

Data Structures
Lecture 14
Fang Yu
Department of Management Informa8on Systems
Na8onal Chengchi University

Fall 2010

Graphs
Defini8on, Implementa8on and Traversal

Graphs
  Formally speaking, a graph is a pair (V, E), where
  V is a set of nodes, called vertices
  E is a collection of pairs of vertices, called edges
  Vertices and edges are positions and store elements

Graphs
  Example:
  A vertex represents an airport and stores the three-letter

airport code
  An edge represents a flight route between two airports

and stores the mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

Edge Types
  Directed edge

  ordered pair of vertices (u,v)
  first vertex u is the origin
  second vertex v is the destination
  e.g., a flight

  Undirected edge
  unordered pair of vertices (u,v)
  e.g., a flight route

  Directed graph
  all the edges are directed
  e.g., route network

  Undirected graph
  all the edges are undirected
  e.g., flight network

ORD PVD
flight
AA 1206

ORD PVD
849
miles

Applications
  Electronic circuits

  Printed circuit board
  Integrated circuit

  Transportation networks
  Highway network
  Flight network

  Computer networks
  Local area network
  Internet
  Web

  Databases
  Entity-relationship diagram

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Terminology
  End vertices (or endpoints) of an edge

  U and V are the endpoints of a

  Edges incident on a vertex
  a, d, and b are incident on V

  Adjacent vertices
  U and V are adjacent

  Degree of a vertex
  X has degree 5

  Parallel edges
  h and i are parallel edges

  Self-loop
  j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Terminology (cont.)
  Path

  sequence of alternating vertices and
edges

  begins with a vertex
  ends with a vertex
  each edge is preceded and followed by its

endpoints

  Simple path
  path such that all its vertices and edges

are distinct

  Examples
  P1=(V,b,X,h,Z) is a simple path
  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path that

is not simple

P1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

Terminology (cont.)
  Cycle

  circular sequence of alternating
vertices and edges

  each edge is preceded and followed by
its endpoints

  Simple cycle
  cycle such that all its vertices and

edges are distinct

  Examples
  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a simple

cycle
  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is a

cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

Properties
Notation

 n number of vertices
 m number of edges
deg(v) degree of vertex v Example

  n = 4
  m = 6
  deg(v) = 3

Properties
  Property 1

 Σv deg(v) = 2m
  Proof: each edge is counted twice

  Property 2
  In an undirected graph with no self-loops and no multiple

edges
  m ≤ n (n - 1)/2

  Proof: each vertex has degree at most (n - 1)

 What is the bound for a directed graph?

Main Methods of the Graph
ADT
  Vertices and edges
  are positions
  store elements

  Accessor methods
  endVertices(e): an array of the two endvertices of e
  opposite(v, e): the vertex opposite of v on e

  areAdjacent(v, w): true iff v and w are adjacent

  replace(v, x): replace element at vertex v with x
  replace(e, x): replace element at edge e with x

Main Methods of the Graph
ADT
  Update methods
  insertVertex(o): insert a vertex storing element o
  insertEdge(v, w, o): insert an edge (v,w) storing element o
  removeVertex(v): remove vertex v (and its incident edges)
  removeEdge(e): remove edge e

  Iterable collec8on methods
  incidentEdges(v): edges incident to v
  ver8ces(): all ver8ces in the graph
  edges(): all edges in the graph

Edge List Structure
  Vertex object
  element
  reference to position in

vertex sequence

  Edge object
  element
  origin vertex object
  destination vertex object
  reference to position in

edge sequence

  Vertex sequence
  sequence of vertex objects

  Edge sequence
  sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Adjacency List Structure
  Edge list structure

  Incidence sequence
for each vertex
  sequence of

references to edge
objects of incident
edges

  Augmented edge
objects
  references to

associated positions in
incidence sequences
of end vertices

u

v

w
a b

a

u v w

b

Adjacency Matrix Structure
  Edge list structure

  Augmented vertex
objects
  Integer key (index)

associated with vertex

  2D-array adjacency array
  Reference to edge object

for adjacent vertices
  Null for non nonadjacent

vertices

  The “old fashioned”
version just has 0 for no
edge and 1 for edge

u

v

w
a b

0 1 2

0 ∅ ∅

1 ∅

2 ∅ ∅ a

u v w 0 1 2

b

Performance
  n vertices, m edges
  no parallel edges
  no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2
removeEdge(e) 1 1 1

Graph Traversal
  How to visit all ver8ces?

Depth-First Search

D B

A

C

E

Subgraphs
  A subgraph S of a graph G is a

graph such that
  The vertices of S are a subset of

the vertices of G

  The edges of S are a subset of the
edges of G

  A spanning subgraph of G is a
subgraph that contains all the
vertices of G

Subgraph

Spanning subgraph

Connectivity
  A graph is connected if there

is a path between every pair
of vertices

  A connected component of a
graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two
connected components

Trees and Forests
  A (free) tree is an undirected

graph T such that
  T is connected
  T has no cycles
This definition of tree is different

from the one of a rooted tree

  A forest is an undirected graph
without cycles

  The connected components of a
forest are trees

Tree

Forest

Spanning Trees and
Forests
  A spanning tree of a connected

graph is a spanning subgraph that
is a tree

  A spanning tree is not unique
unless the graph is a tree

  Spanning trees have applications
to the design of communication
networks

  A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Depth-First Search
  Depth-first search (DFS) is a general

technique for traversing a graph

  A DFS traversal of a graph G
  Visits all the vertices and edges of G
  Determines whether G is connected
  Computes the connected components of

