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Abstract 
Networks are fundamental for reconstructing the dynamics of many systems, but have the drawback that they 
are restricted to binary relations. Hypergraphs extend relational structure to multi-vertex edges, but are 
essentially set-theoretic and unable to represent essential structural properties. Hypernetworks are a natural 
multidimensional generalisation of networks, representing n-ary relations by simplices with n vertices. The 
assembly of vertices to make simplices is key for moving between levels in multilevel systems, and 
integrating dynamics between levels. It is argued that hypernetworks are necessary, if not sufficient, for 
reconstructing the dynamics of multilevel complex systems. 
 

1. Introduction 
Many systems are complex because they are multilevel and the intra-level dynamics at lower levels 
constrain and are constrained by the intra-level dynamics at higher levels. Examples include 
biological systems in which cell dynamics are co-constrained by organism dynamics, road systems 
where the behaviour of drivers is co-constrained by the traffic dynamics, and multi-robot systems 
where the behaviour of individual robots is co-constrained by the dynamics of the team. A 
mathematical formalism is needed to integrate intra-level and inter-level dynamics. 

This paper introduces what will be called hypernetworks. These are a natural extension of networks 
with two-vertex edges. In hypernetworks a hyper-edge, more commonly known as a simplex, can 
have many vertices. Hypernetworks are related to hypergraphs, and have a similar Galois lattice 
structure. However, there are subtle and important differences that make them more powerful for 
representing and reconstructing the dynamics of complex multilevel systems. 

The simple idea of representing relationships between n things is our starting point. From this 
simple beginning all else follows: we can build a mathematical theory of multilevel systems with its 
own theory of discrete multidimensional time and multilevel multidimensional dynamics as system 
activity flows through the polyhedra within and between levels. 

2. Networks, graphs and hypergraphs 
Let V be a set of objects called vertices, and E a set of objects called edges. Each edge ei is 
associated with a pair of vertices, (a, b). We write ρ: ei → (a, b). The pair (V, E) is called a graph. 
We allow ρ(ei) = ρ( ej) = (a, b) for i ≠ j, with more than one edge between pairs of vertices.  

Generally dynamics emerge from interactions between parts of systems, sometimes with associated 
flows. The abstraction of edges, (a, b), is ideally suited for representing interactions and flows 
between a and b. A general network is a graph in which the edges are oriented so that (a, b) ≠ (b, a). 
Usually a network has mappings from its vertices and edges to number sets representing flows and 
related entities, and these are constrained by the topological connectivity of the network.  

Despite the analytic power of graphs and networks they have the major limitation that they can only 
represent binary relations between pairs of things. For example, Figure 2(a) shows three binary 
telephone conversation relations between a mum, dad and daughter. This is an excellent structure 
for daughters to manipulate their parents because pairwise interaction is an inefficient way for three 
people to communicate. In contrast, the conference call structure of Figure 2(b) is that of a 3-ary 
relation which enables everyone to hear what the others say, and introduces much less ambiguity 
and misunderstanding: 〈mum, daughter〉 + 〈dad, daughter〉 + 〈mum, dad〉 ≠ 〈mum, daughter, dad〉. 
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(a) three binary relations (2-ary relations)                (b) a 3-ary relation  

Figure 1. Some n-ary relations cannot be expressed as the composition of binary relations 
 
The possibility of generalising graph edges to more than pairs of vertices has a long history: ‘For 
the past forty years Graph Theory has provided to be an extremely useful tool for solving 
combinatorial problems in areas as diverse as Geometry, Algebra, Number Theory, Operations 
Research and Optimization. It was thus natural to try and generalise the concept of a graph, in order 
to attack additional combinatorial problems. … The idea of looking at families of sets from this 
standpoint took shape in around 1960. In regarding each set as a “generalised edge” and in calling 
the family itself a “hypergraph”, the initial idea was to try to extend certain classical results of 
results of Graph Theory …” [Berge, 1989]. 
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(a) a hypergraph HE(X)                (b) The incidence matrix of HE(X)           (c) The dual hypergraph, HX(E) 
 
Figure 2. A hypergraph, its incidence matrix and its dual (Adapted from Berge 1989) 
 
Berge defines a hypergraph on the finite set X = {x1, x2, …, xn}to be a family of subsets of X, H = 
(E1, E2, …, Em) such that (1) Ei ≠ ∅ for all i = 1, 2, …, m, and (2) X = Ui Ei for i  = 1, 2,  …, m. A 
simple hypergraph has the property that no hyper-edge is a proper subset of another. The sets, Ei are 
called hypergraph edges or simply edges. Later we relax constraint (1) and allow the empty set to 
belong to hypergraphs. Thus, any finite class of finite sets, {E1, E2, …, Em}, will be called a finite 
hypergraph with vertex set X = Ui Ei, for i  = 1, 2,  …, m. 

