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Graphs 
Defini8on, Implementa8on and Traversal 



Graphs 
  Formally speaking, a graph is a pair (V, E), where 
  V is a set of nodes, called vertices 
  E is a collection of pairs of vertices, called edges 
  Vertices and edges are positions and store elements 



Graphs 
  Example: 
  A vertex represents an airport and stores the three-letter 

airport code 
  An edge represents a flight route between two airports 

and stores the mileage of the route 
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Edge Types 
  Directed edge 

  ordered pair of vertices (u,v) 
  first vertex u is the origin 
  second vertex v is the destination 
  e.g., a flight 

  Undirected edge 
  unordered pair of vertices (u,v) 
  e.g., a flight route 

  Directed graph 
  all the edges are directed 
  e.g., route network 

  Undirected graph 
  all the edges are undirected 
  e.g., flight network 
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Applications 
  Electronic circuits 

  Printed circuit board 
  Integrated circuit 

  Transportation networks 
  Highway network 
  Flight network 

  Computer networks 
  Local area network 
  Internet 
  Web 

  Databases 
  Entity-relationship diagram 
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Terminology 
  End vertices (or endpoints) of an edge 

  U and V are the endpoints of a 

  Edges incident on a vertex 
  a, d, and b are incident on V 

  Adjacent vertices 
  U and V are adjacent 

  Degree of a vertex 
  X has degree 5  

  Parallel edges 
  h and i are parallel edges 

  Self-loop 
  j is a self-loop 
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Terminology (cont.) 
  Path 

  sequence of alternating vertices and 
edges  

  begins with a vertex 
  ends with a vertex 
  each edge is preceded and followed by its 

endpoints 

  Simple path 
  path such that all its vertices and edges 

are distinct 

  Examples 
  P1=(V,b,X,h,Z) is a simple path 
  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path that 

is not simple 
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Terminology (cont.) 
  Cycle 

  circular sequence of alternating 
vertices and edges  

  each edge is preceded and followed by 
its endpoints 

  Simple cycle 
  cycle such that all its vertices and 

edges are distinct 

  Examples 
  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a simple 

cycle 
  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is a 

cycle that is not simple 
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Properties 
Notation 

   n  number of vertices 
   m  number of edges 
deg(v)  degree of vertex v Example 

  n = 4 
  m = 6 
  deg(v) = 3 



Properties 
  Property 1 

 Σv deg(v) = 2m 
  Proof: each edge is counted twice 

  Property 2 
  In an undirected graph with no self-loops and no multiple 

edges 
     m ≤ n (n - 1)/2 

  Proof: each vertex has degree at most (n - 1) 

 What is the bound for a directed graph? 



Main Methods of the Graph 
ADT 
  Vertices and edges 
  are positions 
  store elements 

  Accessor methods 
  endVertices(e): an array of the two endvertices of e 
  opposite(v, e): the vertex opposite of v on e 

  areAdjacent(v, w): true iff v and w are adjacent 

  replace(v, x): replace element at vertex v with x 
  replace(e, x): replace element at edge e with x 



Main Methods of the Graph 
ADT 
  Update methods 
  insertVertex(o): insert a vertex storing element o 
  insertEdge(v, w, o): insert an edge (v,w) storing element o 
  removeVertex(v): remove vertex v (and its incident edges) 
  removeEdge(e): remove edge e 

  Iterable collec8on methods 
  incidentEdges(v): edges incident to v 
  ver8ces(): all ver8ces in the graph 
  edges(): all edges in the graph 



Edge List Structure 
  Vertex object 
  element 
  reference to position in 

vertex sequence 

  Edge object 
  element 
  origin vertex object 
  destination vertex object 
  reference to position in 

edge sequence 

  Vertex sequence 
  sequence of vertex objects 

  Edge sequence 
  sequence of edge objects 
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Adjacency List Structure 
  Edge list structure 

  Incidence sequence 
for each vertex 
  sequence of 

references to edge 
objects of incident 
edges 

  Augmented edge 
objects 
  references to 

associated positions in 
incidence sequences 
of end vertices 

u 

v 

w 
a b 

a 

u  v  w 

b 



Adjacency Matrix Structure 
  Edge list structure 

  Augmented vertex 
objects 
  Integer key (index) 

associated with vertex 

  2D-array adjacency array 
  Reference to edge object 

for adjacent vertices 
  Null for non nonadjacent 

vertices 

  The “old fashioned” 
version just has 0 for no 
edge and 1 for edge 
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Performance 
  n vertices, m edges 
  no parallel edges 
  no self-loops 
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Adjacency 
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Space n + m n + m n2 

incidentEdges(v) m deg(v) n 
areAdjacent (v, w) m min(deg(v), deg(w)) 1 
insertVertex(o) 1 1 n2 

insertEdge(v, w, o) 1 1 1 
removeVertex(v) m deg(v) n2 
removeEdge(e) 1 1 1 



Graph Traversal 
  How to visit all ver8ces? 

