CS2351 Data Structures

Lecture 11:
Graph and Tree Traversals II

About this lecture

- We introduce some popular algorithms to traverse a rooted ordered binary tree 1. Level Order (similar to BFS)

2. Pre-order, Post-order, In-order (similar to DFS)

- Then, we will discuss a related topic called expression tree

Level Order Traversal

Level Order

- Imagine we have a rooted binary tree, and we apply the BFS algorithm on the root (as the source)
- What will happen?

Level Order

- The nodes of the tree will be visited in the following order:

- This is called the level order traversal

Implementation

- To implement level order traversal, we just run BFS on the root
- Since each node (except root) in a rooted tree has exactly one parent, it can only be discovered once during BFS
- No need to have an extra array to remember if a node is marked or not, and we need only a queue
- Running time: $O(|V|)$

Preorder/Postorder/Inorder Traversal

DFS Traversal on a Tree

- We now describe 3 popular algorithms to traverse a tree
- Preorder, Postorder, Inorder
- They are all based on DFS
- The only difference is:
"During the traversal, what time they will output the content of a node"

DFS on a Tree

- When we apply DFS on a tree, when it visits a node:
- it calls DFS recursively on left child
- then DFS recursively on right child

DFS on a Tree

- A node is actually visited a few times
- Exactly 3 times for binary tree
- They include: the time before the first DFS, and the times after each DFS

Preorder Traversal

- The preorder traversal prints the content of a node when it is first visited
- In our example, we print : FBDEAC

Postorder Traversal

- The postorder traversal prints the content of a node when it is last visited
- In our example, we print : DEBCAF

Inorder Traversal

- The inorder traversal prints the content of a node just before we visit right child
- In our example, we print : DBEFAC

Implementation

- To implement the above traversal algorithms, we first see that DFS on a binary tree can be done as follows:

$$
\begin{aligned}
& \text { DFS (u) \{ } \\
& \text { 1. Call DFS (u.left) : } \\
& \text { 2. Call DFS (u.right) ; }
\end{aligned}
$$

$$
\}
$$

At the main program, we call DFS (root)

Implementation

- Then the preorder traversal is implemented as follows:

Preorder (u) \{

1. Print content of u :
2. Call Preorder (u.left) ;
3. Call Preorder (u.right) ;
\}
At the main program, we call Preorder (root)

Implementation

- Similarly, the postorder traversal is implemented as follows :

Postorder (u) \{

1. Call Postorder (u.left) :
2. Call Postorder (u.right) ;
3. Print content of u :
\}
At the main program, we call Postorder (root)

Implementation

- And the inorder traversal is implemented as follows:

Inorder (u) \{

1. Call Inorder (u.left):
2. Print content of u;
3. Call Inorder (u.right) :
\}
At the main program, we call Inorder (root)

Remarks

- Running time: $O(|V|)$ time
- The preorder and postorder traversals are well-defined for non-binary trees
- For inorder, to visit a node with degree more than 2, there are 2 common ways: One prints the content after the first DFS, and one prints after every DFS except the last

Two versions of Inorder:
EBCF vs EBCBF

Expression Tree

Expression Tree

- We can use rooted binary trees to represent mathematical expressions that involve only binary operators
- Each internal node stores an operator
- Each leaf stores an operand
- Ex:

Expression Tree

- Each internal node u corresponds to a value computed recursively as follows:

1. Compute the value x corresponding to left child of u
2. Compute the value y corresponding to right child of u
3. The value of $u=x \Delta y$ where Δ is the operator stored in u

- value of expression = value of the root

Expression Tree

- Ex:

Value: 3×4

Value: $3+4$

Expression Tree

- Each mathematical expression has a corresponding expression tree
- To find such a tree, we can :

1. First determine which operator is last applied, then put it inside the root :
2. After that, recursively construct the left and right subtrees of the root based on the contents on the left and right sides of the operator

Expression Tree

- Ex: $5+((1+2) \times 4)-3$
$\longleftarrow \mathrm{L} \longrightarrow \quad \leftarrow \mathrm{R} \rightarrow$

Expression Tree

- Ex: $5+((1+2) \times 4)-3$

Expression Tree

- If we now perform preorder traversal on the expression tree, we get the prefix notation of the expression

Prefix Notation :
$-+5 x+1243$

Expression Tree

- If we perform postorder traversal instead, we get the postfix notation of the expression

Postfix Notation :
$512+4 \times+3-$

Evaluation

- In prefix or postfix notations, we do not need any parentheses
- Both notations can allow us to compute the value of the original expression
- Idea: Using a stack
- Remark : the original expression is stored in the infix notation

Evaluating Prefix Notation

- In prefix notation, when there are two consecutive "values", we can apply the operator before the two values
- So the evaluation can be done as follows:
- Push operator or value on a stack, but ..
- Whenever there are two values x and y on top of the stack, pop x and y, and also the next operator Δ. Then push a new value $x \Delta y$ back to stack

Evaluating Prefix Notation

- Ex: - + $5 \times+1243$
(Prefix notation of $5+((1+2) \times 4)-3)$

contents of stack after key operations	$-+5 \times+12$
	- + 5×3
	$-+5 \times 34$
	-+512
	-17
	-173
	14

Evaluating Postfix Notation

- In postfix notation, when we see an operator, we can apply the operator to the two values before the operator
- So the evaluation can be done as follows:
- Push operator or value on a stack, but ..
- Whenever we see an operator Δ, we pop Δ, and the next two values x and y on top of the stack. Then push a new value $x \Delta y$ back to stack

Evaluating Postfix Notation

- Ex: $512+4 \times+3$ (Postfix notation of $5+((1+2) \times 4)-3)$

	$512+$
contents of stack after key operations	$534 \times$
	512
17	
$173-$	
14	

Remarks

- Prefix or postfix notations are very useful because they can evaluate an expression easily (in one pass)
- In the next assignment, we will examine how to convert an expression from infix to postfix
- This can also be done with a stack!!