There is a binary relation, R, between the vertices and edges of a hypergraph with Ei R xj if and only 
xi belongs to Ej. This can be represented in the usual way by an incidence matrix, M, where mij = 1 
if xi R Ej and mij = 0 otherwise. This is illustrated in Figure 2(b) where the rows define classes of 
sets in terms of their vertices. This example illustrates the duality often associated with relations, 
and the dual hypergraph of the transposed incidence matrix is illustrated in Figure 1(c). 
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 a1                              a2                               a3                               a4  
Figure 3. Four arches, a1, a2, a3, a4, assembled from blocks b1, b2, b3, b4, b5, b6, b7 b8. 

Consider a relation between a set of arch-shapes A and a set of blocks B (Fig 3). The incidence 
matrix for these relationships is given in Figure 4, and from this Figure 5 shows the bipartite graph 
of the binary relation between the parts and wholes. 
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Figure 4. Incidence matrix for the arch-block                 Figure 5. The bipartite graph of the 
               assembly relation in Figure 3.                                                  assembly relation 
 
Figure 5 defines a class of subsets of B given by { a1 → {b1, b2, b3},  a2 → {b2, b3, b4}, a3 → { b3, 
b4, b5, b6}, a4 →  {b6, b7, b8} }, which can be considered to be a hypergraph. A more interesting 
hypergraph also includes all the intersections of the sets, including the empty set, ∅ (Fig 6(a)). Let 
this hypergraph be denoted HA(B, R). This hypergraph is defined by the elements of A being related 
to subsets of B. The conjugate hypergraph, HB(A, R), is defined by the elements of B being related 
to subsets of A, as shown in Figure 6(b). 
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(a) The hypergraph HA(B, R)                                   (b) The hypergraph HB(A, R) 

Figure 6. The dual hypergraphs of the relation R between blocks and arches 
 
3. Hypergraph Connectivity and the Galois Lattice 
Two hypergraph edges are k-near if they share k vertices. This is an immediate generalisation of 
two network edges being connected by a single vertex. The edges Ei and Ej are k-connected if there 
is a chain of edges E(1), E(2), …,  E(n), with Ei = E(1), Ej = E(n), and E(h) κ-near E(h+1), κ ≥ k, for h = 1, 
…, n-1. This is analogous to the existence of a path in a network, and generalises the notion of 
connectivity. For example, E1 is 2-connected to E4 in Figure 7(a). Intuitively, two edges are ‘more 
highly connected’ for larger values of k.However, there is another issue illustrated in Figure 7(b). 
Here all four edges share the sub-edge {x1, x2, x3}, and this is a ‘stronger’ connectivity than k-
connectivity. We call this a star-hub structure where the class {E1, E2, E3, E4 } form a star-like 
configuration, with the set E5 = { x1, x2, x3} as its hub. 
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(a) E1 is 2-connected to E4                                                      (b) a star-hub configuration 
 
Figure 7.  New kinds of higher level connectivity in hypergraphs 
 
There is a 1-1 correspondence between the edges of the hypergraphs HA(B, R) and HB(A, R) in 
Figure 6, called a Galois connection [Barbut et al, 1970]. For example,{a1, a2}is associated with{b2, 
b3}, since both of a1 and a2 related to both of b1 and b2. These paired sets can be arranged in what is 
called a Galois lattice, illustrated in Figure 8. The expressions ( { a1, a2, a3, a4 }, ∅ ) means that no 
member of B is related to every member of A, and ( ∅, { b1, b2, b3, b4, b5, b6, b7, b8} ) means that no 
member of A is related to every member of B, where ∅ is the empty set .  

 
( { a1, a2, a3, a4 }, ∅ ) 

 

 

 

  

  

 

 

 

 

({ a1 },{b1, b2, b3})  ({ a2 }, {b2, b3, b4} ) ({ a3 }, {b3, b4, b5, b6} ) ({ a4 }, { b6, b7, b8} ) 

({ a1, a2, a3 },{b3 }) 

({ a3, a4 }, {b6 }) ({ a2, a3 }, {b3, b4 }) ({ a1, a2 }, {b2, b3}) 

 ( ∅, { b1, b2, b3, b4, b5, b6, b7, b8} ) 
 
Figure 8 The Galois lattice of the relation R between A and B. 

A lattice is defined to be a partially ordered set is which every two elements have a supremum and 
an infimum. Define the partial order ≤ by (A, B) ≤ (A’, B’) if A ⊆ A’ and B ⊇ B’. For all (Ah, Bi) and 
(Aj, Bk), (Ah ∩ Aj, Bi ∪ Bk) is the supremum of (Ah, Bi ) and  (Aj, Bk ), since (Ah, Bi) ≤ (Ah ∩ Aj, Bi ∪ 
Bk ) and  (Aj, Bk) ≤ (Ah ∩ Aj,, Bi ∪ Bk). Similarly  (Ah ∪ Aj, Bi ∩ Bk ) is the infimum of (Ah, Bi) and 
(Aj, Bk ), since (Ah ∩ Aj, Bi ∪ Bk ) ≤ (Ah, Bi ) and (Ah ∩ Aj, Bi ∪ Bk ) ≤ (Aj, Bk). Therefore the paired 
sets with this partial order form a lattice. In Figure 8 a line is drawn between each pair of sets and 
their supremum and infimum, to produce a picture of the resulting Galois Lattice. 
 