Depth-First Search 
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Subgraphs 
  A subgraph S of a graph G is a 

graph such that  
  The vertices of S are a subset of 

the vertices of G 

  The edges of S are a subset of the 
edges of G 

  A spanning subgraph of G is a 
subgraph that contains all the 
vertices of G 
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Connectivity 
  A graph is connected if there 

is a path between every pair 
of vertices 

  A connected component of a 
graph G is a maximal 
connected subgraph of G 

Connected graph 

Non connected graph with two 
connected components 



Trees and Forests 
  A (free) tree is an undirected 

graph T such that 
  T is connected 
  T has no cycles 
This definition of tree is different 

from the one of a rooted tree 

  A forest is an undirected graph 
without cycles 

  The connected components of a 
forest are trees 
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Spanning Trees and 
Forests 
  A spanning tree of a connected 

graph is a spanning subgraph that 
is a tree 

  A spanning tree is not unique 
unless the graph is a tree 

  Spanning trees have applications 
to the design of communication 
networks 

  A spanning forest of a graph is a 
spanning subgraph that is a forest 
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Depth-First Search 
  Depth-first search (DFS) is a general 

technique for traversing a graph 

  A DFS traversal of a graph G  
  Visits all the vertices and edges of G 
  Determines whether G is connected 
  Computes the connected components of 

G 
  Computes a spanning forest of G 

  DFS on a graph with n 
vertices and m edges takes 
O(n + m ) time 

  DFS can be further extended 
to solve other graph problems 
  Find and report a path 

between two given vertices 
  Find a cycle in the graph 

  Depth-first search is to graphs 
what Euler tour is to binary 
trees 



DFS Algorithm 
  The algorithm uses a mechanism 

for setting and getting “labels” of 
vertices and edges 

Algorithm DFS(G, v) 
 Input graph G and a start vertex v of G  
 Output labeling of the edges of G  
  in the connected component of v  
  as discovery edges and back edges 
 setLabel(v, VISITED) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
   setLabel(e, DISCOVERY) 
   DFS(G, w) 
  else 
   setLabel(e, BACK) 

Algorithm DFS(G) 
 Input graph G 
 Output labeling of the edges of G  
  as discovery edges and 
  back edges 
for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  DFS(G, v) 



Example 
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Example (cont.) 
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DFS and Maze Traversal  
  The DFS algorithm is similar to 

a classic strategy for exploring a 
maze 
  We mark each intersection, 

corner and dead end (vertex) 
visited 

  We mark each corridor (edge ) 
traversed 

  We keep track of the path back 
to the entrance (start vertex) by 
means of a rope (recursion stack) 



Properties of DFS 
Property 1 

 DFS(G, v) visits all the vertices 
and edges in the connected 
component of v 

Property 2 

 The discovery edges labeled by 
DFS(G, v) form a spanning tree 
of the connected component of v 
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Analysis of DFS 
  Setting/getting a vertex/edge label takes O(1) time 

  Each vertex is labeled twice  
  once as UNEXPLORED 
  once as VISITED 

  Each edge is labeled twice 
  once as UNEXPLORED 
  once as DISCOVERY or BACK 

 Method incidentEdges is called once for each vertex 

  DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure 
  Recall that Σv deg(v) = 2m 



Path Finding 
  We can specialize the DFS 

algorithm to find a path between 
two given vertices u and z using 
the template method pattern 

  We call DFS(G, u) with u as the 
start vertex 

  We use a stack S to keep track of 
the path between the start vertex 
and the current vertex 

  As soon as destination vertex z is 
encountered, we return the path 
as the contents of the stack  

Algorithm pathDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
if  v = z 

 return S.elements() 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   S.push(e) 
   pathDFS(G, w, z) 
   S.pop(e) 
  else 
    setLabel(e, BACK) 

S.pop(v) 



Cycle Finding 
 We can specialize the DFS 

algorithm to find a simple cycle 
using the template method 
pattern 

 We use a stack S to keep track 
of the path between the start 
vertex and the current vertex 

