
1

CS2351

Data Structures

Lecture 11:

Graph and Tree Traversals II

2

About this lecture

• We introduce some popular algorithms to

traverse a rooted ordered binary tree

1. Level Order (similar to BFS)

2. Pre-order, Post-order, In-order

(similar to DFS)

• Then, we will discuss a related topic called

expression tree

3

Level Order Traversal

4

Level Order

• Imagine we have a rooted binary tree,

and we apply the BFS algorithm on the

root (as the source)

• What will happen ?

5

Level Order

• The nodes of the tree will be visited in

the following order :

1

2 3

4 5 6

• This is called the level order traversal

6

Implementation

• To implement level order traversal, we

just run BFS on the root

• Since each node (except root) in a rooted

tree has exactly one parent, it can only

be discovered once during BFS

• No need to have an extra array to

remember if a node is marked or not,

and we need only a queue

• Running time : O(|V|)

7

Preorder/Postorder/Inorder

Traversal

8

DFS Traversal on a Tree

• We now describe 3 popular algorithms to

traverse a tree

• Preorder, Postorder, Inorder

• They are all based on DFS

• The only difference is:

“During the traversal, what time they

will output the content of a node”

9

DFS on a Tree

• When we apply DFS on a tree, when it

visits a node :

• it calls DFS recursively on left child

• then DFS recursively on right child

F

B

D E

A

C

10

DFS on a Tree

• A node is actually visited a few times

• Exactly 3 times for binary tree

• They include: the time before the first

DFS, and the times after each DFS

F

B

D E

A

C

11

Preorder Traversal

• The preorder traversal prints the

content of a node when it is first visited

• In our example, we print : FBDEAC

F

B

D E

A

C

12

Postorder Traversal

• The postorder traversal prints the

content of a node when it is last visited

• In our example, we print : DEBCAF

F

B

D E

A

C

13

Inorder Traversal

• The inorder traversal prints the content

of a node just before we visit right child

• In our example, we print : DBEFAC

F

B

D E

A

C

14

Implementation

• To implement the above traversal

algorithms, we first see that DFS on a

binary tree can be done as follows :

DFS (u) {

1. Call DFS (u.left) ;

2. Call DFS (u.right) ;

}

At the main program, we call DFS (root)

15

Implementation

• Then the preorder traversal is

implemented as follows :

Preorder (u) {

1. Print content of u ;

2. Call Preorder (u.left) ;

3. Call Preorder (u.right) ;

}

At the main program, we call Preorder (root)

16

Implementation

• Similarly, the postorder traversal is

implemented as follows :

Postorder (u) {

1. Call Postorder (u.left) ;

2. Call Postorder (u.right) ;

3. Print content of u ;

}

At the main program, we call Postorder (root)

17

Implementation

• And the inorder traversal is implemented

as follows :

Inorder (u) {

1. Call Inorder (u.left) ;

2. Print content of u ;

3. Call Inorder (u.right) ;

}

At the main program, we call Inorder (root)

18

Remarks

• Running time : O(|V|) time

• The preorder and postorder traversals

are well-defined for non-binary trees

• For inorder, to visit a node with degree

more than 2, there are 2 common ways:

One prints the content after the first

DFS, and one prints after every DFS

except the last

E C
F

B

Two versions of Inorder:

EBCF vs EBCBF

19

Expression Tree

20

Expression Tree

• We can use rooted binary trees to

represent mathematical expressions

that involve only binary operators

• Each internal node stores an operator

• Each leaf stores an operand

• Ex : �

u

3 4

2

21

Expression Tree

• Each internal node u corresponds to a

value computed recursively as follows:

1. Compute the value x corresponding to

left child of u

2. Compute the value y corresponding to

right child of u

3. The value of u = x ' y where ' is the

operator stored in u

• value of expression = value of the root

22

Expression Tree

• Ex : �

u

3 4

2

Value: 3 u 4

Value: (3 u 4) � 2

u

�

3 4

2

Value: 3 � 4

Value: (3 � 4) u 2

23

Expression Tree

• Each mathematical expression has a

corresponding expression tree

• To find such a tree, we can :

1. First determine which operator is last

applied, then put it inside the root ;

2. After that, recursively construct the

left and right subtrees of the root

based on the contents on the left and

right sides of the operator

24

Expression Tree

• Ex : 5 � ((1 � 2) u 4) � 3

�

L R

25

Expression Tree

• Ex : 5 � ((1 � 2) u 4) � 3

�

�

�

u5

1 2

4

3

26

Expression Tree

• If we now perform preorder traversal on

the expression tree, we get the prefix

notation of the expression

�

�

�

u5

1 2

4

3
Prefix Notation :
� + 5 u + 1 2 4 3

27

Expression Tree

• If we perform postorder traversal

instead, we get the postfix notation of

the expression

�

�

�

u5

1 2

4

3
Postfix Notation :
5 1 2 + 4 u + 3 �

28

Evaluation

• In prefix or postfix notations, we do not

need any parentheses

• Both notations can allow us to compute

the value of the original expression

• Idea : Using a stack

• Remark : the original expression is stored

in the infix notation

29

Evaluating Prefix Notation

• In prefix notation, when there are two

consecutive “values”, we can apply the

operator before the two values

• So the evaluation can be done as follows:

• Push operator or value on a stack, but ..

• Whenever there are two values x and y

on top of the stack, pop x and y, and

also the next operator '. Then push a

new value x ' y back to stack

30

Evaluating Prefix Notation

• Ex : � + 5 u + 1 2 4 3

(Prefix notation of 5 � ((1 � 2) u 4) � 3)

14

� 17 3

� 17

� + 5 12

� + 5 u 3 4

� + 5 u 3

� + 5 u + 1 2

contents of stack

after key operations

31

Evaluating Postfix Notation

• In postfix notation, when we see an

operator, we can apply the operator to

the two values before the operator

• So the evaluation can be done as follows:

• Push operator or value on a stack, but ..

• Whenever we see an operator ', we
pop ', and the next two values x and y

on top of the stack. Then push a new

value x ' y back to stack

32

Evaluating Postfix Notation

• Ex : 5 1 2 + 4 u + 3 �
(Postfix notation of 5 � ((1 � 2) u 4) � 3)

14

17 3 �
17

5 12 +
5 12

5 3 4 u
5 3

5 1 2 +

contents of stack

after key operations

33

Remarks

• Prefix or postfix notations are very

useful because they can evaluate an

expression easily (in one pass)

• In the next assignment, we will examine

how to convert an expression from infix

to postfix

• This can also be done with a stack !!