4. From Networks to Hypernetworks 
N-ary relations are a natural generalisation of binary relations, and they can be represented by a 
natural generalisation of the vertices and directed edges of network: a 3-ary relation can be 
represented by a triangle, a 4-ary relation can be represented by a tetrahedron, a 5-ary relation can 
be represented by a 5-hedron, and in general an n-ary relation can be represented by an n-hedron, as 
illustrated in Figure 9. 
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(a) line (edge)                              (b) triangle                        (c) tetrahedron                          (d) 5-hedron 

Figure 9. Representing relationships by multidimensional polyhedra 

 

Polyhedra can be viewed as a multidimensional generalisation of vertices and edges in a network: 
vertices have dimension zero, lines have dimension one, triangles have dimension-two, tetrahedra 
have dimension three, …, and (p+1)-hedra have dimension p.  

An abstract p-dimensional simplex, or p-simplex, σp, is defined by an ordered set of vertices, σp = 〈 
v0, v1, v2, … , vp〉. As we have seen, simplices can be represented graphically by polyhedra in 
multidimensional space. Although these pictures can carry the intuition of relational structure, their 
algebraic formulation provides the basis for rigorous theory. 

Let 〈 v0, v1, … , vp〉 be a simplex. Then {v0, v1, … , vp} is defined to be its vertex set. The simplex σq 
= 〈 v’0, v’1, … , v’q〉 is a face of σp = 〈 v0, v1, … , vp〉, written σq   σ    ∼ < p , iff {v’0, v’1, … , v’q} ⊆  {v0, 
v1, … , vp}. A set of simplices is called a simplicial family [Johnson, 1982a]. A set of simplices with 
all its faces is called a simplicial complex. 

Let σq be a face of both σ and σ’. Then σ and σ’ are said to be q-near. σq is a q-dimensional shared 
face, or q-face of σ and σ’. If σq is the largest shared face between σ and σ’ we write σq = σ ∩ σ’. 
For example, the simplices in Figure 10(a) share a vertex and they are 0-near, those in Figure 10(b) 
share an edge and they are 1-near, while the simplices in Figure 4(c) share a triangle and are 2-near.  

 
 
 
 
 
(a) 1 shared vertex  (0-near)         (b) 2 shared vertices (1-near)          (c) 3 shared vertices (2-near) 

Figure 10. Simplices can be connected at different dimensions 
 
 
 
 
 
 

σ(1) σ(2) σ(4) σ(5)
σ(3) σ(3)

σ(4)σ(2)σ(1)

(a) 0-connected     (b) 1-connected 

Figure 11. Chains of q-connected simplices 

We say two simplices are q-connected if there is a chain of pairwise q-near simplices between 
them. More formally, two simplices σ  and σ’ are q-connected if there is a chain of simplices σ(1), 
σ(2), …, σ(n) with σ  = σ(1), σ(n) = σ’, and σ(i) q-near σ(i+1) for i = 1, …, n-1. For example, in Figure 
11(a) σ(1), and σ(5) are 0-connected through σ(2), σ(3), and σ(4). In Figure 5(b) σ(1), and σ(4) are 1-
connected through σ(2), and σ(3). 
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The q-connected components in simplicial complexes are the sets of mutually q-connected 
simplices. For example, Figure 12(b) shows the 1-connected components in Figure 12(a). 
 
 
 
 
 
 
 
 
 
 

σ10) σ(9) σ(8)

σ(7)

σ(6)

σ(3) σ(5)σ(4)σ(2)σ(1)

                   (a) a simplicial complex                                          (b) components connected by 1-simplices 
 
Figure 12. A simplicial complex of connected simplices  
 
Table 1 shows what we call the shared vertex matrix, which shows the number of shared vertices 
between the simplices in Figure 12(a). From this we can list the q-connected components as the    
Q-analysis shown in Table 2. For example, there are four distinct components at q = 1, which 
become connected as a single component at q = 0 (Figure 12(b)). 
 