  As soon as a back edge (v, w) 
is encountered, we return the 
cycle as the portion of the stack 
from the top to vertex w 

Algorithm cycleDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  S.push(e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   pathDFS(G, w, z) 
   S.pop(e) 
  else 
   T ← new empty stack 
   repeat 
    o ← S.pop() 
    T.push(o) 
   until o = w 
   return T.elements() 

S.pop(v) 



Breadth-First Search 
  Traverse the graph level by level 
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Breadth-First Search 
  Breadth-first search (BFS) is a 

general technique for traversing 
a graph 

  A BFS traversal of a graph G  
  Visits all the vertices and edges 

of G 
  Determines whether G is 

connected 
  Computes the connected 

components of G 
  Computes a spanning forest of G 

  BFS on a graph with n 
vertices and m edges takes 
O(n + m ) time 

  BFS can be further extended 
to solve other graph problems 
  Find and report a path with the 

minimum number of edges 
between two given vertices  

  Find a simple cycle, if there is 
one 



BFS Algorithm 
  The algorithm uses a mechanism 

for setting and getting “labels” of 
vertices and edges 

Algorithm BFS(G, s) 
 L0 ← new empty sequence 
L0.addLast(s) 
setLabel(s, VISITED) 
i ← 0  
while  ¬Li.isEmpty() 

 Li +1 ← new empty sequence  
 for all  v ∈ Li.elements()  
  for all  e ∈ G.incidentEdges(v)  
   if  getLabel(e) = UNEXPLORED 
    w ← opposite(v,e) 
    if  getLabel(w) = UNEXPLORED 
     setLabel(e, DISCOVERY) 
     setLabel(w, VISITED) 
     Li +1.addLast(w) 
    else 
     setLabel(e, CROSS) 
 i ← i +1 

Algorithm BFS(G) 
 Input graph G 
 Output labeling of the edges  
  and partition of the  
  vertices  of G  
for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  BFS(G, v) 



Example 

C B 

A 

E 

D 

discovery edge 
cross edge 

A  visited vertex 
A  unexplored vertex 

unexplored edge 

L0 

L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 



Example (cont.) 
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Example (cont.) 
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Properties 
Notation 

Gs: connected component of s 
Property 1 

 BFS(G, s) visits all the vertices and 
edges of Gs  

Property 2 
 The discovery edges labeled by BFS(G, 
s) form a spanning tree Ts of Gs 

Property 3 
 For each vertex v in Li 
  The path of  Ts from s to v has i edges  
  Every path from s to v in Gs has at least i 

edges 
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Analysis 
  Setting/getting a vertex/edge label takes O(1) time 

  Each vertex is labeled twice  
  once as UNEXPLORED 
  once as VISITED 

  Each edge is labeled twice 
  once as UNEXPLORED 
  once as DISCOVERY or CROSS 

  Each vertex is inserted once into a sequence Li  

  Method incidentEdges is called once for each vertex 

  BFS runs in O(n + m) time provided the graph is represented by 
the adjacency list structure 
  Recall that Σv deg(v) = 2m 



Applications 
  Using the template method pattern, we can specialize 

the BFS traversal of a graph G to solve the following 
problems in O(n + m) time 
  Compute the connected components of G 
  Compute a spanning forest of G 

  Find a simple cycle in G, or report that G is a forest 
  Given two vertices of G, find a path in G between them 

with the minimum number of edges, or report that no 
such path exists 



DFS vs. BFS 
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DFS vs. BFS (cont.) 
Back edge (v,w) 
  w is an ancestor of v in the 

tree of discovery edges 

Cross edge (v,w) 
  w is in the same level as v 

or in the next level 
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Java Graph Library 
  No standard library 

  JGraphT 
  An open source library 
  h\p://www.jgrapht.org/ 
  Supports most men8oned Graph func8ons 
  You can simply download the file and use the library to  create 
your graph 



No Homework 
  Project demo on Dec. 23 

Smart Ranking: 

  Stage 1 : Rank your web pages by keywords 

  Stage 2 : Rank your websites by keywords 

  Stage 3 : Re‐rank google websites by keywords 

  Stage 4 : Derive rela8ve keywords by top‐ranked websites  



Schedule 
  Each team gives 10 minutes PPT presenta8on focusing on 
the project interests, key ideas, and achievements + 10 
minutes system demo  

  Lets draw the schedule: 

  Dec. 23 

 I    II   III 

9:00~10:00 

10:00~11:00 

11:00~12:00 


