Fall 2010

Data Structures
Lecture 14

Fang Yu
Department of Management Information Systems

National Chengchi University

5> 2
why o | -ﬂo’
3 XA A

AU
'//o.lf‘»”.

.0. B
% rmn.@\

‘.

Definition, Implementation and Traversal

Graphs

= Formally speaking, a graph is a pair (¥, E), where
m Jis a set of nodes, called vertices
m E is a collection of pairs of vertices, called edges
= Vertices and edges are positions and store elements

Graphs

= Example:

® A vertex represents an airport and stores the three-letter
airport code

= An edge represents a flight route between two airports
and stores the mileage of the route

Edge Types

= Directed edge
m ordered pair of vertices (u,v)
= first vertex « is the origin
m second vertex v is the destination
= e.g., a flight

= Undirected edge
= unordered pair of vertices (u,v)
= e.g., a flight route

= Directed graph
= all the edges are directed
= e.g., route network

= Undirected graph
= all the edges are undirected
= e.g., flight network

Applications

= Electronic circuits
® Printed circuit board
» Integrated circuit

= Transportation networks

= Highway network
= Flight network

= Computer networks

m | ocal area network
m [nternet
= Web

= Databases
= Entity-relationship diagram

| 5% (eos5s01 [s51]
att.net

brown.edu

math.brown.edu

=
=
i
B L0111 N e

= |
[o] [o0000] [o0]
qwest.net

Terminology

End vertices (or endpoints) of an edge
= U and V are the endpoints of a

Edges incident on a vertex
m 3, d, and b are incident on V

Adjacent vertices
= U and V are adjacent

Degree of a vertex
= X has degree 5

Parallel edges
= hand i are parallel edges

Self-loop
= jis a self-loop

Terminology (cont.)

= Path

sequence of alternating vertices and
edges

= begins with a vertex
m ends with a vertex

m each edge is preceded and followed by its
endpoints

= Simple path

= path such that all its vertices and edges
are distinct

= Examples
= P,=(V,b,X,h,2) is a simple path

= P.=(U,cWeX,ag,Y,f,Wd,V) is a path that
is not simple

Terminology (cont.)

= Cycle

m circular sequence of alternating
vertices and edges

= each edge is preceded and followed by
its endpoints

= Simple cycle

m cycle such that all its vertices and
edges are distinct

= Examples

m C,= (Vb X,9,Y,f,W,c,U,a,) is a simple
cycle

= C,=(U,c,WeXqg,YfWdVa,.l)isa
cycle that is not S|mple

Properties

Notation
n number of vertices
m number of edges
deg(v) degree of vertex v Example
m n=4
m m=6

m deg(v)=3

Properties

= Property 1
m > deg(v)=2m
= Proof: each edge is counted twice

" Property 2
= In an undirected graph with no self-loops and no multiple
edges

7 ms=n(n-1)/2
= Proof: each vertex has degree at most (n — 1)

= What is the bound for a directed graph?

Main Methods of the Graph
ADT

= Vertices and edges
® gre positions
m store elements

= Accessor methods
m endVertices(e): an array of the two endvertices of e
m opposite(v, e): the vertex opposite of v on e
= areAdjacent(v, w): true iff v.and w are adjacent
= replace(v, x): replace element at vertex v with x
replace(e, x): replace element at edge e with x

Main Methods of the Graph
ADT

= Update methods

® insertVertex(o): insert a vertex storing element o

® insertEdge(v, w, 0): insert an edge (v,w) storing element o
® removeVertex(v): remove vertex v (and its incident edges)
® removeEdge(e): remove edge e

= |terable collection methods
® incidentEdges(v): edges incident to v
m vertices(): all vertices in the graph
m edges(): all edges in the graph