 
 
 
 
 
 
 
 
 
 
 
 

σ(1) 

σ(2)

σ(3)

σ(4)

σ(5)

σ(6)

σ(7)

σ(8)

σ(9)

σ(10)

q = 5 (4 shared vertices) 
{σ5}, {σ10} 
q = 4 (5 shared vertices) 
{σ2}, {σ3},{σ4},{σ5},{σ6},{σ9},{σ10} 
q = 3 (4 shared vertices) 
{σ1},{σ2},{σ3},{σ4},{σ5},{σ6},{σ9},{σ10} 
q = 2 (3 shared vertices) 
{σ1, σ2},{ σ 3},{σ4},{σ5},{σ6},{σ7},{σ8},{σ9},{σ10} 
q = 1 (2 shared vertices) 
{σ1, σ2, σ3, σ4},{σ5 },{σ6, σ7, σ8},{σ9, v10} 
q = 0 (1 shared vertex) 
{σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10} 

Tab
 
Q-a
we
con
 

(a) 

Fig
σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7) σ(8) σ(9) σ(10)
 

  4    3    0    0    0    0    0    0    1    0 
  3    4    2    0    0    0    0    0    1    0 
  0    2    5    1    0    0    1    0    0    0 
  0    0    1    4    1    0    0    0    0    0 
  0    0    0    1    6    0    0    0    0    0  
  0    0    0    0    0    6    2    0    0    0 
  0    0    1    0    0    2    3    2    1    0 
  0    0    0    0    0    2    2    2    5    2 
  1    1    0    0    0    0    0    0    5    2 
  0    0    0    0    0    0    0    0    2  6

  
 
 

 
 
 
 
 
 

le 1. Shared vertex matrix for Figure 12.                 Table 2.  Q-analysis for Figure 12. 

nalysis is based on the assumption that change can be transmitted between q-near simplices, and 
 define q-transmission fronts, illustrated in Figure 13, as hypernetwork backcloth structure that 
strains the traffic of changes in the mapping values and flows [Johnson, 1982b]. 

                     
q-transmission fronts as backcloth structure                    (b) q-transmission as flow on the backcloth 

ure 13. q-transmission fronts 
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5. Stars, Hubs, Maximal Rectangles, and Galois lattices 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
(a) the hub of the star    (b) exploded diagram of the star 
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Figure 14.  A star-hub configuration    

 
Q-analysis is based on the connectivity of pairs of simplices, but it is more general to consider the 
intersection of sets of simplices.  This leads to the concept of stars and hubs, as illustrated in Figure 
14 where the simplices, 〈a, b, c, d 〉, 〈a, b, c, e 〉, 〈a, b, c, f 〉, and 〈a, b, c, g 〉 share the face 〈a, b, c〉. 
The set of the four simplices is called a star and their intersection is called their hub.  
 

  

 

 
 
 
 
 
 
 

 

 
Figure 15. An analysis of Escher’s Sky and Water (Source: Johnson, 1985) 
 

To illustrate, Figure 15 shows thirty nine shapes abstracted from Escher’s Sky and Water. The 
relation between these and the set of visual features {scales, mouth, gills, fish-tail, fins, fish-shape, 
eye, duck-shape, two-wings, feathers, beak, legs} is given by the incidence matrix in Table 3. If the 
rows and columns of the incidence matrix are arranged appropriately, hubs correspond to 
rectangular regions in which the values are all 1, called maximal rectangles [Johnson, 1986]. 
The matrix shows that the simplices for the shapes numbered 1 to 6 are all the same, with a block of 
1s corresponding to the features { scales, mouth, gills, fish-tail, fins, fish-shape, eye },with all the 
shapes being good examples of fish. There is another group, shapes all related to the hub features 
{fins, fish-shape, eye}, which includes the less perfect fish shapes 8 to 13. The following major 
star-hub pairs can be abstracted as follows: 
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                                                〈 1, 2, 3, 4, 5, 6〉  ↔      〈 scales, mouth, gills, fish-tail, fins, fish-shape, eye 〉 
               〈 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12 , 13〉  ↔ 〈  fish-tail, fins, fish-shape, eye 〉 
                        〈 21, 22, 23, 24, 25, 26, 28, 29〉  ↔ 〈 eye, duck shape, two wings, feathers, beak, legs〉 
〈 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 27〉  ↔ 〈 eye, duck shape, two wings〉 
     
 
 
 

                 

 
 
 
 
 

1   2   3   4   5    6   8   9  10  11 12 13  7  21 22  23 24 25 26 28 29 31 32 33 27 30 34 35  36 37 38 14 15 16 17 18 19 20 39 

          scales 1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
          mouth 1  1  1  1  1  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
          gills 1  1  1  1  1  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
          fish-tail 1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0 
          fins 1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
          fish-shape 1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  0  0   
          eye  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
          duck-shape 0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  0  0  0  0  0  0  0  
          two-wings 0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0   
          feathers 0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  
          beak 0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
          legs 0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

Table 3. The incidence matrix of shape-feature relationship 
 
The final weak structure is given by the shapes 15-19 which are related only to fish-shape, and 
shapes 34-38 which are only related to duck shape. Thus Escher has bird shapes highly connected at 
the top of the picture and fish shapes highly connected at the bottom, connected through the 
ambiguous shapes at the centre. 
 
