) with lab(Y)=lab(Z) = A’ be
hyperedges. Then the connectors are defined as

([W/X], a) and ([Y/Z], a),

where a is the transaction from Figure 3.

Figure 6. After investigating car in (1),
 the player can leave the parking place.

In the same way, that only after killing the monster in the
tunnel the avatar is able to leave the tunnel is modeled by

([K/L], c) and ([M/N], g),

with K=({},{}), L=({5},{4}) and lab(K) = lab(L) = C’
and M=({3,4},{3,4}), N=({3,4,6,7,8,9}, {3,4,6,7,8,9}) and
lab(M) = lab(N) = D. (cf. Figure 7).

Figure 7. After the fight with the monster is won.

Finally the accessibility of the apartments after receiving the
key (cf. Figure 8) is expressed by

([P/Q], g)

with P=({3,4,6,7,8,9},{3,4,6,8,9}), and Q=({3,4,6,7,8,9,10},
{3,4,6,8,9,10}) and lab(M) = lab(N) = D. (Note that for

presentation reasons we collapsed the nodes of several
hypergraphs into D).

Given a transaction net, an initial hypergraph and some
connectors, it is also possible to add some additional
conditions on the connectors, e.g. that the pattern of a
connector appears in every word of the transaction net, or in
at least one. This can be easily verified by standard
algorithms on Petri Nets.

Figure 8. After getting the key to the apartment.

These instruments can be used for new methodologies in the
game design process. One method would be to start with the
map of a mission and define the replacements corresponding
to certain transactions. After these are defined by
connectors, the overall logic can be developed by connecting
these transactions or adding some additional ones to build
the overall transaction net. The opposite way is also
possible: start with a transaction net, construct a map and
define the connectors. In general, game design is a non-
linear process which will follow neither of the ways in a
strict manner. For this case it is also possible to switch forth
and back between changing the transaction net and the
connectors or even the map during the design.

The formalism can also be used to validate certain
spatiotemporal relationships. To test if certain nodes in the
hypergraph are connected after specific transactions where
activated, one has to create the corresponding hypergraphs
for all the words where the transactions appear, and test with
standard algorithms (cf. Gallo, 1993) if the nodes are
connected.

To test if certain nodes are connected at all, one has to
check, which kind of patterns of the connectors actually can
be found in the language of the transaction net, create the
corresponding hypergraphs and check for connectivity.

Also the room-key problem of the introductory example can
be solved, by checking if two nodes are connected before
one applies a connector. More general, one can also think of
defining a sequence of sets of nodes and a sequence of
transactions where the interconnections of the nodes are
conditions for the firing of the transactions.

CONCLUSIONS AND FURTHER RESEARCH

We introduced a new methodology for combining spatial
and temporal relationships in games. For the modeling of the

spatial relationships we used hypergraphs. But because Petri
Nets also can be modeled as hypergraphs, it would be
interesting supplying hypergraphs also with semantics of
Petri Nets. In this case it has to be investigated, what
actually then could be modeled by the tokens in the spatial
hypergraphs and how this Petri Net can be connected to the
transaction net in a meaningful way.

Although in principle it is possible to express multiplayer
missions, the current framework has to be extended to
support the special needs of multiplayer games (e.g. how to
support cooperation between players). This is also related to
the question, how other objects in the game (e.g. equipment,
weapons or power-ups) can be represented in the
framework.

For an evaluation it is thought of implementing a test
environment. However, the task of providing game and level
designers with an appropriate and intuitive user interface has
to be taken into account.

REFERENCES

Bates, B. 2001. Game Design: The Art & Business of Creating
Games, Prima Publishing.

Diaz, M. 2001. Les Réseaux de Petri, Hermes, Paris

Drewes, F.; A. Habel; and H. Kreowski. 1997. “Hyperedge
Replacement Graph Grammars”, In Handbook of Graph Grammars
and Computing by Graph Transformation. Vol. 1: Foundations, G.
Rozenberg editor, World Scientific, 95-162.

Flury, T.; G. Privat and N. Chraiet. 2003. “A Model and Software
Architecture for Location-management in Smart Devices / Ambient
Communications Environments”, In Communication with Smart
Objects: developing technology for usable pervasive computing
sysems. Kintzig,C; Poulain, G.; Privat, G.; Favennec, P. (eds.),
Kogan Page Science, 71-90

Gal, V.; C. Le Prado; S. Natkin and L. Vega. 2002. “Writing for
Video Games”, In Proceedings of the VRIC 2002, June 2002,
Laval, France, 245-252

Gallo, G.; G. Longo; S. Pallottino; and S. Nguyen. 1993. “Directed
Hypergraphs and Applications”, Discrete Applied Mathematics,
Vol. 42 , Issue 2-3, 177-201

Haarslev, V. 1996. “A Fully Formalized Theory for Describing
Visual Notations”, In Proceedings of the AVI'96 Post-Conference
Workshop on Theory of Visual Languages, May 30, 1996, Gubbio,
Italy.

Konami. 2002, “Silent Hill 2”, computer game, developed and
published by Konami.

Peterson, J.L. 1981. “Petri Net Theory and the Modeling of
Systems”, Prentice Hall, New Jersey.

Natkin, S. and L. Vega. 2003. “A Petri Net Model for the Analysis
of The Ordering of Actions in Computer Games”, In Proceedings
of the GAME ON, London, November 2003.

Rollings, A. and E. Adams. 2003. Andrew Rollings and Ernest
Adams on Game Design. New Riders, Indianapolis.

