
ENCE 688R Civil Information Systems

Software Design and Development

Mark Austin

E-mail: austin@isr.umd.edu

Department of Civil and Environmental Engineering, University of Maryland,

College Park

Spring Semester, 2019 – p. 1/30

Lecture Topics

Part 1: Problem Solving with Computers

• Orchestration of good design solutions.

• Strategies for problem solving and dealing with system complexity.

Part 2: Implementation

• High-level problem solving procedure.

• Writing and running the software code.

• Compiling and running the program.

• Languages that are both compiled and interpreted.

Part 3: Program Development in Java

• Flowchart for development of Java programs.

• Strengths and weaknesses of Java.

• Integrated development environments (IDEs)

Spring Semester, 2019 – p. 2/30

Part 1. Problem Solving with Computers

Part 1. Problem Solving with Computers

Spring Semester, 2019 – p. 3/30

Problem Solving with Computers

Orchestration of Good Design Solutions

Generally speaking, a good (system or software) design provides (MIT, 2002):

1. Bang for the buck – minimal mechanism; maximal function (i.e., a good, balance of
functionality, performance and economics),

2. Reliable operation in a wide range of environments, and

3. Ease of accommodation for future technical improvements.

Spring Semester, 2019 – p. 4/30

Problem Solving with Computers

Complexity of Systems and Software versus Time

Future engineering systems will be more complex than today. Designers will need to be
more productive ...

... just to keep the duration and economics of design development in check.

of systems that can be designed.

System
Complexity

Time

Validation
Productivity

Design
Productivity

Gaps in Capability
Upper limit for complexity

Spring Semester, 2019 – p. 5/30

Problem Solving with Computers

Evolution of Abstractions in Software Development

The pathway forward can be found by looking to the past, where ...

... major increases in designer productivity have nearly always been accompanied
by new methods for solving problems at higher levels of abstraction.

Spring Semester, 2019 – p. 6/30

Problem Solving with Computers

High-Level Problem Solving Procedure

System Validation

Write / Run SoftwareAlgorithm Result

High−level Solution Procedure

Problem

Development errorsAlgorithm validation

Run−time errors ...

Computer programming is all about ...

... learning how to translate an algorithm into a set of instructions that a computer
can understand.

Machine code, assembly language, high-level languages (e.g., Fortran), object-oriented
programming (e.g., Java), scripting languages (e.g., Python).

Spring Semester, 2019 – p. 7/30

Problem Solving with Computers

Simplify Software Design through Separation of Concerns

Position (x,y), Size

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

����
����
����
����

����
����
����
����

Structure Communication

Function

Ordering of functions

Hierarhical Decomposition

Topology

Objects

Protocols

Interface

−− syntax, semantics

A B C

Design

Geometry

��
��
��
��

���
���
���
���

��
��
��
��

Behavior

CA

Spring Semester, 2019 – p. 8/30

Problem Solving with Computers

Getting Started

1. Develop Model of System Context

What is the context within which the system will operate?

2. Operations Concept.

What is the required system functionality?

What will the system do in response to external stimuli?

3. Requirements.

What are the system inputs and outputs?

What requirements are needed to ensure that the system will operate as planned?

Remark. Usecase diagrams are a good way of capturing fragments of required system
functionality.

Spring Semester, 2019 – p. 9/30

Problem Solving with Computers

Creating a Behavior Model...

1. Identify top-level functionality

What are the top-level functions?

Define inputs and outputs for each top-level functions.

In what order will execution of the top-level functions occur?

Trace inputs to outputs through network of connected functions.

2. Identify sub-tasks within each top-level function

Goal is to simplify models of funtionality by decomposing high-level functions into
networks of lower-level functionality.

3. Identify opportunities for concurrent behaviors

4. Insert low-level functionalities

Note. Several views of behavior may be required to obtain a complete picture of overall
behavior.

Spring Semester, 2019 – p. 10/30

Abstractions for Modeling System Behavior

Functional Decomposition

System behavior defined through decomposition and ordering (control) of functions.