G
  Computes a spanning forest of G

  DFS on a graph with n
vertices and m edges takes
O(n + m) time

  DFS can be further extended
to solve other graph problems
  Find and report a path

between two given vertices
  Find a cycle in the graph

  Depth-first search is to graphs
what Euler tour is to binary
trees

DFS Algorithm
  The algorithm uses a mechanism

for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
 Input graph G and a start vertex v of G
 Output labeling of the edges of G
 in the connected component of v
 as discovery edges and back edges
 setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 DFS(G, w)
 else
 setLabel(e, BACK)

Algorithm DFS(G)
 Input graph G
 Output labeling of the edges of G
 as discovery edges and
 back edges
for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 DFS(G, v)

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

DFS and Maze Traversal
  The DFS algorithm is similar to

a classic strategy for exploring a
maze
  We mark each intersection,

corner and dead end (vertex)
visited

  We mark each corridor (edge)
traversed

  We keep track of the path back
to the entrance (start vertex) by
means of a rope (recursion stack)

Properties of DFS
Property 1

 DFS(G, v) visits all the vertices
and edges in the connected
component of v

Property 2

 The discovery edges labeled by
DFS(G, v) form a spanning tree
of the connected component of v

D B

A

C

E

Analysis of DFS
  Setting/getting a vertex/edge label takes O(1) time

  Each vertex is labeled twice
  once as UNEXPLORED
  once as VISITED

  Each edge is labeled twice
  once as UNEXPLORED
  once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

  DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure
  Recall that Σv deg(v) = 2m

Path Finding
  We can specialize the DFS

algorithm to find a path between
two given vertices u and z using
the template method pattern

  We call DFS(G, u) with u as the
start vertex

  We use a stack S to keep track of
the path between the start vertex
and the current vertex

  As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
if v = z

 return S.elements()
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 S.push(e)
 pathDFS(G, w, z)
 S.pop(e)
 else
 setLabel(e, BACK)

S.pop(v)

Cycle Finding
 We can specialize the DFS

algorithm to find a simple cycle
using the template method
pattern

 We use a stack S to keep track
of the path between the start
vertex and the current vertex

  As soon as a back edge (v, w)
is encountered, we return the
cycle as the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 S.push(e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 pathDFS(G, w, z)
 S.pop(e)
 else
 T ← new empty stack
 repeat
 o ← S.pop()
 T.push(o)
 until o = w
 return T.elements()

S.pop(v)

Breadth-First Search
  Traverse the graph level by level

C B

A

E

D

L0

L1

F
L2

Breadth-First Search
  Breadth-first search (BFS) is a

general technique for traversing
a graph

  A BFS traversal of a graph G
  Visits all the vertices and edges

of G
  Determines whether G is

connected
  Computes the connected

components of G
  Computes a spanning forest of G

  BFS on a graph with n
vertices and m edges takes
O(n + m) time

  BFS can be further extended
to solve other graph problems
  Find and report a path with the

minimum number of edges
between two given vertices

  Find a simple cycle, if there is
one

BFS Algorithm
  The algorithm uses a mechanism

for setting and getting “labels” of
vertices and edges

Algorithm BFS(G, s)
 L0 ← new empty sequence
L0.addLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

 Li +1 ← new empty sequence
 for all v ∈ Li.elements()
 for all e ∈ G.incidentEdges(v)
 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 setLabel(w, VISITED)
 Li +1.addLast(w)
 else
 setLabel(e, CROSS)
 i ← i +1

Algorithm BFS(G)
 Input graph G
 Output labeling of the edges
 and partition of the
 vertices of G
for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 BFS(G, v)

Example

C B

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F

Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Properties
Notation

Gs: connected component of s
Property 1

 BFS(G, s) visits all the vertices and
edges of Gs

Property 2
 The discovery edges labeled by BFS(G,
s) form a spanning tree Ts of Gs

Property 3
 For each vertex v in Li
  The path of Ts from s to v has i edges
  Every path from s to v in Gs has at least i

edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

Analysis
  Setting/getting a vertex/edge label takes O(1) time

  Each vertex is labeled twice
  once as UNEXPLORED
  once as VISITED

  Each edge is labeled twice
  once as UNEXPLORED
  once as DISCOVERY or CROSS

  Each vertex is inserted once into a sequence Li

  Method incidentEdges is called once for each vertex

  BFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure
  Recall that Σv deg(v) = 2m

Applications
  Using the template method pattern, we can specialize

the BFS traversal of a graph G to solve the following
problems in O(n + m) time
  Compute the connected components of G
  Compute a spanning forest of G

  Find a simple cycle in G, or report that G is a forest
  Given two vertices of G, find a path in G between them

with the minimum number of edges, or report that no
such path exists

DFS vs. BFS

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles

√ √

Shortest paths √

Biconnected components √

DFS vs. BFS (cont.)
Back edge (v,w)
  w is an ancestor of v in the

tree of discovery edges

Cross edge (v,w)
  w is in the same level as v

or in the next level

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

DFS BFS

Java Graph Library
  No standard library

  JGraphT
  An open source library
  h\p://www.jgrapht.org/
  Supports most men8oned Graph func8ons
  You can simply download the file and use the library to create
your graph

No Homework
  Project demo on Dec. 23

Smart Ranking:

  Stage 1 : Rank your web pages by keywords

  Stage 2 : Rank your websites by keywords

  Stage 3 : Re‐rank google websites by keywords

  Stage 4 : Derive rela8ve keywords by top‐ranked websites

Schedule
  Each team gives 10 minutes PPT presenta8on focusing on
the project interests, key ideas, and achievements + 10
minutes system demo

  Lets draw the schedule:

  Dec. 23

 I II III

9:00~10:00

10:00~11:00

11:00~12:00