6. The Fundamental Diagram of Multilevel Systems 
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 Level N+1 
 
 
 
 
 
 
 
 
(a) parts aggregate into a whole                               (b) The Fundamental Diagram of Multilevel Systems 

Figure 16. Hierarchical cones: the n-ary relation R maps the set of block to an arch at a higher level 

At the heart of the multilevel mathematical theory being developed there is a very simple idea: 
wholes are assembled from parts. Let P be the set of parts of an object, W. Then these parts have to 
be assembled into W under a relation R. In other words, if R holds then the parts have been 
assembled into the whole. We write R : P → W. If P has n elements, then R is an n-ary relation. For 
simplicity, this section will be developed using artificial physical systems as examples.  

The concept of emergence is closely tied up with the idea of multilevel systems. If vertices exist at 
one level then structures assembled from vertices, exist at a higher level. Thus the mapping from the 
set to the simplex moves up the hierarchy of representation, from Level N to Level N+1, as shown in 
Figure 16. In Figure 16(a) an arch emerges as the blocks are assembled by the relation. Figure 16(b) 
presents what will be called the Fundamental Diagram of Multilevel Systems. In this the set is an 
Euler circle (ellipse) at the base of the cone, and the assembly relation maps it to a structure at a 
higher level in the representation.  
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The cone construction illustrates a number of interesting and important possibilities. Figure 17(a) 
shows that the same set can be assembled in different ways. Thus the set of vertices alone is not 
sufficient to represent a simplex. For full knowledge we need to know the relation, and therefore we 
use the notation  〈 v0, v1, … , vn ; R 〉, which provides information on both the vertices of the simplex 
and on the relation that assembles those vertices into the structure. 

 
 

R1

f3

R3

f1

R 

face 
f1 f2

 
 
Level N+1 

 
 

R2R1
 
 Level N  
 
 

(a) features assembled to         (b) relational cones with   (b) relational cones with  
       form a face               a shared base          intersecting cone bases 
 
Figure 17. Hierarchical cones representing assembly of parts into holes. 
 

Figure 17(a) shows how a set of visual features can be assembled to form a face. Figure 17(b) 
shows the possibility of two different relations, R1 and R2 aggregating the same set in different ways 
to form different higher level objects. Thus R1(P) ≠ R2(P), even though the n-ary relations R1 and R2 
operate on the same domain, P.Figure 17(c) shows that the bases of hierarchical cones may 
intersect, and this leads to the Galois lattice discussed previously. They are sites of interaction and 
support the system dynamics. They are the generalisation of shared vertices that connect links in 
graphs and networks. 

Figure 18(a) illustrates very simplistically the debate concerning the evolution of bird wings, and 
the gap between a form that gives significant evolution advantage resulting in a wing and the 
precursor to the wing which may have little or no advantage. [Gould et al, 1982] suggested 
exaptation as an explanation, where a form that gives an advantage for one purpose (a feather-
covered moveable flap used as a thermoregulator) can be subject to evolutionary pressures giving 
different advantages (a wing for flying). In this case evolution can operate on the whole organism 
and its parts at all levels. Figure 18(b) illustrates exaptation as using components for new purposes 
in new contexts, which can be very advantageous and is very common in human systems. Here a 
Victorian kitchen sink used to contain flowers in a garden.  

 dinosaur-x bird-y 

 

 

 

 

 

thermo-
regulator 

xxx 
zz 

wing xxy 
zzz 

evolutionary time 

kitchen garden 

(a) a possible evolution of bird wings                       (b) a

Figure 18.  Exaptation as the evolution of parts able 

 

 

R1

lawn … stove 
…

sink 

R2

 sink used for flowers   (c) exaptation in design 

to aggregate into new wholes. 
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When discussing the evolution of complex artificial systems, Simon (1969, page 201, 1984 edition) 
tells a story of two watchmakers, each making fine watches with about a thousand parts. Tempus 
made his watches in a way that meant they fell to pieces if he had to put the assembly down, as he 
did when the phone rang with a new order. Hora designed his watches putting together 
subassemblies of about ten elements each. Ten of these subassemblies could be put together into a 
larger subassembly; and a system of ten of the latter subassemblies made the whole watch.  When 
Hora put down a partly assembled watch to answer the phone, he lost only a small part of his work, 
and he assembled his watches in only a fraction of the time it took Tempus. This is a compelling 
argument for designing multilevel systems, such as the car shown in Figure 19. 

