
Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2016

Mark Austin,
Department of Civil and Enviromental Engineering,

University of Maryland,
College Park,

Maryland 20742, U.S.A.

Copyright c⃝2012-2016 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

244 Engineering Software Development in Java

8.13 Exercises

This section covers Java programming with objects. It is a work in progress!

8.1 As shown in Figure 8.12 below, rectangles may be defined by the (x,y) coordinates of corner
points that are diagonally opposite.

2y

x

Point (x . y)

Point (x . y)1 1

2

Figure 8.12. Definition of a rectangle via diagonally opposite corner points

With this definition in place, the following script of code is a very basic implementation of a class
for creating and working with rectangle objects.
/*
* ==
* Rectangle.java : A library of methods for creating and managing rectangles
*
* double area() -- returns the area of a rectangle
* double perimeter() -- returns the perimeter of a rectangle
*
* Written By : Mark Austin November 2005
* ==
*/

import java.lang.Math;

public class Rectangle {
protected double dX1, dY1; // Coordinate (x,y) for corner 1....
protected double dX2, dY2; // Coordinate (x,y) for corner 2....

// Constructor methods

public Rectangle() {}

public Rectangle(double dX1, double dY1, double dX2, double dY2) {
this.dX1 = dX1; this.dY1 = dY1;
this.dX2 = dX2; this.dY2 = dY2;

}

Chapter 8 245

// Convert rectangle details to a string ...

public String toString() {
return "Rectangle: Corner 1: (x,y) = " + "(" + dX1 + "," + dY1 + ")\n" +

" Corner 2: (x,y) = " + "(" + dX2 + "," + dY2 + ")\n";
}

// ====================================
// Compute rectangle area and perimeter
// ====================================

public double area() {
return Math.abs((dX2-dX1)*(dY2-dY1));

}

public double perimeter() {
return 2.0*Math.abs(dX2-dX1) + 2.0*Math.abs(dY2-dY1);

}

// Exercise methods in the Rectangle class

public static void main (String args[]) {

System.out.println("Rectangle test program ");
System.out.println("===========================");

// Setup and print details of a small rectangle....

Rectangle rA = new Rectangle(1.0, 1.0, 3.0, 4.0);
System.out.println(rA.toString());

// Print perimeter and area of the small rectangle....

System.out.println("Perimeter = " + rA.perimeter());
System.out.println("Area = " + rA.area());

}
}

The script of program output is as follows:

Script started on Fri Apr 21 10:17:29 2006
prompt >>
prompt >> java Rectangle
Rectangle test program
===========================
Rectangle: Corner 1: (x,y) = (1.0,1.0)

Corner 2: (x,y) = (3.0,4.0)

Perimeter = 10.0
Area = 6.0
prompt >> exit
Script done on Fri Apr 21 10:17:39 2006

The Rectangle class has methods to create objects (i.e, Rectangle), convert the details of a rectan-

246 Engineering Software Development in Java

gle object into a string format (i.e., toString), and compute the rectangle area and perimeter (i.e.,
area() and permieter(), respectively). The implementation uses two pairs of doubles (dX1, dY1)
and (dX2, dY2) to define the corner points.

Suppose that, instead, the corner points are defined via a Vertes class, where
public class Vertex {

protected double dX, double dY

..... details of constructors and other methods removed ...
}

The appropriate modification for Rectangle is:
public class Rectangle {

protected Vertex vertex1; // First corner point....
protected Vertex vertex2; // Second corner point....

..... details rectangle removed
}

Fill in the missing details (i.e., constructors and toString() method) of class Vertex. Modify the
code in Rectangle to use Vertex class. The resulting program should have essentially has the same
functionality as the original version of Rectangle. Hint. Your implementation should make use
of the toString() method in Vertex.