Function Decomposition

F3F2 F3

F2

F1F1

Control

Inputs and outputs

Connectivity of components

System
Boundary

Connectivity and Ordering of Functions

Task Task

Function Function Function

Function

System Mission

Function

Task

Note. The functional decomposition hierarchy says nothing about inputs and outputs.

Spring Semester, 2019 – p. 11/30

Abstractions for Modeling System Behavior

Decomposition.Decomposition is the process of ...

... breaking the design at a given level of the hierarchy intocomponents that can be
designed and verified almost independently.

Decomposition of System Functionality

In
cr

ea
si

ng
 fo

cu
s

on
 g

oa
ls

In
cr

ea
si

ng
 fo

cu
s

on
 im

pl
em

en
ta

tio
n

Function

Func1

Func3

Func2
Inputs

Outputs

OutputsInputs

Note. Details of implementation are addressed in the lower levels of functional
decomposition.

Spring Semester, 2019 – p. 12/30

Bottom-Up Software Development

The strategy of bottom-up design ...

... starts with low-level procedures, modules, and subprogram library routines, and
tries to combine them into higher-level entities.

A key benefit of bottom-up design is its use of already implemented code.

For example, software libraries for,

• Graphical user interface development.

• Numerical analysis.

• Distributed computing over networks.

In this class,

• Working with Java Collections.

• Network and graph-based engineering analysis.

Spring Semester, 2019 – p. 13/30

Bottom-Up Software Development

Top-Down and Bottom-Up Design

NEW PROBLEM

DECOMPOSITION

COMPOSITION

SUBPROBLEMS

COUPLED MODULESINDEPENDENT MODULES

a

b

Spring Semester, 2019 – p. 14/30

Top-Down and Bottom-Up Development

Advantages/Disadvantages of Top-Down Decomposition

• Can customize a design to provide what is needed and no more.

• Decomposition simplifies development – lower-level (sub-system)
development may only require input from a single discipline.

• Start from scratch implies slow time-to-market.

Advantages/Disadvantages of Bottom-up Development

• Reuse of components enables fast time-to-market.

• Reuse of components improves quality because components will have
already been tested.

• Design may contain (many) features that are not needed.

Spring Semester, 2019 – p. 15/30

Abstractions for Modeling System Behavior

Program Control → System Behavior

Behavior models coordinate a set of what we will call steps.

Such a specification requires that at least two questions be answered for each step:

1. When should each step be taken?

2. When are the inputs to each step determined?

Abstractions that allow for the ordering of functions include:

• Sequence constructs,

• Branching constructs,

• Repetition/looping constructs,

• Concurrency constructs.

Spring Semester, 2019 – p. 16/30

Abstractions for Modeling System Behavior

Sequencing of Steps in an Algorithm

Which functions must precede or succeed others?

Point
Starting Step NStep 2Step 1 Finishing

Point

The textual/pseudocode counterpart is:

Starting Point

Step 1.

Step 2.

Step 3.

......

Step N.

Finishing Point

Spring Semester, 2019 – p. 17/30

Abstractions for Modeling System Behavior

Selection Constructs

Capture choices between functions

Outcome is false...
Compute Block B

Compute Block A

Logical Decision

Outcome is true

Languages need to support decision making through ...

... the implementation of relational and logical expressions.

For example ...

Question: Is 4 greater than 3?

Expression: 4 > 3 ... evaluates to ... true.

Question: Is 4 equal to 3?

Expression: 4 == 3 ... evaluates to ... false.

Spring Semester, 2019 – p. 18/30

Abstractions for Modeling System Behavior

Repetition/Looping Constructs

Step M Step NSequence of steps

Repitition constructs want to know:

• Which functions can be repeated as a block?

Spring Semester, 2019 – p. 19/30

Abstractions for Modeling System Behavior

Ordering of Functions: Concurrency

Most real-world scenarios involve concurrent activities in one form or another.

The key challenge lies in the ...

... sequencing and coordination of activities to maximize asystem’s measures of
effectiveness (e.g., production).

Example 1. Running multiple threads of execution on one processor.

Process B

Time t

Process A starts.
Process B starts.