 

 
Car-BMG-Model-XYZ Level 4 

 
 
 
Level 3 
 
 
 

 
Level 2 
 
 
 
 
Level 1 

 

casting-X7B2 
screw jet L123 
gasket N23AB 

Casting-CX413 
Piston-S7-99mm 
Ring-924, Bolt-23 

Ditributor-V200 
Spark Plug 902 
Bolt-23, Fuse08 

              Carburettor                      Engine Block                  Ignition                              …… 
   subsystem                       subsystem                    subsystem                      …… 

 
…… 
…… 
…… 

R23,1

R1-2,4R1-2,3R1-2,2R1-2,1

xxxxx       Power Unit   yyyyy   zzzzz  … 

R34,1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.   A car represented as a multilevel assembly system – a systems of systems 
 
As Figure 19 shows, the generality the bases of the cones (the sets of parts) may intersect, inducing 
lattice structures and connectivity; that systems of systems may have many assembly relations; and 
that multilevel systems have compositions of assembly relations with one aggregation, R2, applied 
after another, R1, written as R2 o R1. 

Compared to natural language such as English, by virtue of being mathematical, composition 
immediately resolves many problems that cause great confusion in the analysis of multilevel 
systems. For example, below are meronymic (part-whole) relation ‘problems’ taken from (Winston 
et al, 1987), and proposed mathematical resolutions to them: 

 Simpson’s finger R1 aggregates into Simpson 
Simpson R2 into the Philosophy Department 
Simpson’s finger R2 o R1 aggregates into the Philosophy Department 
 
A windshield R1 aggregated into a car 
This shard R2 aggregated into a windshield 
This shard R2  o R1 aggregated into a car 
 
Water R1 aggregates into the cooling system 
Hydrogen R2 aggregates into Water  
Hydrogen R2 o R1 aggregates into the cooling system 

 
 
 
 
 
 
 
 
 

Simpson’s finger is part of Simpson 
Simpson is part of the Philosophy Department 

Simpson’s finger is part of the Philosophy Department 
 

A windshield is part of a car 
This shard was part of a windshield 

This shard was part of a car 
 

Water is part of the cooling system 
Water is partly hydrogen 

Hydrogen in part of the cooling systems 
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It is perfectly meaningful, if uninteresting, to say that Simpson’s finger is (R2 o R1)-related to the 
Philosophy Department. It is one of many true but uninformative things. It does not imply that 
Simpson’s finger is R1-related to the Philosophy Department, which is where the apparent problem 
arises. This example illustrates how mathematics can resolve problems which are very puzzling 
when expressed in words.  Altogether some twelve troublesome meronymic relations are given 
involving ‘part of’ relationships. In every case the ‘problem’ is unnecessary, being due to the same 
symbol, ‘part of’, ambiguously representing different things.  
 
 7.  Building Multilevel Representations 
The complex systems literature often disparages what is seen as a reductionist approach when parts 
of systems are identified. Ross Ashby [1955, Page 1/7] writes: 
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Figu
‘Science stands today on something of a divide. For two centuries it has been exploring systems 
that are either intrinsically simple or that are capable of being analysed into simple components. 
The fact that such a dogma as “vary the factors one at a time” could be accepted for a century, 
shows that scientists were largely concerned in investigating such systems as allowed this 
method; for this method is often fundamentally impossible in the complex systems.” 
 sentiments are sometimes taken to mean that one should not look the parts of systems or try to 
tify them as relatively autonomous subsystems, and the term ‘reductionist’ is widely used in a 
rative way.  However, we do look at the parts of systems, and often it is essential to do so in 
r to gain any kind of understanding. 

ggregation of a system is a very different process to aggregation. Aggregations are usually one-
e in terms of classes and behaviours. It is usually useful to manufacture things the same way, 
at individual things have known properties characteristic of the class. There are usually many 
s to take things to pieces, and there are usually many choices of what those pieces might be.  

 has been called the Intermediate Word Problem, as illustrated in Figure 20. Here the analyst is 
d with a large complex system such as the city of Stockholm. Such as system can only be 
rved by looking at its parts. At the highest level there is ‘the system’. At lower levels, even 
re formally collecting data, the analyst is aware of some parts of the system and their dynamics. 
ever, these are all jumbled together into what is called the hierarchical soup, because it is a 

rogeneous mixture of sets and elements at many different levels (Gould et al, 1984). Forming 
ight vocabulary to model Stockholm in any meaningful scientific way is very difficult. The 
bulary alone contains many thousands of word, each expressing some part or behaviour of the 
ilevel systems of systems. By hypothesis, in multilevel systems all the lower minutiae do have 
pact on the higher level macro dynamics, and these details cannot be filtered out as 

gnificant’. Constructing multilevel vocabulary by solving the intermediate word problem is an 
ntial part of trying to understand the dynamics of complex systems. 

