
Chapter 11 85

Your program should create the six triangles defining the footprint, and then add them to an
arraylist.

3. Write a method toString() to create a string representation of the building footprint.
4. Within Footprint, write a method called area() that will compute the building area by

walking along the arraylist and summing the triangle areas.
5. Finally, write methods getCentroidX() and getCentroidY() to compute the x- and y- coordi-

nates of the building centroid.

Note. For parts 4 and 5, most of what you need is already defined in Triangle.java.

11.4 A polyline defines a set of one or more connected straight line segments. Polyline abstractions
can be found in many areas of Civil Engineering (e.g., road trajectories in transportation, the
orange line on the DC Metro, rebar trajectories in structural engineering). As illustrated by these
examples, polyline elements typically define open shapes.

Road Contour from Points A to F.A

B C

D E

F

Bounding BoxNode 1

Node 2

Node 3

Node 5Node 4

Node 6

Engineering Abstraction Modeling Abstraction

Figure 11.22. Real world and modeling abstractions for polylines.

1Polyline BoundingBoxWayPoint 2..* 1 1

Figure 11.23. Polyline class diagram.

Modeling Polylines. Figure 11.23 shows the class diagram for a simplified implementation of
polylines. A polyline can be modeled as an array list of (at least two) way points, and will store
references to the source (first) and destination (last) way points. The polyline is said to be closed
when the first and last way points have the same (x,y) coordinates.

Each way point will store the (x,y) coordinate of the point, plus the distance of the point from
the source and the distance of the point from the destination. A bounding box covers the overall
dimensions of the polyline and is a useful tool for simplify intersection computations.

Things to Do. Develop and test three classes: Polyline, BoundingBox and WayPoint. A way
point will store the (x,y) coordinates plus additional information on disances to the source and
destination nodes (see details below). A bounding box can be modeled with two pairs of coordi-
nates, (xmin, ymin) and (xmax, ymax).

86 Engineering Software Development in Java

I suggest that you store the polyline as an arraylist of way points. You can save time by imple-
menting WayPoint as an extension of Node2D (see the code in java-code-basics/src/geometry).

You will also need a test program to define an empty Polyline, systematically add way points
to the model, and process the model to compute factors such as the total length and distance
of individual way points from the source and destination nodes. The bounding box parameters
should be updated when each new way point is added to the model.

The abbreviated output from my test program is:
geom01:

[java] Run geometry.TestPolyline01() ...
[java] ===================================== ...
[java]
[java] --- geometry.Polyline() ...
[java] --- ==
[java] --- Name = Greenbelt Road
[java] --- Is closed? = false ...
[java] --- Source = Node A
[java] --- Destination = Node F
[java] --- Pathway length = 694.974747
[java] --- boundingbox[x = (0.00, 550.00), y = (0.00, 200.00)] ...
[java] --- ==
[java]
[java] WayPoint(Node A) ...
[java] --- (x,y) = (0.000, 200.000) ...
[java] --- distance from source = 0.00 ...
[java] --- distance from destination = 694.97 ...
[java]
[java] WayPoint(Node B) ...
[java] --- (x,y) = (100.000, 100.000) ...
[java] --- distance from source = 141.42 ...
[java] --- distance from destination = 553.55 ...
[java]

... lines of output removed ...

[java]
[java] WayPoint(Node F) ...
[java] --- (x,y) = (550.000, 150.000) ...
[java] --- distance from source = 694.97 ...
[java] --- distance from destination = 0.00 ...
[java]
[java] ===================================== ...
[java] Done! ...

BUILD SUCCESSFUL
Total time: 0 seconds

11.5 Now suppose that we wanted write a program where an object (e.g., a bug, a drone) traverses the
pathway at a pre-defined velocity. We would need to know the position and orientation of the
object as a function of time. Extend the capabilities of the previous question (see Figures 11.22
and 11.23) with two new methods: (1) compute the (x,y) coordinate of a point a distance d from
the source, and (2) compute the slope of the pathway at a distance d from the source.