Process A

Spring Semester, 2019 – p. 20/30

Part 2. Implementation

Implementation

Spring Semester, 2019 – p. 21/30

Implementation

Writing the Program Source Code

When you write the source code for a computer program, all you are doing is ...

... using text to fill-in the details of programming templates.

While the basic problem solving strategy will be language-independent, the

syntax details will vary from one language to another, e.g.,

Branching Construct in Java Branching Construct in Matlab

==

if (i < 3) { if i < 3,

.... do something do something

} else { else

.... do something else do something else

} end;

==

Spring Semester, 2019 – p. 22/30

Implementation

Interpreted Programming Languages

In an interpreted computer program, ...

... high-level statements are read one by one, and translated and executed

on the fly (i.e., as the program is running).

Examples

• HTML and XML.

• Visual Basic and Javascript.

Scripting languages such as Tcl/Tk and Perl are interpreted, as are application

programs written in the MATLAB programming language.

Spring Semester, 2019 – p. 23/30

Implementation

Compiling the Program Source Code

A compiler translates the computer program source code into ...

... lower level (e.g., machine code) instructions.

SaveProgram Source
Code

Low−level Machine
Code

Executable
File

Compiler

For example, ...

... high-level programming constructs (e.g., evaluation of logical
expressions, loops, and functions) are translated into equivalent low-level

constructs that a machine can work with.

Examples.C and C++.

Spring Semester, 2019 – p. 24/30

Implementation

Benefits of Compiled Code

• Compiled programs generally run faster than interpreted ones. This is because ...

... an interpreter must analyze each statement in the program each time it is
executed and then perform the desired action,

whereas the compiled code just performs the action within a fixed context
determined by the compilation.

Benefits of Interpreted Code

• With an interpreted language you can do things that cannot be done in a compiled
language. For example, interpreted programs can ...

... modify themselves by adding or changing functions at runtime.

• Also, it is usually easier to develop applications in an interpreted environment
because you don’t have to recompile your application each time you want to test a
small section.

Spring Semester, 2019 – p. 25/30

Implementation

Code that is both Compiled and Interpreted

Most modern interpreter systems also perform some form of compilation – that

is, ...

... they take the source code and transform it into a lower-level
intermediate format. An interpreter then executes commands in the

intermediate format.

Compiled and Interpreted Code

Program Source
Code

Low−level Machine
Code

Compiler

CompilerProgram Source
Code

Intermediate
Code

Interpreter

commands
Read and execute

Compiled Code

Examples.MATLAB, Java and Python.

Spring Semester, 2019 – p. 26/30

Part 3. Program Development with Java

Program Development with Java

Spring Semester, 2019 – p. 27/30

Program Development with Java

Flowchart for Software Development in Java

Output

Source code BytecodeAlgorithm

Data

Compiler; javac

Syntax errors

Algorithm errors ... Run−time errors

Use text editor or development
enviroment to create source
code files....

Loader Java
Virtual
Machine

Libraries

Spring Semester, 2019 – p. 28/30

Program Development with Java

Strengths of Java

1. Java is both a compiled and interpreted language. Java source code is
compiled into a bytecode format.

2. Bytecodes are the lowest possible instruction format that remain

architecture neutral. As a result, the bytecode can travel across the
Internet and execute on any computer that has a Java Virtual Machine.

3. Java is an object-oriented language. Implementation details are made

efficient by exploiting the relationship among objects.

Weaknesses of Java

1. There’s a lot to learn, especially if you want to become really skilled at

developing software in Java.

Spring Semester, 2019 – p. 29/30

Integrated Development Environments for Java

Eclipse is an integrated software development tool (or IDE) for Java Software

Development.

Spring Semester, 2019 – p. 30/30

	ptsize {14} Lecture Topics
	ptsize {14} Part 1. Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Bottom-Up Software Development
	ptsize {14} Bottom-Up Software Development
	ptsize {14} Top-Down and Bottom-Up Development
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Part 2. Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Part 3. Program Development with Java
	ptsize {14} Program Development with Java
	ptsize {14} Program Development with Java
	ptsize {14} Integrated Development Environments for Java