Stockholm 
what 

are the 

intermediate 

words? 

hierarchical soup 
station 

tramps coffee 
churches 

shops parks 

vehicles cars bridge 

l N+k 

l N+2 

l N+1 

l N 

re 20.  The intermediate word problem 
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9. Alpha- and Beta-aggregations in lattices hierarchies 
 
The use of n-ary relations to build objects out of their parts establishes hierarchical levels. However, 
there is a subtlety in hierarchical aggregation involving another kind of aggregation. This is 
illustrated in Figure 21 where three arches are assembled from their components. These assemblies 
require all the parts for their n-ary relation to hold. We call this an α-aggregation, or an AND-
aggregation. At the next level the arches are gathered up to form a set. In this case A-1 or A-2 or 
A-3 is sufficient for an arch. We call this a β-aggregation, or an OR-aggregation. Thus the set of 
arches is defined by a disjunction of conjunctions, ∨j  〈 vj1, … , vjn ; Rj 〉. 
 
 

R1 

 A-1                   A-2                                           A-3 

R2 R3 

b2 

b3 
b4 b5 b6 

b8 

Arches 

OR

b7 

b1 

 
 β-aggregation (OR) 

 
 
 
 
 
 
α-aggregation (AND) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 21.  Two different types of multilevel aggregation 
 
 
10. Backcloth, Traffic, and Type-1 Dynamics 
In network theory, connectivity generally underlies flows represented by numbers associated with 
the vertices and the edges. For example, in electrical networks the flows are of electrical current on 
the links between potential differences across the vertices. In road systems the flows on the links are 
numbers of vehicles. In human systems the flows include information. We call the network the 
backcloth of the systems, and the flows the traffic on it.  

Network theory is powerful because the connectivity structure of the network constrains the flows. 
This can been seen clearly by the way electrical engineers design the connectivity in order to make 
the components interact in the right way to achieve desirable electrical traffic. 
 
Multidimensional networks also have traffic defined on them, and their q-connectivity also 
constrains the flows. For example, Figure 22 shows multidimensional traffic at three levels in an 
organisation. In the case of wages traffic, on the left, the aggregation is linear. In the case of making 
profits, on the right, the relationship between costs is non-linear through time. 
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Figure 22. Multidimensional traffic on the multidimensional multilevel backcloth 
 
When considering the dynamics of systems, we make a distinction between changes in the traffic 
(functions) and changes in backcloth (relations). We use the terms Type 1 Dynamics for changes in 
the traffic on an unchanging backcloth, and Type-2 Dynamics when the relational backcloth 
changes. Generally, Type-1 dynamics are ‘fast’, with the values of functions changing in micro-
time. In contrast, changes in the backcloth often involve the assembly of infrastructure which can 
be ‘slow’ to achieve in clock time. Type-2 changes can be relatively expensive. 

Figure 23 illustrates that in the kind of hierarchical structure considered here the sets at any level 
may intersect, giving a lattice hierarchy rather than a tree hierarchy. Furthermore, the intersections 
of the sets induce connections between the simplices supporting various flows and transmission 
dynamics of the system. 

 

q-transmission 

q-transmission  q-transmission  

correlation

profit 
time 

fN

fg

fN

The System  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

hierarchical 
aggregation  
of  
backcloth  
and traffic 

 
 
 
 
 
 
Figure 23. Coherent aggregation of  Type-1dynamics (traffic) over the hierarchical backcloth 
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Type-1 dynamics are constrained by the backcloth and its connectivity, in the same way that the 
connectivity structure of electrical circuits constrains their behaviour. Sometimes changes in the 
traffic can induce Type-2 dynamics, for example when telephone traffic jams a switchboard, or 
when an Internet server crashes through excessive demands. Much less is known about Type-2 
dynamics than is known about Type-1 dynamics 

 
11.  Multidimensional Events and Type-2 Dynamics 
The formation of a relational polyhedron can be considered to be an event in a system. The event 
gives a way of marking system time, as shown in Figure 24. Before there is no polyhedron, after 
there is a polyhedron. Here we have a 2-dimensional ‘arch-is-built’ event. The event of a pendulum 
bob can be used to measure time in physical systems, and structural events can be used to measure 
time in other kinds of system, especially socio-technical systems. Moreover, system events measure 
time in systems in a natural way, e.g. the event of parts arriving will determine when things can be 
made from them, not a schedule in clock time. 
 
 

after before 

 
 
 
 
 
 
 
 
 
Figure 24. The formation of relational polyhedra marks an event in system time 
 
Figure 25 illustrates the example of assembling four people with job-1, job-2, job-3, and job-4, into a 
‘team’ simplex 〈 job-1, job-2, job-3, job-4〉. Before they come together they are just a set of vertices, 
〈job-1〉, 〈job-2〉, 〈job-3〉, 〈job-4〉. After the relational structure of the team has formed, the people 
meld together as a simplex 〈 job-1, job-2, job-3, job-4〉. So, the situation before and after can be 
discriminated, and we say that the formation of the simplex is a polyhedral event. Polyhedral events 
mark the passage of system time. Events occur at different levels on multilevel systems, and they 
have to be coordinated. 