8.2 There are lots of problems in engineering where the position of point needs to be evaluated with
respect to a shape. Evaluation procedures can be phrased in terms of questions. For example, is
the point inside (or outside) the shape?; Does the point lie on the boundary of the shape?; Does
the point lie above/below the shape? Does the point lie to the left or right of the shape?; How far
is the point from the perimeter?

Inside

y

x

Above

Below

Left Right

Point is to the "right" of the rectangle.

Point is "above" and to the "right of the rectangle

Figure 8.13. Classification of an (x,y) cooordinate relative to a rectangle

Figure 8.13 illustrates these ideas for one of the simplest cases possible, one point and a
rectangle. Extend the functionality of the Rectangle class so that the possition of a point can be
evaluated with respect to a specific rectangle object.

Chapter 8 247

The appropriate method declarations are as follows:
public boolean isInside (Vertex v) { ... }
public boolean isOutside (Vertex v) { ... }
public boolean isOnPerimeter (Vertex v) { ... }
public boolean isAbove (Vertex v) { ... }
public boolean isBelow (Vertex v) { ... }
public boolean isLeft (Vertex v) { ... }
public boolean isRight (Vertex v) { ... }

If the (x,y) coordinates of a vertex are inside a particular rectangle, then isInside () should
return true. Otherwise, it should return false. From Figure 8.13 is should evident that some
points will result in multiple methods returning true. For example, points in the top right-hand
side of the coordinate system will be outside, to the right, and above the rectangle.

Fill in the details of each method, and then develop a test program to exercise the procedures.
Perhaps the most straight forward way of doing this is to write an extensive set of tests in the
main() method for class Rectangle.

8.3 Figure 8.14 shows three types of spatial relationship (touching, overlap, and enclosure) between
two rectangle.

B overlaps with A

A A A

B
B

B

B touches A B enclosed by A

Figure 8.14. Spatial relationships between two rectangles

Extend the functionality of the Rectangle class to support the evaluation of these three types of
relationships.

8.4 A data array class is a one dimensional array of floating-point numbers together with methods
to compute statistics on the stored values (e.g., maximum value, minumum value). Download,
compile, and run the DataArray java code from the class web site. Re-code the rainfall analysis
program so that it uses the DataArray facilities.

Hint. Your solution will have two source code files, DataArray.java and RainfallAnalysis.java.
Don’t change any of the code in DataArray.java; just write a new version of RainfallAnalysis.java.
The files before and after compilation should be:

Before After
===================== =====================
RainfallAnalysis.java RainfallAnalysis.java
DataArray.java DataArray.java

RainfallAnalysis.class
DataArray.class

248 Engineering Software Development in Java

===================== =====================

You should find that your implementation is considerably shorter than in Problem 22.

8.5 This problem will give you practice at using the DataArray class to read, compute, and print the
statistics of data collected from a structural engineering experiment in which strain measurements
are recorded over an extended period of time.

Bending Moment Diagram

P (t) P (t)

Sensor 2
Sensor 3
Sensor 4

Sensor 1

Front Elevation View of a Structural Experiment End Elevation

Figure 8.15. Structural experiment.

Figure 8.15 shows front and end elevation views of the experimental setup, and the bending mo-
ment diagram that will result from the symmetrically applied loading. Four sensors are attached
to the center of the beam (where the bending moment will be constant. Since shear forces will be
zero, any cracks that will develop will be vertical).

Now suppose that four files (i.e., sensor1.txt,sensor2.txt,sensor3.txt and sensor4.txt)
contain the sensor strain measurements:

Sensor 1 Sensor 2 Sensor 3 Sensor 4
--

-0.010 -0.0025 0.0025 0.010
-0.011 -0.0030 0.0026 0.011
-0.010 -0.0032 0.0027 0.010
-0.011 -0.0034 0.0030 0.015
-0.012 -0.0036 0.0100 0.120
-0.015 -0.0040 0.0150 0.250
-0.017 -0.0042 0.0250 ***** <- failed!