Edge List Structure

= Vertex object
= element

m reference to position in
vertex sequence

= Edge object

= element

® origin vertex object

= destination vertex object
m reference to position in

edge sequence [
s

= Vertex sequence
m sequence of vertex objects

= Edge sequence g \?JZ \7(\\,A
N N

m sequence of edge objects

Adjacency List Structure

= Edge list structure

= Incidence sequence
for each vertex

m sequence of
references to edge
objects of incident
edges

= Augmented edge
objects

m references to
associated positions in
incidence sequences
of end vertices

Adjacency Matrix Structure

= Edge list structure

= Augmented vertex
objects

= Integer key (index)

associated with vertex

= 2D-array adjacency array

m Reference to edge object
for adjacent vertices

= Null for non nonadjacent

vertices

= The “old fashioned”
version just has 0 for no

edge and 1 for edge

Performance

= n vertices, m edges
= no parallel edges
* no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

incidentEdges(v) m deg(v) n
areAdjacent (v, w) | m | min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(y, w, 0) 1 1 1
removeVertex(v) m deg(v) n’
removeEdge(e) 1 1 1

Graph Traversal

® How to visit all vertices?

Depth-First Search

Subgraphs

= A subgraph S of a graph G is a
graph such that

m The vertices of S are a subset of
the vertices of G

= The edges of S are a subset of the
edges of G

= A spanning subgraph of G is a
subgraph that contains all the
vertices of G

Spanning subgraph

Connectivity

= A graph is connected if there
is a path between every pair
of vertices

Connected graph
= A connected component of a grap

graph G is a maximal
connected subgraph of G

O—=0

Non connected graph with two
connected components

Trees and Forests

= A (free) tree is an undirected
graph T such that

= T is connected
= T has no cycles

This definition of tree is different
from the one of a rooted tree

= A forest is an undirected graph
without cycles

= The connected components of a
forest are trees

R

Tree

° o %

Forest

Spanning Trees and
Forests

= A spanning tree of a connected
graph is a spanning subgraph that
IS a tree

= A spanning tree is not unique
unless the graph is a tree

= Spanning trees have applications
to the design of communication
networks

= A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Depth-First Search

= Depth-first search (DFS) is a general = DFS on a graph with n
technique for traversing a graph vertices and m edges takes

O(n +m) time
= A DFS traversal of a graph G

= Visits all the vertices and edges of G = DFS can be further extended
= Determines whether G is connected to s_,olve other graph problems
= Computes the connected components of = Find and report a path

G between two given vertices
= Computes a spanning forest of G = Find a cycle in the graph

= Depth-first search is to graphs
what Euler tour is to binary
trees

DFS Algorithm

= The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G)
Input graph G
Output labeling of the edges of

as discovery edges and
back edges

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v)= UNEXPLORED
DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of &

Output labeling of the edges of G
in the connected component of v

as discovery edges and back edges
setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK)

Example

@
@

—

—>

unexp
visitec
unexp

ored vertex
vertex

ored edge

discovery edge

back edge

Example (cont.)

G
o o

DFS and Maze Traversal

= The DFS algorithm is similar to
a classic strategy for exploring a
maze

= \WWe mark each intersection,
corner and dead end (vertex)
visited

= We mark each corridor (edge)
traversed

= We keep track of the path back
to the entrance (start vertex) by
means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the vertices
and edges in the connected
component of v

Property 2

The discovery edges labeled by
DFS(G, v) form a spanning tree
of the connected component of v

Analysis of DFS

= Setting/getting a vertex/edge label takes O(1) time

= Each vertex is labeled twice
= once as UNEXPLORED
m once as VISITED

= Each edge is labeled twice
= once as UNEXPLORED
m once as DISCOVERY or BACK

= Method incidentEdges is called once for each vertex

= DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

= Recall that 2, deg(v) = 2m

Path Finding

= We can specialize the DFS
algorithm to find a path between
two given vertices u and z using
the template method pattern

= We call DFS(G, u) with u as the
start vertex

= We use a stack S to keep track of
the path between the start vertex
and the current vertex

= As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, 7)
setLabel(v, VISITED)
S.push(v)
if v=¢
return S.elements()
for all ¢ € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, 7)
S.pop(e)
else
setLabel(e, BACK)

S.pop(v)