It is supposed that before the team can be formed, one of the potential members needs to be trained 
to acquire a new skill for their job. For this person the training is an event, marked by the change of 
acquiring the new job skill and integrating it with those already possessed. It is also assumed that a 
new person has to be appointed for one of the jobs. Then the team-building involves getting all four 
people to work together. 

Thus forming the team defined by 〈 job-1, job-2, job-3, job-4〉 involves a skill training event (Level 
N-1 to Level N), a job training event (Level N to Level N+1), an appointment event (Level N to 
Level N+1), and a team-building event (Level N+1 to Level N+2). Each of these events creates 
higher level structure in the hierarchy. 
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Figure 25. The formation of a team as series of multilevel multidimensional events 
 
Decision makers and managers have to take clock time into account, even when they are 
responsible for complex systems with their own structural dynamics. People expect to be paid in 
clock time, rent has to be paid in clock time, and people expect delivery in clock time. Thus 
managers have the problem of establishing relationships between multidimensional system time and 
clock time, as illustrated in Figure 26. This picture is simplistic of course. In reality the polyhedral 
trajectory would be one of many trajectories, with many dependencies between them. 
 
 

t1                 t2                                t3                       t4

 
 
 
 
 
 
Figure 26.  Polyhedral dynamics form trajectories in a non-linear way in clock time 
 
In his book Multidimensional Man, Atkin develops this theory of polyhedral events and makes a 
convincing argument that structural events are related to clock time in a nonlinear way related to 
their dimensions. He gives a convincing explanation why higher dimensional events take a lot 
longer to occur in clock time than simple events [Atkin, 1981, pages 191-196]. 

15 



Example 

〈smoking, lung cancer〉 

lung cancer 

smoking 

number of lung cancers 

t 

c(t) 

s(t) 

relationship  

number of people smoking 

 
t  

 
 
 
 
 
 
 
Figure 27.  Establishing statistical relationship at relatively high levels of representation 
 
One of the reasons for systems appearing to behave in unpredictable ways may be that attention is 
focused at an inappropriate level in the system, with the real interactions generating emergence at 
different levels. Very often scientists focus on the behaviour of functions at very high levels (e.g. 
time series of aggregate quantities) rather than investigate the dynamics at lower levels that generate 
the values of those functions. 
 
To illustrate this, consider the relationship between smoking tobacco and lung cancer discovered in 
the nineteenth century, and vigorously denied by some until recently. Before the 1950s a number of 
studies were conducted into the statistical relationship between smoking and lung cancer, but the 
results were inconclusive. In 1951 Doll and Hill found that of 1,357 men with lung cancer, 99.5% 
were smokers, and in 1964 they published ten years observations on British doctors which gave 
convincing evidence of a smoking-lung cancer link (Ash, 2005). The backcloth and traffic of such 
studies is illustrated in Figure 27. 
 
There are often mechanisms underlying statistical relationships at lower levels in the representation. 
In 1953 Wynder reported that painting cigarette tar on the backs of mice creates tumours (Ash, 
2005), effectively shifting the focus of the research down the hierarchy of representation to 
establish a relationship between cigarette tar and tumours.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28.  Mechanisms underlying risk may exist at lower level in the hierarchy 
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The pressure group, Action on Smoking and Health publishes ‘key dates in the history of anti-
tobacco campaigning’ on its website (Ash, 2005). The remarkable thing about this document is that 
almost all the entries concern the relationship between smoking and health at a relatively high level 
in the representation: either scientists publishing statistical interpretations of observations, members 
of the tobacco industry and lobbying groups disagreeing or agreeing with the scientists’ 
conclusions, and many lawyers giving advice and appearing in court cases.  

It is interesting to note that in 1856 there was a debate about the health effects of smoking in the 
Lancet medical journal, and that Langley and Dickinson worked on the effect of nicotine on nerve 
cells in1889, at the lowest levels in the hierarchy of representation. In 1908 the sale of tobacco to 
children under 16 was banned. By 1912 Adler strongly suggested that lung cancer is related to 
smoking. More recently it has become know that carbon monoxide from tobacco smoke combines 
with haemoglobin in the blood, putting stress on the circulation system. 
 
Today it is widely accepted that smoking tobacco carries high risks. The remarkable thing about this 
story in which the risks of tobacco have been debated for one and a half centuries, is that 
conducting the debate at a high representational level has prolonged it considerably. The 
relationship between smoking, lung cancer and heart disease lies in multi-agent biochemical 
systems much lower down in the hierarchy of representations. This is certainly more complex than 
the one-simplex 〈smoking, cancer〉 backcloth, but ultimately where the answers lie.  

 
12. Conclusions 
In this paper it has been argued that hypernetworks are able to represent the multilevel dynamics of 
complex systems in a way that combines dynamics at all levels. Many research problems remain, 
but hypernetworks appear to be necessary if not sufficient for reconstructing the multilevel 
dynamics of complex systems. 
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