--

Things to do:

1. Download, compile, and run the DataArray.java program from the java examples web page.

2. Create four data files for the experimental data. I suggest that you call them sensor1.txt
.. etc. Notice that sensor 4 fails, and hence contains an incomplete set of measurements.

Chapter 8 249

3. Write a program (e.g., ExperimentalAnalysis.java) that will read and store each set of exper-
imental measurements in a DataArray object. For each set of data, compute and print the
maximum and minimum values, the range, average and standard deviation.

Your solution should have six files: ExperimentalAnalysis.java (which you will write), DataAr-
ray.java (given), and the data files sensor1.txt through sensor4.txt.

8.6 Suppose that we need to compute the sum of the geometric series,

Sum(c, n) = c+ c2 + c3 + · · ·+ cn, (8.1)

where “c” is a complex number of the form c = a + bi, and “n” is a positive integer. The sum of a
geometric series can be computed efficiently in two ways; (1) Using Horner’s rule to re-write the
series as,

Sum(c, n) = c (1 + c (1 + · · · c(1 + c)) · · ·) , (8.2)

and (2) Using a geometric summation formula,

Sum(c, n) = c+ c2 + · · ·+ cn =

[

c− c(n+1)

1− c

]

(8.3)

Starting with the Complex.java package handed out in class, write a Java program that will prompt
a user for the coefficients a, b, and n, and then compute the series summation using Horner’s rule
and the geometric summation formula. In each case, show that

(1 + 2i) + (1 + 2i)2 + (1 + 2i)3 evaluates to − 13 + 4i. (8.4)

8.7 If a, b, and c are complex numbers, show that solutions to

a · x2 + b · x + c = 0 (8.5)

are given by

x =
−b±

√
b2 − 4ac

2a
(8.6)

Use your library of methods for complex number arithmetic and equation 8.6 to show that solu-
tions to

(2.00 + 2.00i) x2 + (3.00 + 3.00i) x + (3.00 + 5.00i) = 0.0 (8.7)

250 Engineering Software Development in Java

are x1 = −0.5445 − 1.2164i and x2 = −0.9555 + 1.2164i.

Check that x1 and x2 are in fact solutions to Equation 8.7 by evaluating each term, and arranging
real and complex components in a table of output.

Hint. You need to remember that all of the arithmetic in this problem needs to work with complex
numbers. Hence, suppose that you want to compute the roots to the equation:

2x2 − 3x+ 2 = 0.0 (8.8)

where the coefficients are all real numbers. In this context, you need to implement the equation
as if it were written:

(2 + 0i)x2 − (3 + 0i)x+ (2 + 0i) = 0.0 (8.9)

Your solution should consist of two files: Complex.java and Quadratic.java. You can down-
load Complex.java from the class web site. Quadratic.java will simply call the methods in Com-
plex.java; therefore, there is no need to change the contents of Complex.java.

8.8 Lots of problems in Civil Engineering boil down to evaluation of some sort of geometric relation-
ship among various kinds of objects (e.g., points, lines, areas, volumes).

Point (x3, y3)

Point (x1, y1) Point (x2, y2)

Point (x4 , y4)

Near Line Zone

End Zone End Zone

Figure 8.16. Distance of point to a line segment.

Figure 8.16 shows a line segment defined by two pairs of points (x1, y1) and (x2, y2), plus two
single points located at coordinates (x3, y3) and (x4, y4).

Write a Java program that will:

1. Prompt a user for (x,y) coordinates of the line segment end points,
2. Prompt a user for (x,y) coordinates of a single point,
3. Compute and print the equation of the line segment,

Chapter 8 251

4. Compute and print the distance of the single point from the line segment.

Notice that if the single point is located inside the “near line zone” then the point-to-line distance
is defined by the perpendicular distance from the line to the point. This distance is defined by
standard formulae. For cases where the single point lies in an “end zone” then the distance is
simply the euclidean distance from the closest end point and the single point itself.