Cyc I e Fl n d | n g Algorithm cycleDFS(G, v,)

setLabel(v, VISITED)
= We can SpeCiaIize the DFS iﬁlﬁf(:)e G.incidentEdges(v
algorithm to find a simple cycle if getLabol(e) - UNE}‘;P%RED
using the template method w — opposite(v,e)
pattern S.push(e)
if getLabel(w) = UNEXPLORED
= We use a stack S to keep track setLabel(e, DISCOVERY)
of the path between the start pathDFS(G, w, 7)
vertex and the current vertex S.pop(e)
else
= As soon as a back edge (v, w) T' <= new empty stack
is encountered, we return the repeat
cycle as the portion of the stack 0 < S.pop()
T.push(o)
from the top to vertex w until 0 = w
return Z.elements()
S.pop(v)

Breadth-First Search

= Traverse the graph level by level

_———— - -

Breadth-First Search

= Breadth-first search (BFS) is a
general technique for traversing
a graph

= A BFS traversal of a graph G

= Visits all the vertices and edges
of G

m Determines whether G is
connected

= Computes the connected
components of G

= Computes a spanning forest of G

= BFS on a graph with n
vertices and m edges takes
O(n +m) time

= BFS can be further extended
to solve other graph problems
= Find and report a path with the
minimum number of edges
between two given vertices
= Find a simple cycle, if there is
one

BFS Algorithm

= The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm BFS(G, s)

Algorithm BFS(G)
Input graph &

Output labeling of the edges
and partition of the
vertices of G

for all u € G.vertices()
setLabel(u, UNEXPLORED)

for all ¢ € G.edges()
setLabel(e, UNEXPLORED)

for all v € G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

L, <= new empty sequence
LaddLast(s)
setLabel(s, VISITED)
<0
while —L.isEmpty()
L; ., < new empty sequence
for all v € L elements()
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L; . ,.addLast(w)
else

setLabel(e, CROSS)
<1+l

Example

‘ unexplored vertex

@ visited vertex
—— unexplored edge
—> discovery edge

- - —» cross edge /
.' : Ly . @

Example (cont.)

L

——————

_——— - -

Example (cont.)

Lo:' _________ :

————— - ————

Properties

Notation
G,. connected component of s
Property 1
BFS(G, s) visits all the vertices and
edges of G,
Property 2
The discovery edges labeled by BFS(G,
s) form a spanning tree T, of G,
Property 3
For each vertex v in L;

= The path of T, from s to v has i edges

= Every path from s to vin G, has at least i
edges

_—————

Analysis

= Setting/getting a vertex/edge label takes O(1) time

= Each vertex is labeled twice
= once as UNEXPLORED
= once as VISITED

= Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or CROSS

= Each vertex is inserted once into a sequence L,
= Method incidentEdges is called once for each vertex

= BFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure

= Recall that Zv deg(v) =2m

Applications

= Using the template method pattern, we can specialize

the BFS traversal of a graph G to solve the following
problems in O(n + m) time

= Compute the connected components of G
= Compute a spanning forest of G

® Find a simple cycle in G, or report that G is a forest

= Given two vertices of G, find a path in G between them

with the minimum number of edges, or report that no
such path exists

Applications DFS | BFS
Spanning forest, connected

v v
components, paths, cycles
Shortest paths 4
Biconnected components v

DFS

DFS vs. BFS (cont.)

Back edge (vw) Cross edge (v,w)

= w is an ancestor of v in the = w is in the same level as v
tree of discovery edges or in the next level

Java Graph Library

= No standard library

= JGraphT
® An open source library
m http://www.jgrapht.org/

® Supports most mentioned Graph functions

® You can simply download the file and use the library to create
your graph

No Homework

® Project demo on Dec. 23

Smart Ranking:

= Stage 1 : Rank your web pages by keywords

= Stage 2 : Rank your websites by keywords

= Stage 3 : Re-rank google websites by keywords

= Stage 4 : Derive relative keywords by top-ranked websites

Schedule

= Each team gives 10 minutes PPT presentation focusing on
the project interests, key ideas, and achievements + 10
minutes system demo

® Lets draw the schedule:

® Dec. 23

9:00~10:00
10:00~11:00
11:00~12:00

